生物多样性 ›› 2023, Vol. 31 ›› Issue (3): 22422.  DOI: 10.17520/biods.2022422

• 技术与方法 • 上一篇    下一篇

基于红外相机的不可个体识别动物种群密度估算方法

李珍珍1,2,3, 杜梦甜1,2,3, 朱原辛1,2,3, 王大伟1,2,3, 李治霖4,*(), 王天明1,2,3,*()   

  1. 1.东北虎豹国家公园保护生态学国家林业和草原局重点实验室, 北京 100875
    2.生物多样性与生态工程教育部重点实验室, 北京 100875
    3.北京师范大学生命科学学院, 北京 100875
    4.天津师范大学生命科学学院天津市动物多样性保护与利用重点实验室, 天津 300387
  • 收稿日期:2022-07-22 接受日期:2023-01-04 出版日期:2023-03-20 发布日期:2023-03-20
  • 通讯作者: 李治霖,王天明
  • 作者简介:wangtianming@bnu.edu.cn
    * E-mail: lizhilin0319@tjnu.edu.cn;
  • 基金资助:
    国家自然科学基金(31971539);国家科技基础资源调查专项(2019FY101700);国家科技基础资源调查专项(2021FY100702)

A practical guide for estimating the density of unmarked populations using camera traps

Zhenzhen Li1,2,3, Mengtian Du1,2,3, Yuanxin Zhu1,2,3, Dawei Wang1,2,3, Zhilin Li4,*(), Tianming Wang1,2,3,*()   

  1. 1 National Forestry and Grassland Administration Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard National Park, Beijing 100875
    2 Ministry of Education Key Laboratory for Biodiversity Science and Engineering, Beijing 100875
    3 College of Life Sciences, Beijing Normal University, Beijing 100875
    4 Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387
  • Received:2022-07-22 Accepted:2023-01-04 Online:2023-03-20 Published:2023-03-20
  • Contact: Zhilin Li,Tianming Wang

摘要:

种群密度估计对野生动物的保护和管理至关重要, 也是动物生态学和保护生物学备受关注的研究热点, 但对大中型兽类种群数量的准确估算一直面临挑战。红外相机是哺乳动物调查中普遍采用的工具, 也是克服这一挑战的一种经济有效的方法。目前国际上已有多种方法采用红外相机数据估算不可个体识别动物的种群密度, 但相关技术在我国的应用案例较少, 本文旨在为国内研究者应用红外相机数据估算动物种群密度提供参考。首先, 我们介绍了随机相遇模型(random encounter model, REM)、随机相遇与停留时间(random encounter and staying time, REST)模型、相机前停留时间(time in front of the camera, TIFC)模型以及红外相机距离取样(camera trap distance sampling, CTDS)这四种模型的基本原理和假设; 其次, 描述了这些模型在野外调查中的技术要点, 并给出数据处理与分析的建议; 最后, 总结了每个模型的数据需求、优点和缺点。虽然我国目前拥有估算种群密度的大量红外相机数据源, 但有很多物种的数量尚未知晓, 也没有一种方法对所有红外相机数据都是最优的, 所以我们建议研究者在了解所研究动物类群的生活史和生态需求基础上, 根据模型假设确定合理的采样和分析方案, 扩大这些方法的应用, 为我国重要物种的保护和保护地建设提供科学指导。

关键词: 生物多样性监测, 红外相机, 种群密度, 种群建模, 基于遇见率的模型, 距离取样, 预测

Abstract

Background & Aim: Estimating population density is essential for wildlife management and conservation, but it is challenging to achieve. Camera trapping is a pervasive method used in mammal surveys and a cost-effective way to overcome this challenge, for which several methods have been described to estimate population density when individuals are indiscernible (i.e. unmarked populations). However, there are few examples of their use in China. We aim to provide a practical guide for conducting camera trap surveys to estimate the density of mammals applying the random encounter model (REM), random encounter and staying time (REST) model, time in front of the camera (TIFC) model and the camera trap distance sampling (CTDS).

Review Results: First, we provide a brief explanation about the structure and assumptions of the REM, REST, TIFC and CTDS models. Next, we describe essential steps in planning a field survey: determination of objectives, design of camera placement, and the layout of the camera station. We then develop detail-oriented instruction for conducting a field survey and analyzing the obtained visual data. Finally, for each analytical approach, we compiled the data requirements, advantages, and disadvantages of each to help practitioners navigate the landscape of abundance estimation methods.

Perspectives: Although multiple methods exist, no one method is optimal for every camera-trap data scenario. While there has been rapid improvement of camera traps in recent decades throughout China, we encourage researchers to evaluate the life history of the focal taxa, carefully define the area of the sampling frame, and enhance the use of camera trapping for estimating densities of unmarked populations.

Key words: biodiversity monitoring, camera traps, population density, population modeling, encounter-based model, distance sampling, prediction