生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22224. DOI: 10.17520/biods.2022224
赵琦1,2, 蒋际宝1,2, 张曾鲁1,2, 金清1,2, 李佳丽1,2, 邱江平1,2,*()
收稿日期:
2022-04-26
接受日期:
2022-08-30
出版日期:
2022-12-20
发布日期:
2022-12-17
通讯作者:
*E-mail: jpq@sjtu.edu.cn
基金资助:
Qi Zhao1,2, Jibao Jiang1,2, Zenglu Zhang1,2, Qing Jin1,2, Jiali Li1,2, Jiangping Qiu1,2,*()
Received:
2022-04-26
Accepted:
2022-08-30
Online:
2022-12-20
Published:
2022-12-17
Contact:
*E-mail: jpq@sjtu.edu.cn
摘要:
海南岛独特的地理位置和复杂的古地理事件使其成为我国生物多样性的热点地区。已有的海南岛蚯蚓资料显示, 该岛的蚯蚓区系十分特殊, 且与大陆地区蚯蚓存在扩散与迁移。然而, 当海南岛与周围大陆断开形成独立岛屿后, 海南岛蚯蚓如何为适应海南岛的环境而逐渐形成现在岛内的分布与区系, 仍然是一个值得研究和探讨的问题。因此, 本研究在海南岛全面调查和采集蚯蚓标本, 整理海南岛地区的蚯蚓物种组成及其地理分布特征, 并联合5个线粒体基因COⅠ、COⅡ、ND1、12S rRNA和16S rRNA构建海南岛蚯蚓的分子系统发育树, 推测其分化时间和祖先分布区域, 探讨海南岛蚯蚓在岛内的分化与扩散过程。研究结果表明: (1)海南岛共有蚯蚓6科9属122种, 巨蚓科蚯蚓为优势科, 且全部为环毛类蚯蚓, 其中103种为海南岛特有种。蚯蚓物种数沿海拔呈先增加后减少的趋势, 在800‒1,000 m最大; (2)海南岛环毛类蚯蚓不同水平的遗传距离与我国巨蚓科蚯蚓的遗传距离区间基本一致。物种水平上, 美丽远盲蚓(Amynthas scitulus*)与纬向远盲蚓(A. zonarius)的基因遗传距离最小。在亚种水平, 保宁腔蚓指名亚种(Metaphire magna magna)和保宁腔蚓小型亚种(M. magna minuscula)的遗传距离均接近整体的物种水平。在种群水平, 等毛远盲蚓(A. homosetus)不同种群间遗传距离均接近整体的亚种水平; (3)海南岛环毛类蚯蚓可划分为7个类群, 其祖先于68.26 Ma开始分化, 可能起源于吊罗山。在新生代, 7个类群均得到较大发展。通过对海南岛蚯蚓组成及系统发育的梳理, 不仅为我国蚯蚓物种多样性研究提供基础资料, 也为岛屿蚯蚓物种系统发育关系分析提供科学参考。
赵琦, 蒋际宝, 张曾鲁, 金清, 李佳丽, 邱江平 (2022) 海南岛蚯蚓物种组成及其系统发育分析. 生物多样性, 30, 22224. DOI: 10.17520/biods.2022224.
Qi Zhao, Jibao Jiang, Zenglu Zhang, Qing Jin, Jiali Li, Jiangping Qiu (2022) Species composition and phylogenetic analysis of earthworms on Hainan Island. Biodiversity Science, 30, 22224. DOI: 10.17520/biods.2022224.
基因 Gene | 整体 Total | 第一位点 1st position of codon | 第二位点 2nd position of codon | 第三位点 3rd position of codon | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A+T(%) | C+G(%) | (A+T)/(C+G) | A+T(%) | C+G(%) | (A+T)/(C+G) | A+T(%) | C+G (%) | (A+T)/(C+G) | A+T(%) | C+G (%) | (A+T)/(C+G) | |
COI | 59.5 ± 1.4 | 40.5 ± 1.4 | 1.5 ± 0.1 | 44.2 ± 1.3 | 55.8 ± 1.3 | 0.8 ± 0.0 | 56.1 ± 0.2 | 43.9 ± 0.2 | 1.3 ± 0.0 | 78.3 ± 4.0 | 21.7 ± 4.0 | 3.7 ± 1.0 |
COII | 65.4 ± 1.2 | 34.6 ± 1.2 | 1.9 ± 0.1 | 76.6 ± 3.3 | 23.4± 3.3 | 3.4 ± 0.6 | 53.4 ± 1.1 | 46.6 ± 1.1 | 1.1 ± 0.0 | 66.1 ± 0.6 | 33.9 ± 0.6 | 1.9 ± 0.1 |
ND1 | 66.1 ± 1.9 | 33.9 ± 1.9 | 2.0 ± 0.2 | 62.0 ± 0.8 | 38.0 ± 0.8 | 1.6 ± 0.1 | 72.0 ± 3.0 | 28.0 ± 3.0 | 2.6 ± 0.4 | 64.2 ± 3.0 | 35.8 ± 3.0 | 1.8 ± 0.3 |
12S | 71.6 ± 1.0 | 28.4 ± 1.0 | 2.5 ± 0.1 | 74.3 ± 1.5 | ||||||||
16S | 62.2 ± 0.9 | 37.8 ± 0.9 | 1.6 ± 0.1 | 61.3 ± 1.3 | ||||||||
5 genes | 65.7 ± 0.9 | 34.3 ± 0.9 | 1.9 ± 0.1 | 63.3 ± 1.0 |
表1 海南岛环毛类蚯蚓的5个基因及其联合序列的碱基组成
Table 1 The base composition of 5 genes and combined genes of pheretimoid earthworms in Hainan Island
基因 Gene | 整体 Total | 第一位点 1st position of codon | 第二位点 2nd position of codon | 第三位点 3rd position of codon | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A+T(%) | C+G(%) | (A+T)/(C+G) | A+T(%) | C+G(%) | (A+T)/(C+G) | A+T(%) | C+G (%) | (A+T)/(C+G) | A+T(%) | C+G (%) | (A+T)/(C+G) | |
COI | 59.5 ± 1.4 | 40.5 ± 1.4 | 1.5 ± 0.1 | 44.2 ± 1.3 | 55.8 ± 1.3 | 0.8 ± 0.0 | 56.1 ± 0.2 | 43.9 ± 0.2 | 1.3 ± 0.0 | 78.3 ± 4.0 | 21.7 ± 4.0 | 3.7 ± 1.0 |
COII | 65.4 ± 1.2 | 34.6 ± 1.2 | 1.9 ± 0.1 | 76.6 ± 3.3 | 23.4± 3.3 | 3.4 ± 0.6 | 53.4 ± 1.1 | 46.6 ± 1.1 | 1.1 ± 0.0 | 66.1 ± 0.6 | 33.9 ± 0.6 | 1.9 ± 0.1 |
ND1 | 66.1 ± 1.9 | 33.9 ± 1.9 | 2.0 ± 0.2 | 62.0 ± 0.8 | 38.0 ± 0.8 | 1.6 ± 0.1 | 72.0 ± 3.0 | 28.0 ± 3.0 | 2.6 ± 0.4 | 64.2 ± 3.0 | 35.8 ± 3.0 | 1.8 ± 0.3 |
12S | 71.6 ± 1.0 | 28.4 ± 1.0 | 2.5 ± 0.1 | 74.3 ± 1.5 | ||||||||
16S | 62.2 ± 0.9 | 37.8 ± 0.9 | 1.6 ± 0.1 | 61.3 ± 1.3 | ||||||||
5 genes | 65.7 ± 0.9 | 34.3 ± 0.9 | 1.9 ± 0.1 | 63.3 ± 1.0 |
水平 Level | 基因 Gene | 遗传距离区间 P-distance (%) | ||
---|---|---|---|---|
平均值 Average | 最大值 Maximum | 最小值 Minimum | ||
物种水平 Species level | COI | 17.91 ± 1.89 | 23.20 ± 1.92 | 4.73 ± 0.92 |
COII | 14.99 ± 1.81 | 20.01 ± 2.09 | 2.09 ± 0.53 | |
12S | 14.42 ± 2.45 | 19.81 ± 1.95 | 1.60 ± 0.44 | |
16S | 6.90 ± 1.77 | 12.68 ± 1.70 | 0.91 ± 0.50 | |
ND1 | 18.90 ± 1.97 | 25.35 ± 2.12 | 6.00 ± 0.86 | |
5 genes | 15.10 ± 1.46 | 18.94 ± 0.76 | 5.84 ± 0.43 | |
亚种水平 Subspecies level | COI | 9.15 ± 2.48 | 15.04 ± 1.71 | 6.31 ± 0.89 |
COII | 6.68 ± 3.18 | 17.52 ± 1.85 | 4.89 ± 0.84 | |
12S | 4.31 ± 1.92 | 11.09 ± 1.11 | 3.24 ± 0.63 | |
16S | 3.47 ± 2.68 | 8.45 ± 1.32 | 0.92 ± 0.49 | |
ND1 | 7.94 ± 2.79 | 16.09 ± 1.56 | 5.72 ± 0.77 | |
5 genes | 6.55 ± 2.22 | 13.74 ± 0.64 | 4.57 ± 0.30 | |
种群水平 Population level | COI | 1.18 ± 1.92 | 7.16 ± 1.05 | 0.00 ± 0.00 |
COII | 1.00 ± 1.52 | 5.36 ± 0.83 | 0.00 ± 0.00 | |
12S | 0.71 ± 1.00 | 3.61 ± 0.68 | 0.00 ± 0.00 | |
16S | 0.83 ± 1.78 | 7.41 ± 1.12 | 0.00 ± 0.00 | |
ND1 | 1.29 ± 2.06 | 8.31 ± 1.12 | 0.00 ± 0.00 | |
5 genes | 1.10 ± 1.49 | 5.10 ± 0.39 | 0.00 ± 0.00 |
表2 海南岛环毛类蚯蚓的5个基因和联合序列的遗传距离
Table 2 The genetic distance of 5 genes and combined genes of pheretimoid earthworms in Hainan Island
水平 Level | 基因 Gene | 遗传距离区间 P-distance (%) | ||
---|---|---|---|---|
平均值 Average | 最大值 Maximum | 最小值 Minimum | ||
物种水平 Species level | COI | 17.91 ± 1.89 | 23.20 ± 1.92 | 4.73 ± 0.92 |
COII | 14.99 ± 1.81 | 20.01 ± 2.09 | 2.09 ± 0.53 | |
12S | 14.42 ± 2.45 | 19.81 ± 1.95 | 1.60 ± 0.44 | |
16S | 6.90 ± 1.77 | 12.68 ± 1.70 | 0.91 ± 0.50 | |
ND1 | 18.90 ± 1.97 | 25.35 ± 2.12 | 6.00 ± 0.86 | |
5 genes | 15.10 ± 1.46 | 18.94 ± 0.76 | 5.84 ± 0.43 | |
亚种水平 Subspecies level | COI | 9.15 ± 2.48 | 15.04 ± 1.71 | 6.31 ± 0.89 |
COII | 6.68 ± 3.18 | 17.52 ± 1.85 | 4.89 ± 0.84 | |
12S | 4.31 ± 1.92 | 11.09 ± 1.11 | 3.24 ± 0.63 | |
16S | 3.47 ± 2.68 | 8.45 ± 1.32 | 0.92 ± 0.49 | |
ND1 | 7.94 ± 2.79 | 16.09 ± 1.56 | 5.72 ± 0.77 | |
5 genes | 6.55 ± 2.22 | 13.74 ± 0.64 | 4.57 ± 0.30 | |
种群水平 Population level | COI | 1.18 ± 1.92 | 7.16 ± 1.05 | 0.00 ± 0.00 |
COII | 1.00 ± 1.52 | 5.36 ± 0.83 | 0.00 ± 0.00 | |
12S | 0.71 ± 1.00 | 3.61 ± 0.68 | 0.00 ± 0.00 | |
16S | 0.83 ± 1.78 | 7.41 ± 1.12 | 0.00 ± 0.00 | |
ND1 | 1.29 ± 2.06 | 8.31 ± 1.12 | 0.00 ± 0.00 | |
5 genes | 1.10 ± 1.49 | 5.10 ± 0.39 | 0.00 ± 0.00 |
图3 基于5个联合基因序列的海南岛环毛类蚯蚓物种的系统发育树和祖先分布区域重建。节点上数值表示后验概率, 饼图表示分布区域概率, 不同颜色代表不同区域。标尺表示分化时间(单位: 百万年)。
Fig. 3 Phylogenetic analysis of Hainan pheretimoid earthworms based on the 5 combined genes and their ancestral distribution. The numbers in the node were bootstrap values. The pie charts present the distribution area probabilities with different colors standing for different locations. The scale shows the differentiation time (in millions of years).
节点 Node | 后验分化时间(百万年) Posterior differentiation time (Ma) | 祖先分布区域比例 Ratio of ancestral distribution (%) | |||
---|---|---|---|---|---|
吊罗山 Mt. Diaoluo | 吊罗山和五指山 Mt. Diaoluo and Mt. Wuzhi | 吊罗山和黎母山 Mt. Diaoluo and Mt. Limu | 吊罗山和尖峰岭 Mt. Diaoluo and Jianfengling | ||
1 | 68.26 | 65.28 | 13.92 | 10.79 | 10.01 |
2 | 61.39 | 47.09 | 29.43 | 23.48 | 0 |
3 | 57.05 | 84.04 | 15.96 | 0 | 0 |
4 | 56.12 | 100 | 0 | 0 | 0 |
5 | 53.29 | 100 | 0 | 0 | 0 |
6 | 51.46 | 100 | 0 | 0 | 0 |
表3 基于Bayesian松散分子钟方法估计的海南岛环毛类蚯蚓不同类群的分化时间和祖先分布区域
Table 3 The posterior differentiation time and ancestral distribution analysis of Hainan pheretimoid earthworms based on the Bayesian loose molecular clock method
节点 Node | 后验分化时间(百万年) Posterior differentiation time (Ma) | 祖先分布区域比例 Ratio of ancestral distribution (%) | |||
---|---|---|---|---|---|
吊罗山 Mt. Diaoluo | 吊罗山和五指山 Mt. Diaoluo and Mt. Wuzhi | 吊罗山和黎母山 Mt. Diaoluo and Mt. Limu | 吊罗山和尖峰岭 Mt. Diaoluo and Jianfengling | ||
1 | 68.26 | 65.28 | 13.92 | 10.79 | 10.01 |
2 | 61.39 | 47.09 | 29.43 | 23.48 | 0 |
3 | 57.05 | 84.04 | 15.96 | 0 | 0 |
4 | 56.12 | 100 | 0 | 0 | 0 |
5 | 53.29 | 100 | 0 | 0 | 0 |
6 | 51.46 | 100 | 0 | 0 | 0 |
[1] |
Aspe NM, James SW (2018) Molecular phylogeny and biogeographic distribution of pheretimoid earthworms (clitellata: Megascolecidae) of the Philippine archipelago. European Journal of Soil Biology, 85, 89-97.
DOI URL |
[2] |
Bely AE, Wray GA (2004) Molecular phylogeny of naidid worms (Annelida: Clitellata) based on cytochrome oxidase I. Molecular Phylogenetics and Evolution, 30, 50-63.
DOI PMID |
[3] |
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715.
DOI PMID |
[4] |
Chang CH, Lin SM, Chen JH (2008) Molecular systematics and phylogeography of the gigantic earthworms of the Metaphire formosae species group (Clitellata, Megascolecidae). Molecular Phylogenetics and Evolution, 49, 958-968.
DOI URL |
[5] | Chen Y (1938) Oligochaeta from Hainan, Kwangtung. Contributions from the Biological Laboratory of the Science Society of China. Zoological Series, 12, 375-427. |
[6] | Chen YK (2014) The Influence of “Island Effect” on the Distribution Patterns of Plant Diversity. PhD dissertation, Hainan University, Haikou. (in Chinese with English abstract) |
[ 陈玉凯 (2014) “岛屿效应”对植物多样性分布格局的影响. 博士学位论文, 海南大学, 海口.] | |
[7] |
Cracraft J (1974) Phylogenetic models and classification. Systematic Biology, 23, 71-90.
DOI URL |
[8] | Darwin CR (1881) The Formation of Vegetable Mould Through the Action of Worms, with Observations on Their Habits. John Murray, London. |
[9] | Decaëns T, Jiménez JJ, Gioia C, Measey GJ, Lavelle P (2006) The values of soil animals for conservation biology. European Journal of Soil Biology, 42, S23-S38. |
[10] | Edwards CA (2004) Earthworm Ecology. CRC Press, Boca Raton. |
[11] |
Fernández R, Almodóvar A, Novo M, Gutiérrez M, Cosín DJD (2013) Earthworms, good indicators for palaeogeographical studies? Testing the genetic structure and demographic history in the peregrine earthworm Aporrectodea trapezoides (Dugès, 1828) in southern Europe. Soil Biology and Biochemistry, 58, 127-135.
DOI URL |
[12] |
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
PMID |
[13] | Gao X, Dong Y, Yuan Z, Sun J, Jiang JB, Qiu JP (2018) Species and molecular phylogeny of earthworms from Mt. Ailao, Mt. Wuliang and Mt. Cang, Yunnan. Chinese Journal of Zoology, 53, 399-414. (in Chinese with English abstract) |
[ 高杏, 董彦, 袁柱, 孙静, 蒋际宝, 邱江平 (2018) 哀牢山、无量山与苍山蚯蚓物种调查及系统发育与扩散分析. 动物学杂志, 53, 399-414.] | |
[14] | Gentry AH (1986) Endemism in tropical versus temperate plant communities. In: ConservationBiology: The Science of Scarity and Diversity (ed. Soule ME), pp.153-181. Sinauer Associates, Sunderland, MA. |
[15] |
Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
DOI URL |
[16] | Hillis D, Moritz C (1990) Molecular Systematic. Sinauer, Sunderland, MA. |
[17] |
Hu YF, Yu WH, Yue Y, Huang ZLY, Li YC, Wu Y (2019) Species diversity and potential distribution of Chiroptera on Hainan Island, China. Biodiversity Science, 27, 400-408. (in Chinese with English abstract)
DOI |
[ 胡宜峰, 余文华, 岳阳, 黄正澜懿, 李玉春, 吴毅 (2019) 海南岛翼手目物种多样性现状与分布预测. 生物多样性, 27, 400-408.]
DOI |
|
[18] | Jiang JB (2016) Taxonomy and Molecular Phylogeny of the Family Megascolecidae Earthworms from China. PhD dissertation, Shanghai Jiao Tong University, Shanghai. (in Chinese with English abstract) |
[ 蒋际宝 (2016) 中国巨蚓科蚯蚓分类与分子系统发育研究. 博士学位论文, 上海交通大学, 上海.] | |
[19] |
Jiang JB, Qiu JP (2018) Origin and evolution of earthworms belonging to the family Megascolecidae in China. Biodiversity Science, 26, 1074-1082. (in Chinese with English abstract)
DOI |
[ 蒋际宝, 邱江平 (2018) 中国巨蚓科蚯蚓的起源与演化. 生物多样性, 26, 1074-1082.]
DOI |
|
[20] |
Korboulewsky N, Perez G, Chauvat M (2016) How tree diversity affects soil fauna diversity: A review. Soil Biology and Biochemistry, 94, 94-106.
DOI URL |
[21] | Li JW, Li JQ, Ren YL (2002) Taxonomic diversity of main tropical forest ecosystem nature reserves in Hainan Province, China. Journal of Beijing Forestry University, 24(Suppl. 1), 112-118. (in Chinese with English abstract) |
[ 李景文, 李俊清, 任艳林 (2002) 海南主要热带森林生态系统类型自然保护区物种分类多样性研究. 北京林业大学学报, 24(Suppl. 1), 112-118.] | |
[22] |
Liang GH (2013) Eight evidences of Hainan Island’s separation, rotation and drift from China Beibu Gulf. Acta Geologica Sinica, 87, 73-76. (in Chinese)
DOI URL |
[ 梁光河 (2013) 海南岛从中国北部湾分离旋转漂移出去的8大证据. 地质学报, 87, 73-76.] | |
[23] | Liu BR (2021) Recent advances in altitudinal distribution patterns of biodiversity. Ecology and Environmental Sciences, 30, 438-444. (in Chinese with English abstract) |
[ 刘秉儒 (2021) 生物多样性的海拔分布格局研究及进展. 生态环境学报, 30, 438-444.] | |
[24] |
McCain CM (2007) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16, 1-13.
DOI URL |
[25] |
Pérez-Losada M, Ricoy M, Marshall JC (2009) Phylogenetic assessment of the earthworm Aporrectodea caliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 52, 293-302.
DOI PMID |
[26] |
Phillips HRP, Guerra CA, Bartz MLC, Briones MJI, Brown G, Crowther TW, Ferlian O, Gongalsky KB, van den Hoogen J, Krebs J, Orgiazzi A, Routh D, Schwarz B, Bach EM, Bennett JM, Brose U, Decaëns T, König-Ries B, Loreau M, Mathieu J, Mulder C, van der Putten WH, Ramirez KS, Rillig MC, Russell D, Rutgers M, Thakur MP, de Vries FT, Wall DH, Wardle DA, Arai M, Ayuke FO, Baker GH, Beauséjour R, Bedano JC, Birkhofer K, Blanchart E, Blossey B, Bolger T, Bradley RL, Callaham MA, Capowiez Y, Caulfield ME, Choi A, Crotty FV, Crumsey JM, Dávalos A, Diaz Cosin DJ, Dominguez A, Duhour AE, van Eekeren N, Emmerling C, Falco LB, Fernández R, Fonte SJ, Fragoso C, Franco ALC, Fugère M, Fusilero AT, Gholami S, Gundale MJ, López MG, Hackenberger DK, Hernández LM, Hishi T, Holdsworth AR, Holmstrup M, Hopfensperger KN, Lwanga EH, Huhta V, Hurisso TT, Iannone BV III, Iordache M, Joschko M, Kaneko N, Kanianska R, Keith AM, Kelly CA, Kernecker ML, Klaminder J, Koné AW, Kooch Y, Kukkonen ST, Lalthanzara H, Lammel DR, Lebedev IM, Li YQ, Jesus Lidon JB, Lincoln NK, Loss SR, Marichal R, Matula R, Moos JH, Moreno G, Morón-Ríos A, Muys B, Neirynck J, Norgrove L, Novo M, Nuutinen V, Nuzzo V, Pansu J, Paudel S, Pérès G, Pérez-Camacho L, Piñeiro R, Ponge JF, Rashid MI, Rebollo S, Rodeiro-Iglesias J, Rodríguez MÁ, Roth AM, Rousseau GX, Rozen A, Sayad E, van Schaik L, Scharenbroch BC, Schirrmann M, Schmidt O, Schröder B, Seeber J, Shashkov MP, Singh J, Smith SM, Steinwandter M, Talavera JA, Trigo D, Tsukamoto J, Vanek SJ, Virto I, Wackett AA, Warren MW, Wehr NH, Whalen JK, Wironen MB, Wolters V, Zenkova IV, Zhang WX, Cameron EK, Eisenhauer N (2019) Global distribution of earthworm diversity. Science, 366, 480-485.
DOI PMID |
[27] |
Porazinska DL, Farrer EC, Spasojevic MJ, Bueno de Mesquita CP, Sartwell SA, Smith JG, White CT, King AJ, Suding KN, Schmidt SS (2018) Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology, 99, 1942-1952.
DOI PMID |
[28] | Qin XD, Liu YH (2007) Biodiversity of Hainan Island and its protection countermeasures. Chinese Journal of Tropical Agriculture, 6, 50-53, 63. (in Chinese with English abstract) |
[ 覃新导, 刘永花 (2007) 海南岛生物多样性及其保护对策. 热带农业科学, 6, 50-53, 63.] | |
[29] | Qiu JP (2000) Earthworms and environmental protection. Guizhou Science, 18(Z1), 116-133. (in Chinese with English abstract) |
[ 邱江平 (2000) 蚯蚓与环境保护. 贵州科学, 18(Z1), 116-133.] | |
[30] | Quan XW (1985) A new species of earthworm from Hainan Island. Acta Zootaxonomica Sinica, 10, 18-20. (in Chinese with English abstract) |
[ 全筱薇 (1985) 海南岛陆栖寡毛类一新种. 动物分类学报, 10, 18-20.] | |
[31] | Quan XW, Zhong YH (1985) Two new species of territorial oligochaetes from Hainan Island (Oligochaeta, Megascolecidae). Acta Zootaxonomica Sinica, 3, 273-277. (in Chinese with English abstract) |
[ 全筱薇, 钟远辉 (1989) 海南岛陆栖寡毛类二新种记述(寡毛纲: 巨蚓科). 动物分类学报, 3, 273-277.] | |
[32] |
Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224-239.
DOI URL |
[33] |
Rutgers M, Orgiazzi A, Gardi C, Römbke J, Jänsch S, Keith AM, Neilson R, Boag B, Schmidt O, Murchie AK, Blackshaw RP, Pérès G, Cluzeau D, Guernion M, Briones MJI, Rodeiro J, Piñeiro R, Cosín DJD, Sousa JP, Suhadolc M, Kos I, Krogh PH, Faber JH, Mulder C, Bogte JJ, van Wijnen HJ, Schouten AJ,de Zwart D (2016) Mapping earthworm communities in Europe. Applied Soil Ecology, 97, 98-111.
DOI URL |
[34] |
Seesamut T, Jirapatrasilp P, Sutcharit C, Tongkerd P, Panha S (2019) Mitochondrial genetic population structure and variation of the littoral earthworm Pontodrilus longissimus Seesamut and Panha, 2018 along the coast of Thailand. European Journal of Soil Biology, 93, 103091.
DOI URL |
[35] |
Shen X, Ma XY, Ren JF, Zhao FQ (2009) A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta. BMC Genomics, 10, 136.
DOI PMID |
[36] |
Sims RW, Easton EG (2008) A numerical revision of the earthworm genus Pheretima auct. (Megascolecidae: Oligochaeta) with the recognition of new genera and an appendix on the earthworms collected by the Royal Society North Borneo Expedition. Biological Journal of the Linnean Society, 4, 169-268.
DOI URL |
[37] | Stattersfield AJ, Corsby MJ, Long AJ, Wege DC (1998) Endemic Bird Areas of the World: Priorities for Biodiversity Conservation. Birdlife International, Conservation Series No. 7. Birdlife International, Cambridge. |
[38] |
Sun J, Jiang JB, Zhao Q, Qiu JP (2015) New earthworms of the Amynthas morrisi-group (Oligochaeta, Megascolecidae) from Hainan Island, China. Zootaxa, 4058, 257-266.
DOI URL |
[39] | Xu H (2010) The Spatial-Temporal Variation of Species Diversity in the Natural Tropical Forests of Jianfengling on Hainan Island, South China. PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract) |
[ 许涵 (2010) 海南尖峰岭热带天然林物种多样性时空变化规律研究. 博士学位论文, 中国林业科学研究院, 北京.] | |
[40] | Yan JA (2006) The Study on Evolutional History of Hainan Island’s Ecological Environment—from the Point of Animal and Plant. PhD dissertation, Nanjing Agricultural University, Nanjing. (in Chinese with English abstract) |
[ 颜家安 (2006) 海南岛生态环境变迁史研究: 以植物和动物变迁为研究视角. 博士学位论文, 南京农业大学, 南京.] | |
[41] | Yuan Z (2020) Taxonomy, Differentiation and Dispersal of Earthworms in the Hengduan Mountains. PhD dissertation, Shanghai Jiao Tong University, Shanghai. (in Chinese with English abstract) |
[ 袁柱 (2020) 横断山脉地区蚯蚓分类及分化与扩散研究. 博士学位论文, 上海交通大学, 上海.] | |
[42] |
Yuan Z, Jiang JB, Dong Y, Zhao Q, Gao X, Qiu JP (2019) The dispersal and diversification of earthworms (Annelida: Oligochaeta) related to paleogeographical events in the Hengduan Mountains. European Journal of Soil Biology, 94, 103118.
DOI URL |
[43] |
Yuan Z, Jiang JB, Dong Y, Zhao Q, Sun J, Qiu JP (2020) Unearthing the genetic divergence and gene flow of the earthworm Amynthas_YN 2017 sp. (Oligochaeta: Megascolecidae) populations based on restriction site-associated DNA sequencing. European Journal of Soil Biology, 99, 103210.
DOI URL |
[44] |
Zhang LL, Sechi P, Yuan ML, Jiang JB, Dong Y, Qiu JP (2016) Fifteen new earthworm mitogenomes shed new light on phylogeny within the Pheretima complex. Scientific Reports, 6, 20096.
DOI URL |
[45] | Zhao Q (2015) Taxonomy, Phylogeny and Paleogeography of Pheretimoid Earthworm Species. PhD dissertation, Shanghai Jiao Tong University, Shanghai. (in Chinese with English abstract) |
[ 赵琦 (2015) 中国海南岛环毛类蚯蚓分类学、系统发育学和古生物地理学研究. 博士学位论文, 上海交通大学, 上海.] | |
[46] |
Zhao Q, Jiang JB, Sun J, Qiu JP (2013) Four new earthworm species and subspecies belonging to genus Amynthas and Metaphire (Oligochaeta: Megascolecidae) from Hainan Island, China. Zootaxa, 3619, 383-393.
PMID |
[47] | Zhu H (2016) Biogeographical evidences help revealing the origin of Hainan Island. PLoS ONE, 11, e0151941. |
[1] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[2] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[3] | 林迪, 陈双林, 杜榷, 宋文龙, 饶固, 闫淑珍. 大别山黏菌的物种多样性调查[J]. 生物多样性, 2024, 32(2): 23242-. |
[4] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[5] | 陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高. 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023, 31(5): 23059-. |
[6] | 杨涛, 沈泽昊, 王晓凤, 饶杰生, 刘文聪, 田希, 陈稀, 张秋雨, 刘倩, 钱恒君, 解宇阳, 刘其明, 徐衍潇, 涂梦灵, 单子铭, 张玉坤, 侯波, 李建斌, 欧晓昆. 滇中高原亚热带半湿润常绿阔叶林植物群落多样性特征[J]. 生物多样性, 2023, 31(11): 23238-. |
[7] | 王晓凤, 米湘成, 王希华, 江明喜, 杨涛, 张健, 沈泽昊. 中国中亚热带常绿阔叶林群落木本植物多样性比较[J]. 生物多样性, 2023, 31(11): 23296-. |
[8] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[9] | 李正飞, 蒋小明, 王军, 孟星亮, 张君倩, 谢志才. 雅鲁藏布江中下游底栖动物物种多样性及其影响因素[J]. 生物多样性, 2022, 30(6): 21431-. |
[10] | 翟俊杰, 赵慧峰, 商光申, 孙振钧, 张玉峰, 王兴. 蚯蚓基因组学的研究进展: 基于全基因组及线粒体基因组[J]. 生物多样性, 2022, 30(12): 22257-. |
[11] | 栗冬梅, 杨卫红, 李庆多, 韩茜, 宋秀平, 潘虹, 冯云. 巴尔通体在滇西南蝙蝠中高度流行并具有丰富的遗传变异特征[J]. 生物多样性, 2021, 29(9): 1245-1255. |
[12] | 郝希阳, 贺姹, 楚克林, 申志新, 赵强, 高伟, 潘达, 孙红英. 海南岛淡水蟹类分布格局与多样性保护[J]. 生物多样性, 2021, 29(5): 605-616. |
[13] | 李世雄, 王彦龙, 王玉琴, 尹亚丽. 土壤细菌群落特征对高寒草甸退化的响应[J]. 生物多样性, 2021, 29(1): 53-64. |
[14] | 黄敦元, 黄世贵, 王建皓, 李红英, 窦飞越, 张可, 朱祥龙, 马方舟. 齐云山国家级自然保护区蝴蝶群落多样性[J]. 生物多样性, 2020, 28(8): 958-964. |
[15] | 刘丹, 郭忠玲, 崔晓阳, 范春楠. 5种东北红豆杉植物群丛及其物种多样性的比较[J]. 生物多样性, 2020, 28(3): 340-349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn