生物多样性 ›› 2024, Vol. 32 ›› Issue (8): 24068. DOI: 10.17520/biods.2024068 cstr: 32101.14.biods.2024068
苏荣菲1(), 陈睿山1,*(
)(
), 俞霖琳2, 吴婧彬2, 康燕1
收稿日期:
2024-02-27
接受日期:
2024-07-14
出版日期:
2024-08-20
发布日期:
2024-07-23
通讯作者:
*E-mail: rschen@sjtu.edu.cn
基金资助:
Rongfei Su1(), Ruishan Chen1,*(
)(
), Linlin Yu2, Jingbin Wu2, Yan Kang1
Received:
2024-02-27
Accepted:
2024-07-14
Online:
2024-08-20
Published:
2024-07-23
Contact:
*E-mail: rschen@sjtu.edu.cn
Supported by:
摘要:
随着全球城市化的加速, 城市生态系统的重要性日益凸显。社区生境花园作为一种基于自然的解决方案, 对高密度城市的生物多样性保护有积极影响, 受到学界和政府关注。然而, 当前仍缺乏生境花园物种组成、相互作用和影响因素的量化研究。本研究旨在掌握生境花园内野生动物的物种组成、相对种群大小以及物种分布的时空变化, 识别野生动物对城市内生物和非生物因子的响应, 并评估城市社区背景下特有威胁因素对动物产生的影响, 基于此分析动物保护措施的有效性, 并提出适应性管理建议。本研究基于红外相机监测技术, 利用2023年2月11日至2024年1月13日在上海市长宁区7座生境花园中10个位点, 累积总有效红外相机工作日627 d的调查记录, 收集到20,375张鸟类和哺乳动物的照片, 分别使用相对多度指数、核密度分析法和回避-吸引指数、生物多样性指数和回归分析, 评估了社区尺度动物种群的相对大小, 分析了不同物种的日活动节律以及回避-吸引关系, 揭示了生物多样性与生境花园相关因素的关系。结果表明, 长宁区生境花园中至少存在15种鸟类和5种哺乳动物, 其中猫(Felis catus)的相对多度指数最高。活动节律分析显示猫与其他野生动物存在时间上的避让关系, 尤其对鸟类和小型哺乳动物构成威胁。生境花园周围景观的蓝绿基础设施斑块面积与花园内部的物种丰富度(S) (r = 0.09, P > 0.05)、多样性(H) (r = 0.03, P > 0.05)和均匀度(EH) (r = 0.01, P > 0.05)指数均呈正相关, 但不显著。生境花园面积与物种α多样性关系微弱且相关性不显著(P > 0.05)。生境花园的物种组成存在空间差异(β多样性)。本研究表明社区生境花园能与其他城市绿地空间协同为城市野生动物提供踏脚石, 然而猫的泛滥对生境花园内物种多样性产生了破坏性影响。此外, 花园自身的设计要素能够在微小尺度为野生动物提供水源、食源和庇护所等关键生存要素。在未来的建设和管理中, 需要将生境花园纳入城市生物多样性保护规划中, 考虑与周围景观的协同保护作用, 并加强生境花园生物友好型的生态要素设计, 加强对社区内宠物猫和野猫的管理, 完善社区管理和维护机制。
苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕 (2024) 基于红外相机调查的上海市长宁区社区生境花园生物多样性. 生物多样性, 32, 24068. DOI: 10.17520/biods.2024068.
Rongfei Su, Ruishan Chen, Linlin Yu, Jingbin Wu, Yan Kang (2024) Biodiversity in community habitat gardens in Changning District, Shanghai based on camera trapping. Biodiversity Science, 32, 24068. DOI: 10.17520/biods.2024068.
图2 7座生境花园的物种累积曲线及箱线图。蓝色区域代表95%置信区间, +代表异常值。
Fig. 2 Species accumulation curves and box plots for seven habitat gardens. Blue areas represent 95% confidence intervals, + represents outliers.
纲 Class | 目 Order | 科 Family | 种 Species | 独立探测次数 No. of detections | 占比 Ratio (%)a | 占比 Ratio (%)b | 相对多度指数 Relative abundance index |
---|---|---|---|---|---|---|---|
鸟纲 Aves | 雀形目 Passeriformes | 鹟科 Muscicapidae | 鹊鸲 Copsychus saularis | 36 | 3.19 | 0.99 | 57.42 |
北红尾鸲 Phoenicurus auroreus | 1 | 0.09 | 0.03 | 1.59 | |||
红胁蓝尾鸲 Tarsiger cyanurus | 2 | 0.18 | 0.05 | 3.19 | |||
雀科 Passeridae | 树麻雀 Passer montanus | 11 | 0.98 | 0.30 | 17.54 | ||
山雀科 Paridae | 远东山雀 Parus minor | 2 | 0.18 | 0.05 | 3.19 | ||
鹎科 Pycnonotidae | 白头鹎 Pycnonotus sinensis | 69 | 6.12 | 1.89 | 110.05 | ||
红耳鹎 Pycnonotus jocosus | 1 | 0.09 | 0.03 | 1.59 | |||
鸫科 Turdidae | 乌鸫 Turdus merula | 253 | 22.43 | 6.94 | 403.51 | ||
虎斑地鸫 Zoothera dauma | 1 | 0.09 | 0.03 | 1.59 | |||
灰背鸫 Turdus hortulorum | 3 | 0.27 | 0.08 | 4.78 | |||
白腹鸫 Turdus pallidus | 1 | 0.09 | 0.03 | 1.59 | |||
噪鹛科 Leiothrichidae | 画眉 Garrulax canorus | 1 | 0.09 | 0.03 | 1.59 | ||
鸽形目 Columbiformes | 鸠鸽科 Columbidae | 珠颈斑鸠 Spilopelia chinensis | 354 | 31.38 | 9.71 | 564.59 | |
家鸽 Columba livia | 3 | 0.27 | 0.08 | 4.78 | |||
鹰形目 Accipitriformes | 鹰科 Accipitridae | 凤头鹰 Accipiter trivirgatus | 1 | 0.09 | 0.03 | 1.59 | |
哺乳纲 Mammalia | 啮齿目 Rodentia | 松鼠科 Sciuridae | 赤腹松鼠 Callosciurus erythraeus | 12 | 1.06 | 0.33 | 19.14 |
食肉目 Carnivora | 鼬科 Mustelidae | 黄鼬 Mustela sibirica | 339 | 30.05 | 9.30 | 540.67 | |
犬科 Canidae | 貉 Nyctereutes procyonoides | 38 | 3.37 | 1.04 | 60.61 | ||
狗 Canis lupus familiaris | 34 | - | 0.93 | 54.23 | |||
猫科 Felidae | 猫 Felis catus | 2,483 | - | 68.12 | 3,960.13 |
表1 上海市长宁区生境花园2023-2024年红外相机调查记录到的物种组成和相对多度指数
Table 1 Community composition and relative abundance index of species detected by camera-trapping at habitat gardens in Changning District, Shanghai from 2023 to 2024
纲 Class | 目 Order | 科 Family | 种 Species | 独立探测次数 No. of detections | 占比 Ratio (%)a | 占比 Ratio (%)b | 相对多度指数 Relative abundance index |
---|---|---|---|---|---|---|---|
鸟纲 Aves | 雀形目 Passeriformes | 鹟科 Muscicapidae | 鹊鸲 Copsychus saularis | 36 | 3.19 | 0.99 | 57.42 |
北红尾鸲 Phoenicurus auroreus | 1 | 0.09 | 0.03 | 1.59 | |||
红胁蓝尾鸲 Tarsiger cyanurus | 2 | 0.18 | 0.05 | 3.19 | |||
雀科 Passeridae | 树麻雀 Passer montanus | 11 | 0.98 | 0.30 | 17.54 | ||
山雀科 Paridae | 远东山雀 Parus minor | 2 | 0.18 | 0.05 | 3.19 | ||
鹎科 Pycnonotidae | 白头鹎 Pycnonotus sinensis | 69 | 6.12 | 1.89 | 110.05 | ||
红耳鹎 Pycnonotus jocosus | 1 | 0.09 | 0.03 | 1.59 | |||
鸫科 Turdidae | 乌鸫 Turdus merula | 253 | 22.43 | 6.94 | 403.51 | ||
虎斑地鸫 Zoothera dauma | 1 | 0.09 | 0.03 | 1.59 | |||
灰背鸫 Turdus hortulorum | 3 | 0.27 | 0.08 | 4.78 | |||
白腹鸫 Turdus pallidus | 1 | 0.09 | 0.03 | 1.59 | |||
噪鹛科 Leiothrichidae | 画眉 Garrulax canorus | 1 | 0.09 | 0.03 | 1.59 | ||
鸽形目 Columbiformes | 鸠鸽科 Columbidae | 珠颈斑鸠 Spilopelia chinensis | 354 | 31.38 | 9.71 | 564.59 | |
家鸽 Columba livia | 3 | 0.27 | 0.08 | 4.78 | |||
鹰形目 Accipitriformes | 鹰科 Accipitridae | 凤头鹰 Accipiter trivirgatus | 1 | 0.09 | 0.03 | 1.59 | |
哺乳纲 Mammalia | 啮齿目 Rodentia | 松鼠科 Sciuridae | 赤腹松鼠 Callosciurus erythraeus | 12 | 1.06 | 0.33 | 19.14 |
食肉目 Carnivora | 鼬科 Mustelidae | 黄鼬 Mustela sibirica | 339 | 30.05 | 9.30 | 540.67 | |
犬科 Canidae | 貉 Nyctereutes procyonoides | 38 | 3.37 | 1.04 | 60.61 | ||
狗 Canis lupus familiaris | 34 | - | 0.93 | 54.23 | |||
猫科 Felidae | 猫 Felis catus | 2,483 | - | 68.12 | 3,960.13 |
图3 猫与黄鼬(a)、貉(b)、珠颈斑鸠(c)、乌鸫(d)和白头鹎(e)的活动节律分析
Fig. 3 Diel activity pattern of Felis catus, Mustela sibirica (a), Nyctereutes procyonoides (b), Spilopelia chinensis (c), Turdus merula (d) and Pycnonotus sinensis (e)
调查点 Survey name | 面积 Area (m2) | 建成时间 Built time | 猫的探测 比例 Ratio of cat detections | 蓝绿基础设施斑块景观组成百分比 PLAND of blue-green infrastructure patches (%) | 景观连通性指数 Landscape connectivity index | 指标 Metrics | |||
---|---|---|---|---|---|---|---|---|---|
物种丰富度 Species richness (S) | 物种多样性Species diversity (H) | 物种均匀度Species evenness (EH) | 优势度Dominance (D) | ||||||
忆 Yi | 1,000 | 2023 | 0.89 | 10.49 | 71.92 | 7 | 0.50 | 0.26 | 0.89 |
虹旭 Hongxu | 500 | 2019 | 0.68 | 14.20 | 71.38 | 10 | 1.05 | 0.46 | 0.68 |
乐居 Leju | 581 | 2021 | 0.85 | 7.06 | 74.30 | 3 | 0.51 | 0.46 | 0.85 |
乐颐 Leyi | 732 | 2021 | 0.48 | 16.82 | 60.35 | 11 | 1.45 | 0.60 | 0.48 |
南丰城 Nanfeng | 600 | 2023 | 0.35 | 4.41 | 75.40 | 9 | 1.43 | 0.65 | 0.43 |
融 Rong | 950 | 2023 | 0.95 | 11.03 | 72.05 | 7 | 0.24 | 0.12 | 0.95 |
中泾 Zhongjing | 760 | 2023 | 0.45 | 22.12 | 65.66 | 6 | 1.37 | 0.76 | 0.45 |
表2 生境花园群落多样性分析结果
Table 2 Analysis results of community diversity in habitat gardens
调查点 Survey name | 面积 Area (m2) | 建成时间 Built time | 猫的探测 比例 Ratio of cat detections | 蓝绿基础设施斑块景观组成百分比 PLAND of blue-green infrastructure patches (%) | 景观连通性指数 Landscape connectivity index | 指标 Metrics | |||
---|---|---|---|---|---|---|---|---|---|
物种丰富度 Species richness (S) | 物种多样性Species diversity (H) | 物种均匀度Species evenness (EH) | 优势度Dominance (D) | ||||||
忆 Yi | 1,000 | 2023 | 0.89 | 10.49 | 71.92 | 7 | 0.50 | 0.26 | 0.89 |
虹旭 Hongxu | 500 | 2019 | 0.68 | 14.20 | 71.38 | 10 | 1.05 | 0.46 | 0.68 |
乐居 Leju | 581 | 2021 | 0.85 | 7.06 | 74.30 | 3 | 0.51 | 0.46 | 0.85 |
乐颐 Leyi | 732 | 2021 | 0.48 | 16.82 | 60.35 | 11 | 1.45 | 0.60 | 0.48 |
南丰城 Nanfeng | 600 | 2023 | 0.35 | 4.41 | 75.40 | 9 | 1.43 | 0.65 | 0.43 |
融 Rong | 950 | 2023 | 0.95 | 11.03 | 72.05 | 7 | 0.24 | 0.12 | 0.95 |
中泾 Zhongjing | 760 | 2023 | 0.45 | 22.12 | 65.66 | 6 | 1.37 | 0.76 | 0.45 |
虹旭 Hongxu | 乐居 Leju | 乐颐 Leyi | 南丰城 Nanfeng | 融 Rong | 中泾 Zhongjing | |
---|---|---|---|---|---|---|
忆 Yi | 0.22 | 0.40 | 0.35 | 0.54 | 0.49 | 0.50 |
虹旭 Hongxu | 0.06 | 0.08 | 0.30 | 0.51 | 0.17 | |
乐居 Leju | 0.56 | 0.20 | 0.15 | 0.51 | ||
乐颐 Leyi | 0.26 | 0.18 | 0.48 | |||
南丰城 Nanfeng | 0.35 | 0.47 | ||||
融 Rong | 0.22 |
表3 7座生境花园的物种组成相似度矩阵(0表示两个群落完全不相似, 1表示完全相似)
Table 3 Species composition similarity matrix of habitat gardens (0 means the two communities are completely dissimilar, 1 means the two communities are completely similar)
虹旭 Hongxu | 乐居 Leju | 乐颐 Leyi | 南丰城 Nanfeng | 融 Rong | 中泾 Zhongjing | |
---|---|---|---|---|---|---|
忆 Yi | 0.22 | 0.40 | 0.35 | 0.54 | 0.49 | 0.50 |
虹旭 Hongxu | 0.06 | 0.08 | 0.30 | 0.51 | 0.17 | |
乐居 Leju | 0.56 | 0.20 | 0.15 | 0.51 | ||
乐颐 Leyi | 0.26 | 0.18 | 0.48 | |||
南丰城 Nanfeng | 0.35 | 0.47 | ||||
融 Rong | 0.22 |
图4 生境花园内猫的独立探测次数占比与生物多样性测度的关系。实线为最小二乘回归模型。NF: 南丰城; LY: 乐颐; ZJ: 中泾; HX: 虹旭; LJ: 乐居; CQ: 程桥(忆); NG: 南龚(融)。NS, P < 0.1; ** P < 0.01; *** P < 0.001。
Fig. 4 Relationship between ratio of independent detections of cats in the habitat gardens and measures of community diversity. Solid lines are least-square regression models. NF, Nanfeng; LY, Leyi; ZJ, Zhongjing; HX, Hongxu; LJ, Leju; CQ, Chengqiao (Yi); NG, Nangong (Rong). NS, P < 0.1; ** P < 0.01; *** P < 0.001.
[1] | Alberti M (2005) The effects of urban patterns on ecosystem function. International Regional Science Review, 28, 168-192. |
[2] | Alberti M, Correa C, Marzluff JM, Hendry AP, Palkovacs EP, Gotanda KM, Hunt VM, Apgar TM, Zhou YY (2017) Global urban signatures of phenotypic change in animal and plant populations. Proceedings of the National Academy of Sciences, USA, 114, 8951-8956. |
[3] | Angel S, Parent J, Civco D, Blei AM, Potere DT (2010) A Planet of Cities: Urban Land Cover Estimates and Projections for all Countries, 2000-2050. Lincoln Institute of Land Policy. |
[4] | Anile S, Devillard S (2016) Study design and body mass influence RAIs from camera trap studies: Evidence from the Felidae. Animal Conservation, 19, 35-45. |
[5] | Aronson MF, Lepczyk CA, Evans KL, Goddard MA, Lerman SB, MacIvor JS, Nilon CH, Vargo T (2017) Biodiversity in the city: Key challenges for urban green space management. Frontiers in Ecology and the Environment, 15, 189-196. |
[6] | Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NSG, Cilliers S, Clarkson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Kühn I, Macgregor-Fors I, McDonnell M, Mörtberg U, Pysek P, Siebert S, Sushinsky J, Werner P, Winter M (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 281, 20133330. |
[7] | Barthel S, Isendahl C (2013) Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecological Economics, 86, 224-234. |
[8] | Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conservation Biology, 12, 1241-1252. |
[9] | Berry ME, Bock CE, Haire SL (1998) Abundance of diurnal raptors on open space grasslands in an urbanized landscape. The Condor, 100, 601-608. |
[10] | Beutel T, Reineking B, Tiesmeyer A, Nowak C, Heurich M (2017) Spatial patterns of co-occurrence of the European wildcat Felis silvestris silvestris and domestic cats Felis silvestris catus in the Bavarian Forest National Park. Wildlife Biology, 1, 1-8. |
[11] | Blair RB, Johnson EM (2008) Suburban habitats and their role for birds in the urban-rural habitat network: Points of local invasion and extinction? Landscape Ecology, 23, 1157-1169. |
[12] | Cahill S, Llimona F, Cabañeros L, Calomardo F (2012) Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Animal Biodiversity and Conservation, 35, 221-233. |
[13] | Carbone C, Christie S, Conforti K, Coulson T, Franklin N, Ginsberg JR, Griffiths M, Holden J, Kawanishi K, Kinnaird M, Laidlaw R, Lynam A, MacDonald DW, Martyr D, McDougal C, Nath L, O’Brien T, Seidensticker J, Smith DJL, Sunquist M, Tilson R, Wan Shahruddin WN (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals. Animal Conservation, 4, 75-79. |
[14] | Chamberlain DE, Cannon AR, Toms MP (2004) Associations of garden birds with gradients in garden habitat and local habitat. Ecography, 27, 589-600. |
[15] | Chamberlain DE, Cannon AR, Toms MP, Leech D, Hatchwell B, Gaston K (2009) Avian productivity in urban landscapes: A review and meta-analysis. Ibis, 151, 1-18. |
[16] | Chamberlain DE, Gough S, Vaughan H, Vickery JA, Appleton GF (2007) Determinants of bird species richness in public green spaces. Bird Study, 54, 87-97. |
[17] | Clarke LW, Jenerette GD (2015) Biodiversity and direct ecosystem service regulation in the community gardens of Los Angeles, CA. Landscape Ecology, 30, 637-653. |
[18] | Colding J (2007) ‘Ecological land-use complementation’ for building resilience in urban ecosystems. Landscape and Urban Planning, 81, 46-55. |
[19] | Concepción ED, Moretti M, Altermatt F, Nobis MP, Obrist MK (2015) Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. Oikos, 124, 1571-1582. |
[20] |
Corbet SA, Bee J, Dasmahapatra K, Gale S, Gorringe E, La Ferla B, Moorhouse T, Trevail A, Van Bergen Y, Vorontsova M (2001) Native or exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Annals of Botany, 87, 219-232.
DOI PMID |
[21] | Cui LJ, Lei YR, Zhang MY, Li W (2021) Review on small wetlands: Definition, typology and ecological services. Acta Ecologica Sinica, 41, 2077-2085. (in Chinese with English abstract) |
[崔丽娟, 雷茵茹, 张曼胤, 李伟 (2021) 小微湿地研究综述: 定义、类型及生态系统服务. 生态学报, 41, 2077-2085.] | |
[22] | Daniels GD, Kirkpatrick JB (2006) Does variation in garden characteristics influence the conservation of birds in suburbia? Biological Conservation, 133, 326-335. |
[23] | Egerer M, Karlebowski S, Conitz F, Neumann AE, Schmack JM, Sturm U (2024) In defence of urban community gardens. People and Nature, 6, 367-376. |
[24] | Fardell LL, Pavey CR, Dickman CR (2023) Influences of roaming domestic cats on wildlife activity in patchy urban environments. Frontiers in Ecology and Evolution, 11, 1123355. |
[25] | Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: Biodiversity conservation in urban environments. Trends in Ecology & Evolution, 25, 90-98. |
[26] | Goddard MA, Dougill AJ, Benton TG (2013) Why garden for wildlife? Social and ecological drivers, motivations and barriers for biodiversity management in residential landscapes. Ecological Economics, 86, 258-273. |
[27] | Hanson HI, Eckberg E, Widenberg M, Alkan Olsson J (2021) Gardens’ contribution to people and urban green space. Urban Forestry & Urban Greening, 63, 127198. |
[28] | Hostetler M, Holling CS (2000) Detecting the scales at which birds respond to structure in urban landscapes. Urban Ecosystems, 4, 25-54. |
[29] | Hu YD, Song K (2023) Create habitats to boost biodiversity in urban greening. Science, (6), 6-10, 4. (in Chinese with English abstract) |
[胡远东, 宋坤 (2023) 生境营造与城市绿地生物多样性提升. 科学, (6), 6-10, 4.] | |
[30] | Johnson MTJ, Munshi-South J (2017) Evolution of life in urban environments. Science, 358, eaam8327. |
[31] | Kadlec T, Benes J, Jarosik V, Konvicka M (2008) Revisiting urban refuges: Changes of butterfly and burnet fauna in Prague reserves over three decades. Landscape and Urban Planning, 85, 1-11. |
[32] | Kong FH, Yin HW, Nakagoshi N, Zong YG (2010) Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landscape and Urban Planning, 95, 16-27. |
[33] | Kumar N, Mohan D, Jhala YV, Qureshi Q, Sergio F (2014) Density, laying date, breeding success and diet of black kites Milvus migrans govinda in the city of Delhi (India). Bird Study, 61, 1-8. |
[34] | Li S, Wang DJ, Bu HL, Liu XG, Jin T (2016) Camera-trapping survey on the mammal diversity of the Laohegou Nature Reserve, Sichuan Province. Acta Theriologica Sinica, 36, 282-291. (in Chinese with English abstract) |
[李晟, 王大军, 卜红亮, 刘小庚, 靳彤 (2016) 四川省老河沟自然保护区兽类多样性红外相机调查. 兽类学报, 36, 282-291.] | |
[35] | Li ZH, He W, Cheng MF, Hu JX, Yang GY, Zhang HY (2023) SinoLC-1: The first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data. Earth System Science Data, 15, 4749-4780. |
[36] | Lin WL, Lin SM, Lin JW, Wang Y, Tseng HY (2015) Breeding performance of Crested Goshawk Accipiter trivirgatus in urban and rural environments of Taiwan. Bird Study, 62, 177-184. |
[37] | Liu YL, Yin KL, Sun Z, Yu H, Mao JY (2022) Cooperative landscape: A case study of the experiment of integrating public space renewal and social governance of community gardens in Shanghai. Architectural Journal, (3), 12-19. (in Chinese with English abstract) |
[刘悦来, 尹科娈, 孙哲, 于海, 毛键源 (2022) 共治的景观——上海社区花园公共空间更新与社会治理融合实验. 建筑学报, (3), 12-19.] | |
[38] | Loss SR, Marra PP (2017) Population impacts of free-ranging domestic cats on mainland vertebrates. Frontiers in Ecology and the Environment, 15, 502-509. |
[39] | Magurran AE (2021) Measuring biological diversity. Current Biology, 31, R1174-R1177. |
[40] | Mao QZ, Ma KM, Wu JG, Tang RL, Zhang YX, Luo SH, Bao L, Cai XH (2013) An overview of advances in distributional pattern of urban biodiversity. Acta Ecologica Sinica, 33, 1051-1064. (in Chinese with English abstract) |
[毛齐正, 马克明, 邬建国, 唐荣莉, 张育新, 罗上华, 宝乐, 蔡小虎 (2013) 城市生物多样性分布格局研究进展. 生态学报, 33, 1051-1064.] | |
[41] | Mathieu R, Freeman C, Aryal J (2007) Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landscape and Urban Planning, 81, 179-192. |
[42] | Meredith M, Ridout MS (2021) Overlap: Estimates of Coefficient of Overlapping for Animal Activity Patterns. https://cran.r-project.org/web/packages/overlap. (accessed on 2024-02-03) |
[43] |
Michalski F, Peres CA (2007) Disturbance-mediated mammal persistence and abundance-area relationships in Amazonian forest fragments. Conservation Biology, 21, 1626-1640.
DOI PMID |
[44] | Newton I (2010) Population Ecology of Raptors. A&C Black, Edinburgh. |
[45] | Nouvellet P, Rasmussen GSA, MacDonald DW, Courchamp F (2012) Noisy clocks and silent sunrises: Measurement methods of daily activity pattern. Journal of Zoology, 286, 179-184. |
[46] | O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation, 6, 131-139. |
[47] | O’Connell AF, Nichols JD, Karanth KU (2011) Camera Traps in Animal Ecology: Methods and Analyses. Springer, New York. |
[48] | Parsons AW, Bland C, Forrester T, Baker-Whatton MC, Schuttler SG, McShea WJ, Costello R, Kays R (2016) The ecological impact of humans and dogs on wildlife in protected areas in eastern North America. Biological Conservation, 203, 75-88. |
[49] |
Pavisse R, Vangeluwe D, Clergeau P (2019) Domestic cat predation on garden birds: An analysis from European ringing programmes. Ardea, 107, 103-109.
DOI |
[50] | Peng HY (2018) Effect Mechanisms and Spatial Optimization of Community Park Restoration Environment—A Case Study in Chongqing. PhD dissertation, Chongqing University, Chongqing. (in Chinese with English abstract) |
[彭慧蕴 (2018) 社区公园恢复性环境影响机制及空间优化——以重庆市主城区为例. 博士学位论文, 重庆大学, 重庆.] | |
[51] | Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144. |
[52] | Ren QJ, Ji MQ, Yu JP (2015) The function and construction method of small and micro wetland. Modern Agricultural Science and Technology, (13), 225, 230. (in Chinese) |
[任全进, 季茂晴, 于金平 (2015) 小微湿地的作用及营造方法. 现代农业科技, (13), 225, 230.] | |
[53] | Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14, 322-337. |
[54] | Rosenberg DK, Noon BR, Meslow EC (1997) Biological corridors: Form, function, and efficacy. BioScience, 47, 677-687. |
[55] | Rudd H, Vala J, Schaefer V (2002) Importance of backyard habitat in a comprehensive biodiversity conservation strategy: A connectivity analysis of urban green spaces. Restoration Ecology, 10, 368-375. |
[56] | Schell CJ, Dyson K, Fuentes TL, Des Roches S, Harris NC, Miller DS, Woelfle-Erskine CA, Lambert MR (2020) The ecological and evolutionary consequences of systemic racism in urban environments. Science, 369, eaay4497. |
[57] | Shaffer HB (2018) Urban biodiversity arks. Nature Sustainability, 1, 725-727. |
[58] | Sollmann R, Mohamed A, Samejima H, Wilting A (2013) Risky business or simple solution—Relative abundance indices from camera-trapping. Biological Conservation, 159, 405-412. |
[59] | Somerfield PJ (2008) Identification of the Bray-Curtis similarity index: Comment on Yoshioka (2008). Marine Ecology Progress Series, 372, 303-306. |
[60] | Speak AF, Mizgajski A, Borysiak J (2015) Allotment gardens and parks: Provision of ecosystem services with an emphasis on biodiversity. Urban Forestry & Urban Greening, 14, 772-781. |
[61] | Steenweg R, Hebblewhite M, Kays R, Ahumada J, Fisher JT, Burton C, Townsend SE, Carbone C, Rowcliffe JM, Whittington J, Brodie J, Royle JA, Switalski A, Clevenger AP, Heim N, Rich LN (2017) Scaling-up camera traps: Monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 15, 26-34. |
[62] | Strohbach MW, Lerman SB, Warren PS (2013) Are small greening areas enhancing bird diversity? Insights from community-driven greening projects in Boston. Landscape and Urban Planning, 114, 69-79. |
[63] |
Su RF, Chen RS, Guo XN (2023) Conservation strategies for biodiversity in urban community renewal: A case study of habitat garden in Changning District, Shanghai. Biodiversity Science, 31, 23118. (in Chinese with English abstract)
DOI |
[苏荣菲, 陈睿山, 郭晓娜 (2023) 城市社区更新中生物多样性的保护策略: 以上海市长宁区生境花园为例. 生物多样性, 31, 23118.]
DOI |
|
[64] | Su WX, Chang Q, Liu X, Zhang LK (2021) Cooling effect of urban green and blue infrastructure: A systematic review of empirical evidence. Acta Ecologica Sinica, 41, 2902-2917. (in Chinese with English abstract) |
[苏王新, 常青, 刘筱, 张刘宽 (2021) 城市蓝绿基础设施降温效应研究综述. 生态学报, 41, 2902-2917.] | |
[65] | Threlfall CG, Mata L, Mackie JA, Hahs AK, Stork NE, Williams NSG, Livesley SJ (2017) Increasing biodiversity in urban green spaces through simple vegetation interventions. Journal of Applied Ecology, 54, 1874-1883. |
[66] | Tobler MW (2014) Camera base, version 1.6.1. Botanical Research Institute of Texas. http://www.atrium-biodiversity.org/tools/camerabase/. (accessed on 2023-12-22) |
[67] | Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Animal Conservation, 11, 169-178. |
[68] | Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. Journal of Animal Ecology, 72, 888-897. |
[69] | Valeix M, Fritz H, Loveridge AJ, Davidson Z, Hunt JE, Murindagomo F, MacDonald DW (2009) Does the risk of encountering lions influence African herbivore behaviour at waterholes? Behavioral Ecology and Sociobiology, 63, 1483-1494. |
[70] | van Heezik Y, Smyth A, Mathieu R (2008) Diversity of native and exotic birds across an urban gradient in a New Zealand city. Landscape and Urban Planning, 87, 223-232. |
[71] | Wang F, Wang YH, Zhao QQ, Feng YD, Li YH, Li ZR (2023) Citizen Science supports urban wildlife monitoring and management: A “raccoon dog census” and mitigation of human raccoon dog conflict in Shanghai. In: Abstracts of the 16th National Wildlife Ecology and Resources Conservation Symposium. (in Chinese) |
[王放, 王怡涵, 赵倩倩, 冯一迪, 李雨晗, 李梓榕 (2023) 公民科学支持城市野生动物监测与管理:上海“貉口普查”与人貉冲突缓解. 见: 第十六届全国野生动物生态与资源保护学术研讨会论文摘要集.] doi: 10.26914/c.cnkihy.2023.053154. | |
[72] | Wang YH, Zhao QQ, Diao YX, Gu BJ, Weng Y, Zhang ZJ, Chen YB, Wang F (2023) Diel activity, habitat utilization, and response to anthropogenic interference of small Indian civets (Viverricula indica) in Shanghai urban areas based on camera trapping. Biodiversity Science, 31, 22294. (in Chinese with English abstract) |
[王怡涵, 赵倩倩, 刁奕欣, 顾伯健, 翁悦, 张卓锦, 陈泳滨, 王放 (2023) 基于红外相机调查上海市区小灵猫的活动节律、栖息地利用及其对人类活动的响应. 生物多样性, 31, 22294.]
DOI |
|
[73] | Wen C, Song Y, Han D, Sun X, Ye H (2013) Crested eagle and black-winged kite found in Beijing. Chinese Journal of Zoology, 48, 851. (in Chinese) |
[闻丞, 宋晔, 韩冬, 孙霄, 叶航 (2013) 北京发现凤头鹰和黑翅鸢. 动物学杂志, 48, 851.] | |
[74] | Woolley CK, Hartley S (2019) Activity of free-roaming domestic cats in an urban reserve and public perception of pet-related threats to wildlife in New Zealand. Urban Ecosystems, 22, 1123-1137. |
[75] | Yang WJ, Ma KP, Kreft H (2013) Geographical sampling bias in a large distributional database and its effects on species richness-environment models. Journal of Biogeography, 40, 1415-1426. |
[76] | Yin ZL, Liu YQ, Xiao C (2018) Geographical deviation of orchid specimen collection in national specimen information infrastructure and interpretation of environmental factors. E-science Technology & Application, 9(5), 64-71. (in Chinese with English abstract) |
[尹朝露, 刘雨晴, 肖翠 (2018) 国家标本资源共享平台兰科植物标本记录采集地理偏差及其环境因子解释. 科研信息化技术与应用, 9(5), 64-71.] | |
[77] | Yu BQ, Xie CK, Yang SB, Che SQ (2014) Correspondence analysis on residents’ perceived recreation satisfaction and importance in Shanghai urban community park. Chinese Landscape Architecture, 30(9), 75-78. (in Chinese) |
[于冰沁, 谢长坤, 杨硕冰, 车生泉 (2014) 上海城市社区公园居民游憩感知满意度与重要性的对应分析. 中国园林, 30(9), 75-78.] | |
[78] | Zhang Y, Huang TT, Hu Q, Zhu JN (2022) Analysis on the habitat design strategy of community park based on the improvement of bird diversity. Chinese Landscape Architecture, (3), 106-111. (in Chinese with English abstract) |
[张颖, 黄婷婷, 胡骞, 朱建宁 (2022) 基于鸟类多样性提升的社区公园生境营造策略探析. 中国园林, (3), 106-111.] | |
[79] | Zhao H, Chen JQ, Chen X, Xiong YY, An SQ (2018) Conservation and management of small and micro wetlands. Wetland Science & Management, 14(4), 22-26. (in Chinese with English abstract) |
[赵晖, 陈佳秋, 陈鑫, 熊依依, 安树青 (2018) 小微湿地的保护与管理. 湿地科学与管理, 14(4), 22-26.] |
[1] | 苏荣菲, 陈睿山, 郭晓娜. 城市社区更新中生物多样性的保护策略: 以上海市长宁区生境花园为例[J]. 生物多样性, 2023, 31(7): 23118-. |
[2] | 李晟, 王大军, 陈祥辉, 卜红亮, 刘小庚, 靳彤. 四川老河沟保护地2011-2015年野生动物红外相机监测数据集[J]. 生物多样性, 2021, 29(9): 1170-1174. |
[3] | 李林妙, 池辉云, 万雅琼, 周佳滨, 张礼标, 何向阳, 黄文忠, 张伯军, 徐湛荣, 刘昌传, 赖任燕, 朱秀芳, 李友余, 李佳琦, 陈金平. 广东云开山国家级自然保护区鸟兽红外相机调查初报[J]. 生物多样性, 2020, 28(9): 1154-1159. |
[4] | 杨雄威, 吴安康, 邹启先, 李光容, 张明明, 胡灿实, 粟海军. 贵州麻阳河国家级自然保护区红外相机鸟兽监测[J]. 生物多样性, 2020, 28(2): 219-225. |
[5] | 张明明, 杨朝辉, 王丞, 王娇娇, 胡灿实, 雷孝平, 石磊, 粟海军, 李佳琦. 贵州梵净山国家级自然保护区鸟兽红外相机监测[J]. 生物多样性, 2019, 27(7): 813-818. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn