生物多样性 ›› 2024, Vol. 32 ›› Issue (11): 24178. DOI: 10.17520/biods.2024178 cstr: 32101.14.biods.2024178
麦晓烔1,2,3(), 康佳1,2,3, 李梓琛1,2,3, 王天明1,2,3,*(
)(
)
收稿日期:
2024-05-10
接受日期:
2024-07-22
出版日期:
2024-11-20
发布日期:
2024-09-26
通讯作者:
E-mail: 基金资助:
Xiaotong Mai1,2,3(), Jia Kang1,2,3, Zichen Li1,2,3, Tianming Wang1,2,3,*(
)(
)
Received:
2024-05-10
Accepted:
2024-07-22
Online:
2024-11-20
Published:
2024-09-26
Contact:
E-mail: Supported by:
摘要:
活动节律是动物应对种间竞争、捕食风险和环境条件变化的重要适应性特征, 探究野生动物的日活动节律特征, 对于深入理解物种的生存策略及其对人类干扰的行为响应至关重要。本研究于2021年4月至2022年3月, 在东北虎豹国家公园利用红外相机陷阱技术沿道路近处和远处获取了41对相机位点的梅花鹿(Cervus nippon)的9,825次活动数据, 采用核密度估计等方法评价了性别、年龄、繁殖状态以及季节变化、道路干扰等因素对梅花鹿日活动节律和活动水平的影响。研究结果表明, 在年尺度上, 6月和10月是梅花鹿种群的活动高峰; 在日尺度上, 梅花鹿的活动节律具有可塑性, 春、夏季以晨昏活动为主, 秋季为夜行型, 冬季转变为昼行型并呈现最低的活动水平。不同性别和不同繁殖状态的梅花鹿日活动节律之间也存在显著差异, 未成年类群活动节律为昼行型, 而成年梅花鹿种群活动呈现晨昏型特征, 所有类群中仅成年雄性夜间活动概率增加。梅花鹿对道路的响应在人类干扰最强的秋季尤为明显, 在道路近处活动水平显著下降, 在清晨活动水平增加, 减少了黄昏和夜间的活动水平。不同类群梅花鹿对道路的响应具有相对一致的模式, 即核心活动集中在一个相对较短的时间窗口, 从而在最大化食物摄入的同时减少暴露在道路附近的风险。我们的结果和方法为野生动物管理提供了新见解, 强调了生活在受干扰环境中的大型有蹄类动物在不同时空尺度上的行为可塑性。我们建议未来在东北虎豹国家公园物种的保护和管理工作中, 应长期监测野生动物种群动态, 并评估不同物种对人类干扰的行为响应。
麦晓烔, 康佳, 李梓琛, 王天明 (2024) 东北虎豹国家公园梅花鹿活动节律及其对道路的响应. 生物多样性, 32, 24178. DOI: 10.17520/biods.2024178.
Xiaotong Mai, Jia Kang, Zichen Li, Tianming Wang (2024) Assessing activity pattern of sika deer (Cervus nippon) and their response to roads in the Northeast China Tiger and Leopard National Park. Biodiversity Science, 32, 24178. DOI: 10.17520/biods.2024178.
图2 各类群梅花鹿相对多度指数统计。红外相机监测数据收集于2021年4月至2022年3月。
Fig. 2 Relative abundance index of sika deer between sex/age groups. The camera trapping data was collected from April 2021 to March 2022.
图3 不同季节梅花鹿的日活动节律(左)及活动概率的后验分布(右)。日活动节律图中, 浅蓝色部分代表活动范围(95%的活动事件发生的时间段), 深蓝色部分表示活动高峰(50%的活动事件发生的时间段)。
Fig. 3 Diel activity patterns (left) and posterior distributions of the probability of activity (right) of sika deer in different seasons. In the left panel, light blue represents the activity range (95% isopleth), and dark blue represents the activity peak (50% isopleth).
图4 不同类群梅花鹿的日活动节律(左)及活动概率的后验分布(右)。日活动节律图中, 浅蓝色部分代表活动范围(95%的活动事件发生的时间段), 深蓝色部分表示活动高峰(50%的活动事件发生的时间段)。
Fig. 4 Diel activity patterns (left) and posterior distributions of the probability of activity (right) of different sex/age groups of sika deer. In the left panel, light blue represents the activity range (95% isopleth), and dark blue represents the activity peak (50% isopleth).
图6 不同季节梅花鹿距离道路远近的日活动节律。红色线代表靠近道路处的活动节律, 线两侧红色阴影为95%置信区间, 红色长方形阴影为靠近道路处的活动高峰; 绿色线代表远离道路处的活动节律, 线两侧绿色阴影为95%置信区间, 绿色长方形阴影为远离道路处的活动高峰。
Fig. 6 Diel activity patterns and overlaps of sika deer near and far from the roads in different seasons. The red curve represents the activity pattern near the road, with the red shadow on both sides indicating the 95% confidence interval (CI), and the red rectangle shadow is the activity peak near the road. The green curve represents the activity pattern far from the road, with the green shadow on both sides of the curve indicating the 95% CI, and the green rectangle shadow is the activity peak away from the road.
道路 Road | 独立事件数 Individual events count (N) | 晨昏活动概率 Crepuscular activity probability | 白天活动概率 Daytime activity probability | 夜晚活动概率 Nighttime activity probability | 卡方检验 Chi-square test | |
---|---|---|---|---|---|---|
季节 Seasons | ||||||
春季 Spring | 近处 Close | 1,043 | 0.39 (0.36-0.42) | 0.33 (0.30-0.35) | 0.28 (0.26-0.31) | χ² = 8.695; P = 0.013 |
远处 Far | 1,128 | 0.33 (0.31-0.36) | 0.37 (0.35-0.39) | 0.30 (0.27-0.32) | ||
夏季 Summer | 近处 Close | 1,683 | 0.40 (0.38-0.42) | 0.36 (0.34-0.38) | 0.24 (0.22-0.26) | χ² = 1.107; P = 0.575 |
远处 Far | 1,711 | 0.42 (0.39-0.44) | 0.36 (0.33-0.38) | 0.23 (0.21-0.25) | ||
秋季 Autumn | 近处 Close | 1,659 | 0.34 (0.32-0.36) | 0.21 (0.19-0.23) | 0.45 (0.42-0.47) | χ² = 20.528; P < 0.001 |
远处 Far | 1,885 | 0.30 (0.28-0.32) | 0.17 (0.16-0.19) | 0.52 (0.50-0.55) | ||
冬季 Winter | 近处 Close | 413 | 0.31 (0.27-0.31) | 0.47 (0.42-0.52) | 0.22 (0.18-0.26) | χ² = 3.472; P = 0.176 |
远处 Far | 303 | 0.25 (0.20-0.30) | 0.49 (0.43-0.55) | 0.26 (0.21-0.31) | ||
类群 Sex/age groups | ||||||
雌雄混合群 Adult mix | 近处 Close | 360 | 0.45 (0.40-0.50) | 0.33 (0.29-0.38) | 0.21 (0.17-0.26) | χ² = 6.022; P = 0.050 |
远处 Far | 356 | 0.41 (0.36-0.46) | 0.29 (0.25-0.34) | 0.29 (0.25-0.34) | ||
成年雄性 Adult male | 近处 Close | 1,035 | 0.32 (0.29-0.35) | 0.23 (0.21-0.26) | 0.45 (0.42-0.48) | χ² = 0.076; P = 0.963 |
远处 Far | 1,302 | 0.32 (0.30-0.35) | 0.23 (0.21-0.25) | 0.44 (0.42-0.47) | ||
成年雌性 Adult female | 近处 Close | 2,558 | 0.38 (0.36-0.39) | 0.32 (0.30-0.33) | 0.31 (0.29-0.33) | χ² = 14.895; P < 0.001 |
远处 Far | 2,483 | 0.33 (0.32-0.35) | 0.32 (0.30-0.33) | 0.35 (0.34-0.37) | ||
母子群 Adult with fawn | 近处 Close | 468 | 0.40 (0.36-0.42) | 0.43 (0.40-0.47) | 0.17 (0.14-0.21) | χ² = 3.055; P = 0.217 |
远处 Far | 474 | 0.43 (0.39-0.47) | 0.38 (0.34-0.41) | 0.20 (0.16-0.23) | ||
未成年 Fawn | 近处 Close | 195 | 0.33 (0.26-0.38) | 0.45 (0.39-0.52) | 0.23 (0.17-0.29) | χ² = 2.104; P = 0.349 |
远处 Far | 179 | 0.32 (0.26-0.37) | 0.39 (0.35-0.45) | 0.29 (0.23-0.35) |
表1 梅花鹿在不同时段距离道路远近的活动概率比较
Table 1 Activity probability differences of sika deer near and far from the roads in different time periods
道路 Road | 独立事件数 Individual events count (N) | 晨昏活动概率 Crepuscular activity probability | 白天活动概率 Daytime activity probability | 夜晚活动概率 Nighttime activity probability | 卡方检验 Chi-square test | |
---|---|---|---|---|---|---|
季节 Seasons | ||||||
春季 Spring | 近处 Close | 1,043 | 0.39 (0.36-0.42) | 0.33 (0.30-0.35) | 0.28 (0.26-0.31) | χ² = 8.695; P = 0.013 |
远处 Far | 1,128 | 0.33 (0.31-0.36) | 0.37 (0.35-0.39) | 0.30 (0.27-0.32) | ||
夏季 Summer | 近处 Close | 1,683 | 0.40 (0.38-0.42) | 0.36 (0.34-0.38) | 0.24 (0.22-0.26) | χ² = 1.107; P = 0.575 |
远处 Far | 1,711 | 0.42 (0.39-0.44) | 0.36 (0.33-0.38) | 0.23 (0.21-0.25) | ||
秋季 Autumn | 近处 Close | 1,659 | 0.34 (0.32-0.36) | 0.21 (0.19-0.23) | 0.45 (0.42-0.47) | χ² = 20.528; P < 0.001 |
远处 Far | 1,885 | 0.30 (0.28-0.32) | 0.17 (0.16-0.19) | 0.52 (0.50-0.55) | ||
冬季 Winter | 近处 Close | 413 | 0.31 (0.27-0.31) | 0.47 (0.42-0.52) | 0.22 (0.18-0.26) | χ² = 3.472; P = 0.176 |
远处 Far | 303 | 0.25 (0.20-0.30) | 0.49 (0.43-0.55) | 0.26 (0.21-0.31) | ||
类群 Sex/age groups | ||||||
雌雄混合群 Adult mix | 近处 Close | 360 | 0.45 (0.40-0.50) | 0.33 (0.29-0.38) | 0.21 (0.17-0.26) | χ² = 6.022; P = 0.050 |
远处 Far | 356 | 0.41 (0.36-0.46) | 0.29 (0.25-0.34) | 0.29 (0.25-0.34) | ||
成年雄性 Adult male | 近处 Close | 1,035 | 0.32 (0.29-0.35) | 0.23 (0.21-0.26) | 0.45 (0.42-0.48) | χ² = 0.076; P = 0.963 |
远处 Far | 1,302 | 0.32 (0.30-0.35) | 0.23 (0.21-0.25) | 0.44 (0.42-0.47) | ||
成年雌性 Adult female | 近处 Close | 2,558 | 0.38 (0.36-0.39) | 0.32 (0.30-0.33) | 0.31 (0.29-0.33) | χ² = 14.895; P < 0.001 |
远处 Far | 2,483 | 0.33 (0.32-0.35) | 0.32 (0.30-0.33) | 0.35 (0.34-0.37) | ||
母子群 Adult with fawn | 近处 Close | 468 | 0.40 (0.36-0.42) | 0.43 (0.40-0.47) | 0.17 (0.14-0.21) | χ² = 3.055; P = 0.217 |
远处 Far | 474 | 0.43 (0.39-0.47) | 0.38 (0.34-0.41) | 0.20 (0.16-0.23) | ||
未成年 Fawn | 近处 Close | 195 | 0.33 (0.26-0.38) | 0.45 (0.39-0.52) | 0.23 (0.17-0.29) | χ² = 2.104; P = 0.349 |
远处 Far | 179 | 0.32 (0.26-0.37) | 0.39 (0.35-0.45) | 0.29 (0.23-0.35) |
道路 Road | 独立事件数 Individual events count (N) | 估计值 Estimate | 标准误 Standard error | 95%置信区间 95% confidence interval | Wald检验 Wald test | |
---|---|---|---|---|---|---|
季节 Seasons | ||||||
春季 Spring | 近处 Close | 1,043 | 0.44 | 0.03 | 0.38-0.49 | W = 1.58; P = 0.209 |
远处 Far | 1,128 | 0.49 | 0.03 | 0.43-0.55 | ||
夏季 Summer | 近处 Close | 1,683 | 0.45 | 0.02 | 0.40-0.48 | W = 0.20; P = 0.657 |
远处 Far | 1,711 | 0.44 | 0.02 | 0.39-0.46 | ||
秋季 Autumn | 近处 Close | 1,659 | 0.42 | 0.02 | 0.37-0.47 | W = 21.75; P < 0.001 |
远处 Far | 1,885 | 0.58 | 0.02 | 0.52-0.61 | ||
冬季 Winter | 近处 Close | 413 | 0.35 | 0.03 | 0.29-0.40 | W = 5.07; P = 0.024 |
远处 Far | 303 | 0.46 | 0.04 | 0.36-0.52 | ||
类群 Sex/age groups | ||||||
雌雄混合群 Adult mix | 近处 Close | 360 | 0.42 | 0.03 | 0.33-0.46 | W = 0.11; P = 0.740 |
远处 Far | 356 | 0.44 | 0.04 | 0.35-0.52 | ||
成年雄性 Adult male | 近处 Close | 1,035 | 0.51 | 0.04 | 0.44-0.59 | W = 4.01; P = 0.045 |
远处 Far | 1,302 | 0.60 | 0.03 | 0.52-0.64 | ||
成年雌性 Adult female | 近处 Close | 2,558 | 0.48 | 0.02 | 0.43-0.51 | W = 1.54; P = 0.214 |
远处 Far | 2,483 | 0.52 | 0.03 | 0.47-0.57 | ||
母子群 Adult with fawn | 近处 Close | 468 | 0.45 | 0.03 | 0.36-0.48 | W = 0.49; P = 0.485 |
远处 Far | 474 | 0.41 | 0.03 | 0.34-0.46 | ||
未成年 Fawn | 近处 Close | 195 | 0.38 | 0.04 | 0.28-0.45 | W = 10.15; P = 0.001 |
远处 Far | 179 | 0.62 | 0.06 | 0.44-0.69 |
表2 梅花鹿在距离道路近处和远处的活动水平比较
Table 2 Activity levels differences of sika deer near and far from the roads
道路 Road | 独立事件数 Individual events count (N) | 估计值 Estimate | 标准误 Standard error | 95%置信区间 95% confidence interval | Wald检验 Wald test | |
---|---|---|---|---|---|---|
季节 Seasons | ||||||
春季 Spring | 近处 Close | 1,043 | 0.44 | 0.03 | 0.38-0.49 | W = 1.58; P = 0.209 |
远处 Far | 1,128 | 0.49 | 0.03 | 0.43-0.55 | ||
夏季 Summer | 近处 Close | 1,683 | 0.45 | 0.02 | 0.40-0.48 | W = 0.20; P = 0.657 |
远处 Far | 1,711 | 0.44 | 0.02 | 0.39-0.46 | ||
秋季 Autumn | 近处 Close | 1,659 | 0.42 | 0.02 | 0.37-0.47 | W = 21.75; P < 0.001 |
远处 Far | 1,885 | 0.58 | 0.02 | 0.52-0.61 | ||
冬季 Winter | 近处 Close | 413 | 0.35 | 0.03 | 0.29-0.40 | W = 5.07; P = 0.024 |
远处 Far | 303 | 0.46 | 0.04 | 0.36-0.52 | ||
类群 Sex/age groups | ||||||
雌雄混合群 Adult mix | 近处 Close | 360 | 0.42 | 0.03 | 0.33-0.46 | W = 0.11; P = 0.740 |
远处 Far | 356 | 0.44 | 0.04 | 0.35-0.52 | ||
成年雄性 Adult male | 近处 Close | 1,035 | 0.51 | 0.04 | 0.44-0.59 | W = 4.01; P = 0.045 |
远处 Far | 1,302 | 0.60 | 0.03 | 0.52-0.64 | ||
成年雌性 Adult female | 近处 Close | 2,558 | 0.48 | 0.02 | 0.43-0.51 | W = 1.54; P = 0.214 |
远处 Far | 2,483 | 0.52 | 0.03 | 0.47-0.57 | ||
母子群 Adult with fawn | 近处 Close | 468 | 0.45 | 0.03 | 0.36-0.48 | W = 0.49; P = 0.485 |
远处 Far | 474 | 0.41 | 0.03 | 0.34-0.46 | ||
未成年 Fawn | 近处 Close | 195 | 0.38 | 0.04 | 0.28-0.45 | W = 10.15; P = 0.001 |
远处 Far | 179 | 0.62 | 0.06 | 0.44-0.69 |
图7 不同类群梅花鹿距离道路远近的日活动节律。红色线代表靠近道路处的活动节律, 线两侧红色阴影为95%置信区间, 红色长方形阴影为靠近道路处的活动高峰; 绿色线代表远离道路处的活动节律, 线两侧绿色阴影为95%置信区间, 绿色长方形阴影为远离道路处的活动高峰。
Fig. 7 Diel activity patterns of different sex/age groups of sika deer near or far from the roads. The red curve represents the activity pattern near the road, with the red shadow on both sides indicating the 95% confidence interval (CI), and the red rectangle shadow is the activity peak near the road. The green curve represents the activity pattern far from the road, with the green shadow on both sides of the curve indicating the 95% CI, and the green rectangle shadow is the activity peak away from the road.
[1] | Ager AA, Johnson BK, Kern JW, Kie JG (2003) Daily and seasonal movements and habitat use by female rocky mountain elk and mule deer. Journal of Mammalogy, 84, 1076-1088. |
[2] | Arnold W, Ruf T, Reimoser S, Tataruch F, Onderscheka K, Schober F (2004) Nocturnal hypometabolism as an overwintering strategy of red deer (Cervus elaphus). American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 286, R174-R181. |
[3] | Azevedo FC, Lemos FG, Freitas-Junior MC, Rocha DG, Azevedo FCC (2018) Puma activity patterns and temporal overlap with prey in a human-modified landscape at Southeastern Brazil. Journal of Zoology, 305, 246-255. |
[4] | Azlan JM, Sharma DSK (2006) The diversity and activity patterns of wild felids in a secondary forest in Peninsular Malaysia. Oryx, 40, 36-41. |
[5] | Beier P, McCullough DR (1990) Factors influencing white-tailed deer activity patterns and habitat use. Wildlife Monographs, 2, 3-51. |
[6] | Bennie JJ, Duffy JP, Inger R, Gaston KJ (2014) Biogeography of time partitioning in mammals. Proceedings of the National Academy of Sciences, USA, 111, 13727-13732. |
[7] | Díaz-Ruiz F, Caro J, Delibes-Mateos M, Arroyo B, Ferreras P (2016) Drivers of red fox (Vulpes vulpes) daily activity: Prey availability, human disturbance or habitat structure? Journal of Zoology, 298, 128-138. |
[8] |
Dominoni DM, Greif S, Nemeth E, Brumm H (2016) Airport noise predicts song timing of European birds. Ecology and Evolution, 6, 6151-6159.
DOI PMID |
[9] | Downes S (2001) Trading heat and food for safety: Costs of predator avoidance in a lizard. Ecology, 82, 2870-2881. |
[10] | Eriksen A, Wabakken P, Zimmermann B, Andreassen HP, Arnemo JM, Gundersen H, Liberg O, Linnell J, Milner JM, Pedersen HC, Sand H, Solberg EJ, Storaas T (2011) Activity patterns of predator and prey: A simultaneous study of GPS-collared wolves and moose. Animal Behaviour, 81, 423-431. |
[11] | Farris ZJ, Gerber BD, Karpanty S, Murphy A, Andrianjakarivelo V, Ratelolahy F, Kelly MJ (2015) When carnivores roam: Temporal patterns and overlap among Madagascar’s native and exotic carnivores. Journal of Zoology, 296, 45-57. |
[12] | Feng RN, Lü XY, Xiao WH, Feng JW, Sun YF, Guan Y, Feng LM, Smith JLD, Ge JP, Wang TM (2021) Effects of free-ranging livestock on sympatric herbivores at fine spatiotemporal scales. Landscape Ecology, 36, 1441-1457. |
[13] |
Gaynor KM, Hojnowski CE, Carter NH, Brashares JS (2018) The influence of human disturbance on wildlife nocturnality. Science, 360, 1232-1235.
DOI PMID |
[14] |
Gerber BD, Devarajan K, Farris ZJ, Fidino M (2024) A model-based hypothesis framework to define and estimate the diel niche via the ‘Diel.Niche’ R package. Journal of Animal Ecology, 93, 132-146.
DOI PMID |
[15] | Havmøller RW, Jacobsen NS, Scharff N, Rovero F, Zimmermann F (2020) Assessing the activity pattern overlap among leopards (Panthera pardus), potential prey and competitors in a complex landscape in Tanzania. Journal of Zoology, 311, 175-182. |
[16] | Hayden TJ, Lynch JM, O’Corry-Crowe G (1994) Antler growth and morphology in a feral sika deer (Cervus nippon) population in Killarney, Ireland. Journal of Zoology, 232, 21-35. |
[17] | Ikeda T, Uchida K, Matsuura Y, Takahashi H, Yoshida T, Kaji K, Koizumi I (2016) Seasonal and diel activity patterns of eight sympatric mammals in northern Japan revealed by an intensive camera-trap survey. PLoS ONE, 11, e0163602. |
[18] | Jaeger JAG, Bowman J, Brennan J, Fahrig L, Bert D, Bouchard J, Charbonneau N, Frank K, Gruber B, von Toschanowitz KT (2005) Predicting when animal populations are at risk from roads: An interactive model of road avoidance behavior. Ecological Modelling, 185, 329-348. |
[19] | Jędrzejewski W, Vivas I, Abarca M, Lampo M, Morales LG, Gamarra G, Schmidt K, Hoogesteijn R, Carreño R, Puerto MF, Viloria ÁL, Breitenmoser C, Breitenmoser U (2021) Effect of sex, age, and reproductive status on daily activity levels and activity patterns in jaguars (Panthera onca). Mammal Research, 66, 531-539. |
[20] |
Kawamura K, Jimbo M, Adachi K, Shirane Y, Nakanishi M, Umemura Y, Ishinazaka T, Uno H, Sashika M, Tsubota T, Shimozuru M (2022) Diel and monthly activity pattern of brown bears and sika deer in the Shiretoko Peninsula, Hokkaido, Japan. Journal of Veterinary Medical Science, 84, 1146-1156.
DOI PMID |
[21] | Kilgo JC, Ray HS, Vukovich M, Goode MJ, Ruth C (2012) Predation by coyotes on white-tailed deer neonates in South Carolina. The Journal of Wildlife Management, 76, 1420-1430. |
[22] | Kitchen AM, Gese EM, Schauster ER (2000) Changes in coyote activity patterns due to reduced exposure to human persecution. Canadian Journal of Zoology, 78, 853-857. |
[23] | Laundré JW, Hernández L, Altendorf KB (2001) Wolves, elk, and bison: Reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Canadian Journal of Zoology, 79, 1401-1409. |
[24] |
Lee SXT, Amir Z, Moore JH, Gaynor KM, Luskin MS (2024) Effects of human disturbances on wildlife behaviour and consequences for predator-prey overlap in Southeast Asia. Nature Communications, 15, 1521.
DOI PMID |
[25] | Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology, 68, 619-640. |
[26] | Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. Journal of Zoology, 284, 224-229. |
[27] | Meredith M, Ridout MS (2021) Overlap: Estimates of coefficient of overlapping for animal activity patterns. https://cran.r-project.org/web/packages/overlap. (accessed on 2023-11-01) |
[28] | Mols B, Lambers E, Cromsigt JPGM, Kuijper DPJ, Smit C (2022) Recreation and hunting differentially affect deer behaviour and sapling performance. Oikos, 2022, e08448. |
[29] | Norris D, Michalski F, Peres CA (2010) Habitat patch size modulates terrestrial mammal activity patterns in Amazonian forest fragments. Journal of Mammalogy, 91, 551-560. |
[30] | O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation, 6, 131-139. |
[31] | Oliveira-Santos LGR, Zucco CA, Agostinelli C (2013) Using conditional circular kernel density functions to test hypotheses on animal circadian activity. Animal Behaviour, 85, 269-280. |
[32] | Oliver RY, Iannarilli F, Ahumada J, Fegraus E, Flores N, Kays R, Birch T, Ranipeta A, Rogan MS, Sica YV, Jetz W (2023) Camera trapping expands the view into global biodiversity and its change. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 378, 20220232. |
[33] | Qi WH, Jiang XM, Yang CZ, Guo YS (2014) Reproductive behavior of Sichuan sika deer (Cervus nippon sichuanicus). Acta Ecologica Sinica, 34, 6548-6559. (in Chinese with English abstract) |
[戚文华, 蒋雪梅, 杨承忠, 郭延蜀 (2014) 四川梅花鹿繁殖行为. 生态学报, 34, 6548-6559.] | |
[34] | Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14, 322-337. |
[35] | Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA (2014) Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution, 5, 1170-1179. |
[36] | Rowcliffe M (2021) Activity: Animal Activity Statistics. https://cran.r-project.org/web/packages/activity. (accessed on 2023-11-01) |
[37] | Ruckstuhl KE, Neuhaus P (2000) Sexual segregation in ungulates: A new approach. Behaviour, 137, 361-377. |
[38] |
Selva N, Kreft S, Kati V, Schluck M, Jonsson BG, Mihok B, Okarma H, Ibisch PL (2011) Roadless and low-traffic areas as conservation targets in Europe. Environmental Management, 48, 865-877.
DOI PMID |
[39] | Shamoon H, Maor R, Saltz D, Dayan T (2018) Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biological Conservation, 226, 32-41. |
[40] | Song YL, Liu ZT (2005) The rare animal—Sika deer (Cervus nippon) and its study. Bulletin of Biology, 40(7), 1-3. (in Chinese) |
[宋延龄, 刘志涛 (2005) 珍稀动物——梅花鹿及其研究. 生物学通报, 40(7), 1-3.] | |
[41] | Sönnichsen L, Bokje M, Marchal J, Hofer H, Jędrzejewska B, Kramer-Schadt S, Ortmann S (2013) Behavioural responses of European Roe Deer to temporal variation in predation risk. Ethology, 119, 233-243. |
[42] | Stankowich T (2008) Ungulate flight responses to human disturbance: A review and meta-analysis. Biological Conservation, 141, 2159-2173. |
[43] |
Sun YF, Wang SZ, Feng JW, Wang TM (2023) Diel and seasonal variability of the forest soundscape in the Northeast China Tiger and Leopard National Park. Biodiversity Science, 31, 22523. (in Chinese with English abstract)
DOI |
[孙翊斐, 王士政, 冯佳伟, 王天明 (2023) 东北虎豹国家公园森林声景的昼夜和季节变化. 生物多样性, 31, 22523.]
DOI |
|
[44] | Sunarto S, Kelly MJ, Parakkasi K, Hutajulu MB (2015) Cat coexistence in central Sumatra: Ecological characteristics, spatial and temporal overlap, and implications for management. Journal of Zoology, 296, 104-115. |
[45] | Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18-30. |
[46] | Tsunoda H (2021) Human disturbances increase vigilance levels in sika deer (Cervus nippon): A preliminary observation by camera-trapping. Russian Journal of Theriology, 20, 59-69. |
[47] | Wang TM, Andrew Royle J, Smith JLD, Zou L, Lü XY, Li T, Yang HT, Li ZL, Feng RN, Bian YJ, Feng LM, Ge JP (2018) Living on the edge: Opportunities for Amur tiger recovery in China. Biological Conservation, 217, 269-279. |
[48] | Wang TM, Feng LM, Mou P, Wu JG, Smith JLD, Xiao WH, Yang HT, Dou HL, Zhao XD, Cheng YC, Zhou B, Wu HY, Zhang L, Tian Y, Guo QX, Kou XJ, Han XM, Miquelle DG, Oliver CD, Xu RM, Ge JP (2016) Amur tigers and leopards returning to China: Direct evidence and a landscape conservation plan. Landscape Ecology, 31, 491-503. |
[49] | Wang TM, Feng LM, Yang HT, Han BY, Zhao YH, Juan L, Lü XY, Zou L, Li T, Xiao WH, Mou P, Smith JLD, Ge JP (2017) A science-based approach to guide Amur leopard recovery in China. Biological Conservation, 210, 47-55. |
[50] | Wang TM, Feng LM, Yang HT, Bao L, Wang HF, Ge JP (2020) An introduction to Long-term Tiger-Leopard Observation Network based on camera traps in Northeast China. Biodiversity Science, 28, 1059-1066. (in Chinese with English abstract) |
[王天明, 冯利民, 杨海涛, 鲍蕾, 王红芳, 葛剑平 (2020) 东北虎豹生物多样性红外相机监测平台概述. 生物多样性, 28, 1059-1066.] | |
[51] | Watabe R, Saito MU (2021) Effects of vehicle-passing frequency on forest roads on the activity patterns of carnivores. Landscape and Ecological Engineering, 17, 225-231. |
[52] |
Xiao ZS, Xiao WH, Wang TM, Li S, Lian XM, Song DZ, Deng XQ, Zhou QH (2022) Wildlife monitoring and research using camera-trapping technology across China: The current status and future issues. Biodiversity Science, 30, 22451. (in Chinese with English abstract)
DOI |
[肖治术, 肖文宏, 王天明, 李晟, 连新明, 宋大昭, 邓雪琴, 周岐海 (2022) 中国野生动物红外相机监测与研究: 现状及未来. 生物多样性, 30, 22451.]
DOI |
[1] | 高翔, 潘淑芳, 孙争争, 李霁筱, 高天雨, 董路, 王宁. 广东珠海凤凰山和淇澳岛小灵猫的分布与活动节律[J]. 生物多样性, 2024, 32(8): 24045-. |
[2] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[3] | 卢佳玉, 石小亿, 多立安, 王天明, 李治霖. 基于红外相机技术的天津城市地栖哺乳动物昼夜活动节律评价[J]. 生物多样性, 2024, 32(8): 23369-. |
[4] | 张明军, 王合升, 颜文博, 符运南, 王琦, 曾治高. 海南大田国家级自然保护区小灵猫的活动节律与栖息地选择[J]. 生物多样性, 2024, 32(6): 23420-. |
[5] | 任嘉隆, 王永珍, 冯怡琳, 赵文智, 严祺涵, 秦畅, 方静, 辛未冬, 刘继亮. 基于陷阱法采集的河西走廊戈壁荒漠甲虫数据集[J]. 生物多样性, 2024, 32(2): 23375-. |
[6] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
[7] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
[8] | 陈本平, 陈建武, 凌征文, 杨旭, 陈鑫, 李生强, 杨彪. 四川老君山国家级自然保护区林下鸟兽多样性及动态变化数据集[J]. 生物多样性, 2023, 31(5): 22566-. |
[9] | 李珍珍, 杜梦甜, 朱原辛, 王大伟, 李治霖, 王天明. 基于红外相机的不可个体识别动物种群密度估算方法[J]. 生物多样性, 2023, 31(3): 22422-. |
[10] | 史湘莹, 李雪阳, 魏春玥, 孙戈, 刘震, 赵翔, 周嘉鼎, 樊简, 李成, 吕植. 雅鲁藏布大峡谷鸟兽多样性及其海拔和季节分布[J]. 生物多样性, 2023, 31(2): 22491-. |
[11] | 王怡涵, 赵倩倩, 刁奕欣, 顾伯健, 翁悦, 张卓锦, 陈泳滨, 王放. 基于红外相机调查上海市区小灵猫的活动节律、栖息地利用及其对人类活动的响应[J]. 生物多样性, 2023, 31(2): 22294-. |
[12] | 李飞, 黄湘元, 张兴超, 欧梓键, 陈辈乐. 基于红外相机对云南腾冲高黎贡山云猫的调查[J]. 生物多样性, 2022, 30(9): 22089-. |
[13] | 孔玥峤, 刘炎林, 贺成武, 李天醍, 李全亮, 马存新, 王大军, 李晟. 评估荒漠猫的日活动节律: 基于红外相机与卫星颈圈数据的对比[J]. 生物多样性, 2022, 30(9): 22081-. |
[14] | 王东, 赛青高娃, 王子涵, 赵宏秀, 连新明. 长江源区同域分布兔狲、藏狐和赤狐的时空重叠度[J]. 生物多样性, 2022, 30(9): 21365-. |
[15] | 杨剑焕, 李敬华, 杨浩炫, 欧梓键, 郑玺, Anthony J. Giordano, 陈辈乐. 基于红外相机数据评估华南地区豹猫的种群密度和活动节律[J]. 生物多样性, 2022, 30(9): 21357-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn