生物多样性 ›› 2023, Vol. 31 ›› Issue (3): 22422. DOI: 10.17520/biods.2022422
李珍珍1,2,3, 杜梦甜1,2,3, 朱原辛1,2,3, 王大伟1,2,3, 李治霖4,*(), 王天明1,2,3,*()
收稿日期:
2022-07-22
接受日期:
2023-01-04
出版日期:
2023-03-20
发布日期:
2023-03-20
通讯作者:
李治霖,王天明
作者简介:
wangtianming@bnu.edu.cn基金资助:
Zhenzhen Li1,2,3, Mengtian Du1,2,3, Yuanxin Zhu1,2,3, Dawei Wang1,2,3, Zhilin Li4,*(), Tianming Wang1,2,3,*()
Received:
2022-07-22
Accepted:
2023-01-04
Online:
2023-03-20
Published:
2023-03-20
Contact:
Zhilin Li,Tianming Wang
摘要:
种群密度估计对野生动物的保护和管理至关重要, 也是动物生态学和保护生物学备受关注的研究热点, 但对大中型兽类种群数量的准确估算一直面临挑战。红外相机是哺乳动物调查中普遍采用的工具, 也是克服这一挑战的一种经济有效的方法。目前国际上已有多种方法采用红外相机数据估算不可个体识别动物的种群密度, 但相关技术在我国的应用案例较少, 本文旨在为国内研究者应用红外相机数据估算动物种群密度提供参考。首先, 我们介绍了随机相遇模型(random encounter model, REM)、随机相遇与停留时间(random encounter and staying time, REST)模型、相机前停留时间(time in front of the camera, TIFC)模型以及红外相机距离取样(camera trap distance sampling, CTDS)这四种模型的基本原理和假设; 其次, 描述了这些模型在野外调查中的技术要点, 并给出数据处理与分析的建议; 最后, 总结了每个模型的数据需求、优点和缺点。虽然我国目前拥有估算种群密度的大量红外相机数据源, 但有很多物种的数量尚未知晓, 也没有一种方法对所有红外相机数据都是最优的, 所以我们建议研究者在了解所研究动物类群的生活史和生态需求基础上, 根据模型假设确定合理的采样和分析方案, 扩大这些方法的应用, 为我国重要物种的保护和保护地建设提供科学指导。
李珍珍, 杜梦甜, 朱原辛, 王大伟, 李治霖, 王天明 (2023) 基于红外相机的不可个体识别动物种群密度估算方法. 生物多样性, 31, 22422. DOI: 10.17520/biods.2022422.
Zhenzhen Li, Mengtian Du, Yuanxin Zhu, Dawei Wang, Zhilin Li, Tianming Wang (2023) A practical guide for estimating the density of unmarked populations using camera traps. Biodiversity Science, 31, 22422. DOI: 10.17520/biods.2022422.
图2 相机以类似动物速度运动所覆盖面积(A)和动物从6个典型角度接近相机探测区域的剖面图(B) (修改自Rowcliffe et al, 2008)。A图中阴影部分为圆形区域以动物运动速度移动时所覆盖的面积, 其中v为动物运动速度(m/h), H为相机工作时间(h), R为圆形区域的半径(m)。B图中扇形表示相机探测区域, R为相机探测区域半径(m), θ为相机探测区域角度, 箭头表示动物接近相机探测区域的方向, 动物接近相机探测区域的剖面用橙色粗线表示。
Fig. 2 Coverage area of a camera moving at a speed similar to that of an animal (A) and the profile of an animal approaching the probe area from six typical angles (B) (Modified from Rowcliffe et al, 2008). The shadow part in A is the area covered by the circular region moving at the animal speed, where v is the animal speed, H is the camera working time, and R is the radius of the circular region. In B, the sector represents the camera detection area; R is the radius of the camera detection area; θ is the angle of the camera detection area; the arrow indicates the direction of the animal approaching the camera detection area; and the profile of the animal approaching the camera detection area is represented by orange rough line.
REM | REST | TIFC | CTDS | ||
---|---|---|---|---|---|
模型假设 Model assumptions | 相机随机放置 Random placement of cameras | √ | √ | √ | √ |
动物运动独立于相机(动物运动不受相机影响) Animal movement is independent of camera | √ | √ | √ | √ | |
种群封闭 Closed population | √ | √ | √ | √ | |
探测区域内的动物能被完美探测到 Animals in the detection area can be perfectly detected | √ | √ | √ | √ | |
观测到的动物停留时间的分布与动物实际运动的分布很好地吻合 The observed distribution of staying time in the focal area must represent a good fit for the distribution that animal movements actually follow | √ | ||||
观测到的动物停留时间符合一定的参数分布 The observed staying time must follow a given parametric distribution | √ | ||||
距离测量是精确的 Distances measured accurately | √ | ||||
动物距离的分布可用已知函数拟合 Distribution of animal distance can be fitted by known functions | √ | ||||
视野面积 Area of viewshed | √ | √ | √ | ||
数据需求 Data requirements | 相机工作时间 Working hours of cameras | √ | √ | √ | √ |
动物数量 Number of the animals | √ | √ | √ | √ | |
动物运动速度 Animal movement speed | √ | ||||
动物停留时间 Animal staying time in front of the camera | √ | √ | |||
动物距相机距离 Distance between animal and camera | √ | ||||
模型产出 Model output | 是否可以基于协变量外推 Covariate-driven prediction of density beyond the sampling frame | √ | √ |
表1 随机相遇模型(REM)、随机相遇与停留时间(REST)模型、相机前停留时间(TIFC)模型以及红外相机距离取样法(CTDS)的模型假设和数据需求
Table 1 Model assumptions and data requirements of random encounter model (REM), random encounter and staying time (REST) model, time in front of the camera (TIFC) model, camera trap distance sampling (CTDS)
REM | REST | TIFC | CTDS | ||
---|---|---|---|---|---|
模型假设 Model assumptions | 相机随机放置 Random placement of cameras | √ | √ | √ | √ |
动物运动独立于相机(动物运动不受相机影响) Animal movement is independent of camera | √ | √ | √ | √ | |
种群封闭 Closed population | √ | √ | √ | √ | |
探测区域内的动物能被完美探测到 Animals in the detection area can be perfectly detected | √ | √ | √ | √ | |
观测到的动物停留时间的分布与动物实际运动的分布很好地吻合 The observed distribution of staying time in the focal area must represent a good fit for the distribution that animal movements actually follow | √ | ||||
观测到的动物停留时间符合一定的参数分布 The observed staying time must follow a given parametric distribution | √ | ||||
距离测量是精确的 Distances measured accurately | √ | ||||
动物距离的分布可用已知函数拟合 Distribution of animal distance can be fitted by known functions | √ | ||||
视野面积 Area of viewshed | √ | √ | √ | ||
数据需求 Data requirements | 相机工作时间 Working hours of cameras | √ | √ | √ | √ |
动物数量 Number of the animals | √ | √ | √ | √ | |
动物运动速度 Animal movement speed | √ | ||||
动物停留时间 Animal staying time in front of the camera | √ | √ | |||
动物距相机距离 Distance between animal and camera | √ | ||||
模型产出 Model output | 是否可以基于协变量外推 Covariate-driven prediction of density beyond the sampling frame | √ | √ |
图3 四种模型相机探测区域示意图。(A)随机相遇模型(REM): 根据动物在相机视野初次停留位置测量计算该物种的平均探测半径R和平均探测角度θ; (B)随机相遇与停留时间(REST)模型: 探测区域为阴影部分(焦点区域), 认为该区域相机对目标物种的探测率最高; (C)相机前停留时间(TIFC)模型: 探测半径由标记距离与其范围内动物探测概率计算得到(以5 m距离为例); (D)红外相机距离取样法(CTDS): 以图中的距离标志为例, 2 m、4 m、6 m、8 m为标志距离, 其中8 m为截断距离(最远标志距离, 也被认为是探测区域半径), 该距离范围内为探测区域。
Fig. 3 Camera detection area of four models. (A) Random encounter model (REM): the average detection radius (R) and the average detection angle (θ) of the species were calculated according to the measurement of the initial residence position of the animal. (B) Random encounter and staying time (REST) model: The detection area is the shadow part, which is considered to be the area with the highest detection rate of the focal species by the camera. (C) Time in front of the camera (TIFC) model: the detection radius is calculated by the marker distance and the detection probability of animals within its range (taking the distance of 5 m as an example). (D) Camera trap distance sampling (CTDS) model: In the graph, 2 m, 4 m, 6 m and 8 m are marked distances, of which 8 m is the truncated distance (also known as the radius of the detection area), within which the detection area is located.
[1] |
Alexander JS, Zhang C, Shi K, Riordan P (2016) A granular view of a snow leopard population using camera traps in Central China. Biological Conservation, 197, 27-31.
DOI URL |
[2] | Amburgey SM, Yackel Adams AA, Gardner B, Hostetter NJ, Siers SR, McClintock BT, Converse SJ (2021) Evaluation of camera trap-based abundance estimators for unmarked populations. Ecological Applications, 31, e02410. |
[3] |
Amin R, Klair H, Wacher T, Ndjassi C, Fowler A, Olson D, Bruce T (2022) Estimating forest antelope population densities using distance sampling with camera traps. Oryx, 56, 345-351.
DOI URL |
[4] |
Apps P, McNutt JW (2018) Are camera traps fit for purpose? A rigorous, reproducible and realistic test of camera trap performance. African Journal of Ecology, 56, 710-720.
DOI URL |
[5] | Becker M, Huggard DJ, Dickie M, Warbington C, Schieck J, Herdman E, Serrouya R, Boutin S (2022) Applying and testing a novel method to estimate animal density from motion-triggered cameras. Ecosphere, 13, e4005. |
[6] |
Bessone M, Kühl HS, Hohmann G, Herbinger I, N’Goran KP, Asanzi P, Da Costa PB, Dérozier V, Fotsing EDB, Beka BI, Iyomi MD, Iyatshi IB, Kafando P, Kambere MA, Moundzoho DB, Wanzalire MLK, Fruth B (2020) Drawn out of the shadows: Surveying secretive forest species with camera trap distance sampling. Journal of Applied Ecology, 57, 963-974.
DOI URL |
[7] |
Broadley K, Burton AC, Avgar T, Boutin S (2019) Density- dependent space use affects interpretation of camera trap detection rates. Ecology and Evolution, 9, 14031-14041.
DOI |
[8] |
Brownlee MB, Warbington CH, Boyce MS (2022) Monitoring sitatunga (Tragelaphus spekii) populations using camera traps. African Journal of Ecology, 60, 377-385.
DOI URL |
[9] | Buckland ST, Anderson DR, Burnham KP, Laake JL (1993) Distance Sampling: Estimating Abundance of Biological Populations. Chapman and Hall, London. |
[10] | Buckland ST, Rexstad EA, Marques TA, Oedekoven CS (2015) Designing distance sampling experiments. In: Distance Sampling: Methods and Applications (eds Buckland ST, Rexstad EA, Marques TA, Oedekoven CS), pp. 29-34. Springer, New York. |
[11] | Burgar JM, Stewart FEC, Volpe JP, Fisher JT, Burton AC (2018) Estimating density for species conservation: Comparing camera trap spatial count models to genetic spatial capture-recapture models. Global Ecology and Conservation, 15, e00411. |
[12] |
Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, Bayne E, Boutin S (2015) Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52, 675-685.
DOI URL |
[13] | Cappelle N, Després-Einspenner ML, Howe EJ, Boesch C, Kühl HS (2019) Validating camera trap distance sampling for chimpanzees. American Journal of Primatology, 81, e22962. |
[14] | Cappelle N, Howe EJ, Boesch C, Kühl HS (2021) Estimating animal abundance and effort-precision relationship with camera trap distance sampling. Ecosphere, 12, e03299. |
[15] |
Caravaggi A (2017) remBoot: An R package for random encounter modelling. The Journal of Open Source Software, 2, 176.
DOI URL |
[16] | Caravaggi A, Burton AC, Clark DA, Fisher JT, Grass A, Green S, Hobaiter C, Hofmeester TR, Kalan AK, Rabaiotti D, Rivet D (2020) A review of factors to consider when using camera traps to study animal behavior to inform wildlife ecology and conservation. Conservation Science and Practice, 2, e239 |
[17] |
Caravaggi A, Zaccaroni M, Riga F, Schai-Braun SC, Dick JTA, Montgomery WI, Reid N (2016) An invasive-native mammalian species replacement process captured by camera trap survey random encounter models. Remote Sensing in Ecology and Conservation, 2, 45-58.
DOI URL |
[18] |
Carbone C, Christie S, Conforti K, Coulson T, Franklin N, Ginsberg JR, Griffiths M, Holden J, Kawanishi K, Kinnaird M, Laidlaw R, Lynam A, MacDonald DW, Martyr D, McDougal C, Nath L, O’Brien T, Seidensticker J, Smith DJL, Sunquist M, Tilson R, Shahruddin WN (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals. Animal Conservation, 4, 75-79.
DOI URL |
[19] | Chandler RB, Royle JA (2013) Spatially explicit models for inference about density in unmarked or partially marked populations. The Annals of Applied Statistics, 7, 936-954. |
[20] |
Chen LJ, Xiao WH, Xiao ZS (2019) Limitations of relative abundance indices calculated from camera-trapping data. Biodiversity Science, 27, 243-248. (in Chinesse with English abstract)
DOI |
[陈立军, 肖文宏, 肖治术 (2019) 物种相对多度指数在红外相机数据分析中的应用及局限. 生物多样性, 27, 243-248.]
DOI |
|
[21] | Corlatti L, Sivieri S, Sudolska B, Giacomelli S, Pedrotti L (2020) A field test of unconventional camera trap distance sampling to estimate abundance of marmot populations. Wildlife Biology, (4), 1-11. |
[22] |
Cusack JJ, Swanson A, Coulson T, Packer C, Carbone C, Dickman AJ, Kosmala M, Lintott C, Rowcliffe JM (2015) Applying a random encounter model to estimate lion density from camera traps in Serengeti National Park, Tanzania. Journal of Wildlife Management, 79, 1014-1021.
PMID |
[23] |
Dénes FV, Silveira LF, Beissinger SR (2015) Estimating abundance of unmarked animal populations: Accounting for imperfect detection and other sources of zero inflation. Methods in Ecology and Evolution, 6, 543-556.
DOI URL |
[24] |
Fisher JT, Burgar JM, Dickie M, Burton AC, Serrouya R (2021) Density estimates of unmarked large mammals at camera traps vary among models, species, and years, signalling importance of model assumptions. Authorea, doi: 10.22541/au.163768980.02146968/v1.
DOI |
[25] | Fleming P, Meek P, Ballard G, Banks P, Claridge A, Sanderson J, Swann D (2014) Camera Trapping:Wildlife Management and Research. CSIRO Publishing, Collingwood, Victoria. |
[26] |
Gilbert NA, Clare JDJ, Stenglein JL, Zuckerberg B (2021) Abundance estimation of unmarked animals based on camera-trap data. Conservation Biology, 35, 88-100.
DOI URL |
[27] | Glen AS, Cockburn S, Nichols M, Ekanayake J, Warburton B (2013) Optimising camera traps for monitoring small mammals. PLoS ONE, 8, e67940. |
[28] | Greenberg S (2021) Timelapse: An Image Analyser for Camera Traps. ) |
[29] |
Greenberg S, Godin T, Whittington J (2019) Design patterns for wildlife-related camera trap image analysis. Ecology and Evolution, 9, 13706-13730.
DOI |
[30] |
Gu WD, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation, 116, 195-203.
DOI URL |
[31] |
Gurarie E, Ovaskainen O (2013) Towards a general formalization of encounter rates in ecology. Theoretical Ecology, 6, 189-202.
DOI URL |
[32] |
Harris GM, Butler MJ, Stewart DR, Rominger EM, Ruhl CQ (2020) Accurate population estimation of Caprinae using camera traps and distance sampling. Scientific Reports, 10, 17729.
DOI PMID |
[33] |
Haucke T, Kühl HS, Hoyer J, Steinhage V (2022) Overcoming the distance estimation bottleneck in estimating animal abundance with camera traps. Ecological Informatics, 68, 101536.
DOI URL |
[34] |
Henrich M, Hartig F, Dormann CF, Kühl HS, Peters W, Franke F, Peterka T, Šustr P, Heurich M (2022) Deer behavior affects density estimates with camera traps, but is outweighed by spatial variability. Frontiers in Ecology and Evolution, 10, 881502.
DOI URL |
[35] |
Hofmeester TR, Cromsigt JPGM, Odden J, Andrén H, Kindberg J, Linnell JDC (2019) Framing pictures: A conceptual framework to identify and correct for biases in detection probability of camera traps enabling multi-species comparison. Ecology and Evolution, 9, 2320-2336.
DOI |
[36] |
Hongo S, Nakashima Y, Yajima G (2021) A practical guide for estimating animal density using camera traps: Focus on the REST model. bioRxiv, doi: 10.1101/2021.05.18.444583.
DOI |
[37] | Houa NA, Cappelle N, Bitty EA, Normand E, Kablan YA, Boesch C (2022) Animal reactivity to camera traps and its effects on abundance estimate using distance sampling in the Taï National Park, Côte d'Ivoire. PeerJ, 10, e13510. |
[38] |
Howe EJ, Buckland ST, Després-Einspenner ML, Kühl HS (2017) Distance sampling with camera traps. Methods in Ecology and Evolution, 8, 1558-1565.
DOI URL |
[39] |
Howe EJ, Buckland ST, Després-Einspenner ML, Kühl HS (2019) Model selection with overdispersed distance sampling data. Methods in Ecology and Evolution, 10, 38-47.
DOI |
[40] |
Hu XP, Huang B, Verones F, Cavalett O, Cherubini F (2021) Overview of recent land-cover changes in biodiversity hotspots. Frontiers in Ecology and the Environment, 19, 91-97.
DOI URL |
[41] | Huggard D (2018) Animal density from camera data. Alberta Biodiversty Monitoring Institute. Edmonton, Canada. |
[42] |
Hutchinson JMC, Waser PM (2007) Use, misuse and extensions of “ideal gas” models of animal encounter. Biological Reviews, 82, 335-359.
DOI PMID |
[43] |
Iijima H (2020) A review of wildlife abundance estimation models: Comparison of models for correct application. Mammal Study, 45, 177-188.
DOI URL |
[44] | Jayasekara D, Mahaulpatha D, Miththapala S (2021) Population density estimation of meso-mammal carnivores using camera traps without the individual recognition in Maduru Oya National Park, Sri Lanka. Hystrix, 32, 137-146. |
[45] |
Johanns P, Haucke T, Steinhage V (2022) Automated distance estimation for wildlife camera trapping. Ecological Informatics, 70, 101734.
DOI URL |
[46] |
Jourdain NOAS, Cole DJ, Ridout MS, Rowcliffe JM (2020) Statistical development of animal density estimation using random encounter modelling. Journal of Agricultural, Biological and Environmental Statistics, 25, 148-167.
DOI |
[47] |
Kamgaing TOW, Bobo KS, Djekda D, Azobou KBV, Hamadjida BR, Balangounde MY, Simo KJ, Yasuoka H (2018) Population density estimates of forest duikers (Philantomba monticola & Cephalophus spp.) differ greatly between survey methods. African Journal of Ecology, 56, 908-916.
DOI URL |
[48] | Kéry M, Royle JA (2016) Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS (Vol. 1): Prelude and Static Models. Academic Press, London. |
[49] |
Li S, Wang DJ, Xiao ZS, Li XH, Wang TM, Feng LM, Wang Y (2014) Camera-trapping in wildlife research and conservation in China: Review and outlook. Biodiversity Science, 22, 685-695. (in Chinesse with English abstract)
DOI |
[李晟, 王大军, 肖治术, 李欣海, 王天明, 冯利民, 王云 (2014) 红外相机技术在我国野生动物研究与保护中的应用与前景. 生物多样性, 22, 685-695.]
DOI |
|
[50] |
Li XH, Tian HD, Piao ZJ, Wang GM, Xiao ZS, Sun YH, Gao EH, Holyoak M (2022) cameratrapR: An R package for estimating animal density using camera trapping data. Ecological Informatics, 69, 101597.
DOI URL |
[51] |
Li YH (2021) A review on estimating population size of large and medium-sized mammals. Biodiversity Science, 29, 1700-1717. (in Chinese with English abstract)
DOI |
[李月辉 (2021) 大中型兽类种群数量估算的研究进展. 生物多样性, 29, 1700-1717.]
DOI |
|
[52] | Lu LL, Wang W, Li Y, Cai P, Shi YH, Yong J, Yin F (2020) Investigation and analysis of ungulate population size in Dulan, Qinghai Province. Forest Resources Management, (3), 63-66. (in Chinese with English abstract) |
[卢琳琳, 王巍, 李叶, 蔡平, 石永红, 勇军, 尹峰 (2020) 青海都兰大型有蹄类种群数量调查与分析. 林业资源管理, (3), 63-66.] | |
[53] |
Lucas TCD, Moorcroft EA, Freeman R, Rowcliffe JM, Jones KE (2015) A generalised random encounter model for estimating animal density with remote sensor data. Methods in Ecology and Evolution, 6, 500-509.
PMID |
[54] |
Luo G, Wei WD, Dai Q, Ran JH (2020) Density estimation of unmarked populations using camera traps in heterogeneous space. Wildlife Society Bulletin, 44, 173-181.
DOI URL |
[55] | MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255. |
[56] |
Mason SS, Hill RA, Whittingham MJ, Cokill J, Smith GC, Stephens PA (2022) Camera trap distance sampling for terrestrial mammal population monitoring: Lessons learnt from a UK case study. Remote Sensing in Ecology and Conservation, 8, 717-730.
DOI URL |
[57] | Meek PD, Ballard GA, Fleming PJS, Schaefer M, Williams W, Falzon G (2014) Camera traps can be heard and seen by animals. PLoS ONE, 9, e110832. |
[58] | Miller DL (2021) Package ‘Distance’, Version 1.0.7. https://cran.r-project.org/web/packages/Distance/index.html. (accessed on 2022-11-15) |
[59] | Moeller AK, Lukacs PM, Horne JS (2018) Three novel methods to estimate abundance of unmarked animals using remote cameras. Ecosphere, 9, e02331. |
[60] |
Mysterud A, Ims RA (1998) Functional responses in habitat use: Availability influences relative use in trade-off situations. Ecology, 79, 1435-1441.
DOI URL |
[61] |
Nakashima Y, Fukasawa K, Samejima H (2018) Estimating animal density without individual recognition using information derivable exclusively from camera traps. Journal of Applied Ecology, 55, 735-744.
DOI URL |
[62] |
Nakashima Y, Hongo S, Akomo-Okoue EF (2020) Landscape- scale estimation of forest ungulate density and biomass using camera traps: Applying the REST model. Biological Conservation, 241, 108381.
DOI URL |
[63] | Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences, USA, 105, 19052-19059. |
[64] |
Nichols JD, Williams BK (2006) Monitoring for conservation. Trends in Ecology & Evolution, 21, 668-673.
DOI URL |
[65] | Norouzzadeh MS, Nguyen A, Kosmala M, Swanson A, Palmer MS, Packer C, Clune J (2018) Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences, USA, 115, E5716-E5725. |
[66] | O’Brien TG (2011) Abundance, density and relative abundance:A conceptual framework. In: Camera Traps in Animal Ecology: Methods and Analyses (eds O’Connell AF, Nichols JD, Karanth KU), pp. 71-96. Springer, New York. |
[67] | O’Connell AF, Nichols JD, Karanth KU (2011) Camera Traps in Animal Ecology: Methods and Analyses. Springer, New York. |
[68] |
Pal R, Bhattacharya T, Qureshi Q, Buckland ST, Sathyakumar S (2021) Using distance sampling with camera traps to estimate the density of group-living and solitary mountain ungulates. Oryx, 55, 668-676.
DOI URL |
[69] |
Palencia P, Rowcliffe JM, Vicente J, Acevedo P (2021) Assessing the camera trap methodologies used to estimate density of unmarked populations. Journal of Applied Ecology, 58, 1583-1592.
DOI URL |
[70] |
Palencia P, Vicente J, Barroso P, Barasona JÁ, Soriguer RC, Acevedo P (2019) Estimating day range from camera-trap data: The animals’ behaviour as a key parameter. Journal of Zoology, 309, 182-190.
DOI |
[71] |
Pettigrew P, Sigouin D, St-Laurent MH (2021) Testing the precision and sensitivity of density estimates obtained with a camera-trap method revealed limitations and opportunities. Ecology and Evolution, 11, 7879-7889.
DOI PMID |
[72] |
Rich LN, Miller DAW, Muñoz DJ, Robinson HS, McNutt JW, Kelly MJ (2019) Sampling design and analytical advances allow for simultaneous density estimation of seven sympa- tric carnivore species from camera trap data. Biological Conservation, 233, 12-20.
DOI URL |
[73] |
Rovero F, Marshall AR (2009) Camera trapping photographic rate as an index of density in forest ungulates. Journal of Applied Ecology, 46, 1011-1017.
DOI URL |
[74] | Rovero F, Zimmermann F, Berzi D, Meek P (2013) Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix, 24, 148-156. |
[75] |
Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology, 45, 1228-1236.
DOI URL |
[76] |
Rowcliffe JM, Carbone C, Jansen PA, Kays R, Kranstauber B (2011) Quantifying the sensitivity of camera traps: An adapted distance sampling approach. Methods in Ecology and Evolution, 2, 464-476.
DOI URL |
[77] |
Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA (2014) Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution, 5, 1170-1179.
DOI URL |
[78] |
Royle JA (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108-115.
DOI PMID |
[79] |
Sollmann R, Mohamed A, Samejima H, Wilting A (2013) Risky business or simple solution—Relative abundance indices from camera-trapping. Biological Conservation, 159, 405-412.
DOI URL |
[80] |
Steenweg R, Hebblewhite M, Kays R, Ahumada J, Fisher JT, Burton C, Townsend SE, Carbone C, Rowcliffe JM, Whittington J, Brodie J, Royle JA, Switalski A, Clevenger AP, Heim N, Rich LN (2017) Scaling-up camera traps: Monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 15, 26-34.
DOI URL |
[81] | Sun P, Huang SM, Su Y, Meng DH, Zhang ZR, Teng LW, Liu ZS (2021) Red deer population size and structure on Helan Mountain, Inner Mongolia, China. Chinese Journal of Wildlife, 42, 341-347. (in Chinese with English abstract) |
[孙萍, 黄师梅, 苏云, 孟德怀, 张致荣, 滕丽微, 刘振生 (2021) 内蒙古贺兰山马鹿的种群数量及种群结构. 野生动物学报, 42, 341-347.] | |
[82] |
Wang TM, Andrew Royle J, Smith JLD, Zou L, Lü XY, Li T, Yang HT, Li ZL, Feng RN, Bian YJ, Feng LM, Ge JP (2018) Living on the edge: Opportunities for Amur tiger recovery in China. Biological Conservation, 217, 269-279.
DOI URL |
[83] | Warbington CH, Boyce MS (2020) Population density of sitatunga in riverine wetland habitats. Global Ecology and Conservation, 24, e01212. |
[84] |
Wearn OR, Bell TEM, Bolitho A, Durrant J, Haysom JK, Nijhawan S, Thorley J, Rowcliffe JM (2022) Estimating animal density for a community of species using information obtained only from camera-traps. Methods in Ecology and Evolution, 13, 2248-2261.
DOI URL |
[85] |
Wearn OR, Glover-Kapfer P (2019) Snap happy: Camera traps are an effective sampling tool when compared with alternative methods. Royal Society Open Science, 6, 181748.
DOI URL |
[86] |
Whittington J, Hebblewhite M, Chandler RB (2018) Generalized spatial mark-resight models with an application to grizzly bears. Journal of Applied Ecology, 55, 157-168.
DOI URL |
[87] |
Willi M, Pitman RT, Cardoso AW, Locke C, Swanson A, Boyer A, Veldthuis M, Fortson L (2019) Identifying animal species in camera trap images using deep learning and citizen science. Methods in Ecology and Evolution, 10, 80-91.
DOI URL |
[88] | Williams BK, Nichols JD, Conroy MJ (2002) Analysis and Management of Animal Populations: Modeling, Estimation, and Decision Making. Academic Press, San Diego. |
[89] |
Xiao WH, Feng LM, Mou P, Miquelle DG, Hebblewhite M, Goldberg JF, Robinson HS, Zhao XD, Zhou B, Wang TM, Ge JP (2016) Estimating abundance and density of Amur tigers along the Sino-Russian border. Integrative Zoology, 11, 322-332.
DOI PMID |
[90] | Xie JC, Meng DH, Li ZZ, Zhang ZR, Liu ZS, Teng LW (2022) Population size and structure of blue sheep in Helan Mountains National Nature Reserve, Ningxia. Acta Ecologica Sinica, 42, 4189-4196. (in Chinese with English abstract) |
[谢建冲, 孟德怀, 李宗智, 张致荣, 刘振生, 滕丽微 (2022) 宁夏贺兰山国家级自然保护区岩羊(Pseudois nayaur)种群数量及结构. 生态学报, 42, 4189-4196.] | |
[91] | Yu LH (2021) Surveys on the resource actualities of the wild boar population in Huangshan City. Anhui Forestry Science and Technology, 47(3), 46-54. (in Chinese with English abstract) |
[余立华 (2021) 黄山市野猪种群资源现状调查. 安徽林业科技, 47(3), 46-54.] |
[1] | 张明军, 王合升, 颜文博, 符运南, 王琦, 曾治高. 海南大田国家级自然保护区小灵猫的活动节律与栖息地选择[J]. 生物多样性, 2024, 32(6): 23420-. |
[2] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
[3] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
[4] | 陈本平, 陈建武, 凌征文, 杨旭, 陈鑫, 李生强, 杨彪. 四川老君山国家级自然保护区林下鸟兽多样性及动态变化数据集[J]. 生物多样性, 2023, 31(5): 22566-. |
[5] | 王怡涵, 赵倩倩, 刁奕欣, 顾伯健, 翁悦, 张卓锦, 陈泳滨, 王放. 基于红外相机调查上海市区小灵猫的活动节律、栖息地利用及其对人类活动的响应[J]. 生物多样性, 2023, 31(2): 22294-. |
[6] | 史湘莹, 李雪阳, 魏春玥, 孙戈, 刘震, 赵翔, 周嘉鼎, 樊简, 李成, 吕植. 雅鲁藏布大峡谷鸟兽多样性及其海拔和季节分布[J]. 生物多样性, 2023, 31(2): 22491-. |
[7] | 孙翊斐, 王士政, 冯佳伟, 王天明. 东北虎豹国家公园森林声景的昼夜和季节变化[J]. 生物多样性, 2023, 31(1): 22523-. |
[8] | 杨剑焕, 李敬华, 杨浩炫, 欧梓键, 郑玺, Anthony J. Giordano, 陈辈乐. 基于红外相机数据评估华南地区豹猫的种群密度和活动节律[J]. 生物多样性, 2022, 30(9): 21357-. |
[9] | 王东, 赛青高娃, 王子涵, 赵宏秀, 连新明. 长江源区同域分布兔狲、藏狐和赤狐的时空重叠度[J]. 生物多样性, 2022, 30(9): 21365-. |
[10] | 孔玥峤, 刘炎林, 贺成武, 李天醍, 李全亮, 马存新, 王大军, 李晟. 评估荒漠猫的日活动节律: 基于红外相机与卫星颈圈数据的对比[J]. 生物多样性, 2022, 30(9): 22081-. |
[11] | 初漠嫣, 梁书洁, 李沛芸, 贾丁, 阿卜杜赛麦提·买尔迪亚力, 李雪阳, 姜楠, 赵翔, 李发祥, 肖凌云, 吕植. 三江源国家级自然保护区内云塔村雪豹种群动态[J]. 生物多样性, 2022, 30(9): 22157-. |
[12] | 邓雪琴, 刘统, 刘天时, 徐恺, 姚松, 黄小群, 肖治术. 河南内乡宝天曼国家级自然保护区豹猫及其潜在猎物之间日活动节律的季节性[J]. 生物多样性, 2022, 30(9): 22263-. |
[13] | 王双贵, 郭志宏, 顾伯健, 李天醍, 苏玉兵, 马伯丞, 管宏信, 黄巧雯, 王放, 张卓锦. 六盘山华北豹的栖息地利用及保护建议[J]. 生物多样性, 2022, 30(9): 22342-. |
[14] | 张旋, 杜薇, 徐颖, 王永龙. 包头市半干旱型森林公园土壤细菌多样性与功能[J]. 生物多样性, 2022, 30(7): 22245-. |
[15] | 乔江, 贾国清, 周华明, 龚林, 蒋勇, 肖能文, 高晓奇, 温安祥, 王杰. 四川贡嘎山国家级自然保护区鸟兽多样性[J]. 生物多样性, 2022, 30(2): 20395-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn