生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22257. DOI: 10.17520/biods.2022257
所属专题: 土壤生物与土壤健康
翟俊杰1,2, 赵慧峰3, 商光申1,2, 孙振钧1, 张玉峰3,*(), 王兴1,2,*()
收稿日期:
2022-05-11
接受日期:
2022-10-01
出版日期:
2022-12-20
发布日期:
2022-12-07
通讯作者:
*E-mail: qqzyf123@126.com; swwangxing@cau.edu.cn
基金资助:
Junjie Zhai1,2, Huifeng Zhao3, Guangshen Shang1,2, Zhenjun Sun1, Yufeng Zhang3,*(), Xing Wang1,2,*()
Received:
2022-05-11
Accepted:
2022-10-01
Online:
2022-12-20
Published:
2022-12-07
Contact:
*E-mail: qqzyf123@126.com; swwangxing@cau.edu.cn
摘要:
蚯蚓被喻为土壤中的“生态系统工程师”, 具有高度的多样性且在全世界都有分布, 被用作土壤健康的指示生物。蚯蚓具有极强的环境适应能力, 在不断适应的过程中促进了自身基因组的进化。本文对近年来蚯蚓全基因组以及线粒体基因组的研究进展进行了综述。蚯蚓全基因组的测序、拼装和分析为研究蚯蚓生态学、污染物对蚯蚓致毒的分子机制、免疫防御的分子机制、蚯蚓再生的分子机制等奠定基础。而线粒体基因组多应用于蚯蚓分子系统发育方面的研究, 目前已有多种蚯蚓通过线粒体基因组测序完成了物种的鉴定。本文建议今后重点开展以下几方面的研究: (1)针对现有的4种蚯蚓全基因组测序结果, 进一步进行比较基因组学、进化基因组学和功能基因组学的研究。(2)完善不同种蚯蚓的基因文库和表达序列标签。(3)建立线粒体基因组、全基因组与蚯蚓物种多样性的关联分析。
翟俊杰, 赵慧峰, 商光申, 孙振钧, 张玉峰, 王兴 (2022) 蚯蚓基因组学的研究进展: 基于全基因组及线粒体基因组. 生物多样性, 30, 22257. DOI: 10.17520/biods.2022257.
Junjie Zhai, Huifeng Zhao, Guangshen Shang, Zhenjun Sun, Yufeng Zhang, Xing Wang (2022) Advances in earthworm genomics: Based on whole genome and mitochondrial genome. Biodiversity Science, 30, 22257. DOI: 10.17520/biods.2022257.
图1 蚯蚓基因组学相关文献发表数量。文献来源: Web of Science核心合集数据库; 时间: 1995?2022年; 检索关键词: 蚯蚓、基因组。
Fig. 1 Number of published papers on earthworm genomics. Literature source: Web of Science Core Collection; Publication years: 1995?2022; Search keywords: Earthworm, Genome.
蚯蚓 Earthworm | 基因组大小 Genome length | 染色体数量 Number of chromosomes | 染色体倍体 Chromosome ploidy | GC含量 GC content (%) | 蛋白编码基因数 Number of protein-coding gene | 测序组装技术 Sequencing assembly technology | 参考文献 References |
---|---|---|---|---|---|---|---|
赤子爱胜蚓 Eisenia foetida | 1.05 Gb | 22 | 2 | 28.6 | ? | Illumina HiSeq 2000 2 × 100PE | 2015 |
赤子爱胜蚓 E. foetida | 1.47 Gb | 22 | 2 | 40 | ? | Illumina HiSeq 2500 | 2018 |
通俗腔蚓 Metaphire vulgaris | 728.6 Mb | 41 | 2 | 40 | ? | PromethION Single Molecule Platform, Illumina NovaSeq Sequencing Platform, Hi-C | 2020 |
安德爱胜蚓 Eisenia andrei | 1.3 Gb | 22 | 2 | 35?45 | 31,817 | PacBio三代测序 PacBio RS Platform, Hi-C | 2020 |
皮质远盲蚓 Amynthas corticis | 1.2 Gb | 42 | 3 | 40.34 | 29,256 | PacBio三代测序 PacBio SMRT Sequencing, Hi-C | 2021 |
表1 蚯蚓全基因组测序基本信息
Table 1 Basic information of whole genome sequencing in earthworm
蚯蚓 Earthworm | 基因组大小 Genome length | 染色体数量 Number of chromosomes | 染色体倍体 Chromosome ploidy | GC含量 GC content (%) | 蛋白编码基因数 Number of protein-coding gene | 测序组装技术 Sequencing assembly technology | 参考文献 References |
---|---|---|---|---|---|---|---|
赤子爱胜蚓 Eisenia foetida | 1.05 Gb | 22 | 2 | 28.6 | ? | Illumina HiSeq 2000 2 × 100PE | 2015 |
赤子爱胜蚓 E. foetida | 1.47 Gb | 22 | 2 | 40 | ? | Illumina HiSeq 2500 | 2018 |
通俗腔蚓 Metaphire vulgaris | 728.6 Mb | 41 | 2 | 40 | ? | PromethION Single Molecule Platform, Illumina NovaSeq Sequencing Platform, Hi-C | 2020 |
安德爱胜蚓 Eisenia andrei | 1.3 Gb | 22 | 2 | 35?45 | 31,817 | PacBio三代测序 PacBio RS Platform, Hi-C | 2020 |
皮质远盲蚓 Amynthas corticis | 1.2 Gb | 42 | 3 | 40.34 | 29,256 | PacBio三代测序 PacBio SMRT Sequencing, Hi-C | 2021 |
分类单元 Taxa | GenBank登录号 GenBank accession no. | 参考文献 References |
---|---|---|
正蚓科 Lumbricidae | ||
Aporrectodea caliginosa | CM035405.1 | 未发表 Unpublished |
A. rosea | NC_046733.1 | 2019 |
A. tuberculata | OL840316?OL840317, OM687883?OM687886 | 2022 |
A. trapezoides | OM687887 | 2022 |
Bimastos parvus | MZ857199.1 | 2021 |
Dendrobaena octaedra | MZ857197.1 | 2021 |
Eisenia andrei | MZ857198.1 | 2021 |
E. nordenskioldi | MZ857200.1 OL840314?OL840315 OM687887?OM687890 | 2021 2022 2022 |
Lumbricus rubellus | MN102127.1 | 2019 |
L. terrestris | NC_001673.1 | 1995 |
Octolasion tyrtaeum | MZ857201.1 | 2021 |
Pontoscolex corethrurus | NC_034783.1 | 未发表 Unpublished |
巨蚓科 Megascolecidae | ||
Amynthas aspergillus | NC_025292.1 | 2016b |
A. carnosus | KT429008.1 | 2016c |
A. corticis | KM199290.1 | 2015 |
A. cucullatus | KT429012.1 | 2016c |
A. gracilis | KP688582.1 | 2015 |
A. hupeiensis | KT429009.1 | 2016c |
A. instabilis | KT429007.1 | 2016c |
A. jiriensis | NC_029879.1 | 2017 |
A. longisiphonus | KM199289.1 | 2015 |
A. moniliatus | KT429020.1 | 2016c |
A. morrisi | KT429011.1 | 2016c |
A. pectiniferus | KT429018.1 | 2016c |
A. redactus | KT429010.1 | 2016c |
A. robustus | KT429019.1 | 2016c |
A. rongshuiensis | KT429014.1 | 2016c |
A. seungpanensis | OL321943.1 | 未发表 Unpublished |
A. spatiosus | KT429013.1 | 2016c |
A. triastriatus | KT429016.1 | 2016c |
A. yunoshimensis | LC573969.1 | 2021 |
Duplodicodrilus schmardae | KT429015.1 | 2016c |
Metaphire californica | KP688581.1 | 2015 |
M. guillelmi | KT429017.1 | 2016c |
M. hilgendorfi | LC573968.1 | 2021 |
M. vulgaris | NC_023836.1 | 2016a |
Perionyx excavatus | NC_009631.1 | 未发表 Unpublished |
Tonoscolex birmanicus | KF425518.1 | 2015 |
链胃蚓科 Moniligastridae | ||
Drawida gisti | NC_058285.1 | 2020 |
D. japonica | KM199288.1 | 2016c |
D. ghilarovi | OL840312?OL840313 | 2022 |
表2 环带纲蚯蚓线粒体基因组测序物种的分类单元分布
Table 2 Taxonomic distribution of earthworm species based on mitochondriai genomes
分类单元 Taxa | GenBank登录号 GenBank accession no. | 参考文献 References |
---|---|---|
正蚓科 Lumbricidae | ||
Aporrectodea caliginosa | CM035405.1 | 未发表 Unpublished |
A. rosea | NC_046733.1 | 2019 |
A. tuberculata | OL840316?OL840317, OM687883?OM687886 | 2022 |
A. trapezoides | OM687887 | 2022 |
Bimastos parvus | MZ857199.1 | 2021 |
Dendrobaena octaedra | MZ857197.1 | 2021 |
Eisenia andrei | MZ857198.1 | 2021 |
E. nordenskioldi | MZ857200.1 OL840314?OL840315 OM687887?OM687890 | 2021 2022 2022 |
Lumbricus rubellus | MN102127.1 | 2019 |
L. terrestris | NC_001673.1 | 1995 |
Octolasion tyrtaeum | MZ857201.1 | 2021 |
Pontoscolex corethrurus | NC_034783.1 | 未发表 Unpublished |
巨蚓科 Megascolecidae | ||
Amynthas aspergillus | NC_025292.1 | 2016b |
A. carnosus | KT429008.1 | 2016c |
A. corticis | KM199290.1 | 2015 |
A. cucullatus | KT429012.1 | 2016c |
A. gracilis | KP688582.1 | 2015 |
A. hupeiensis | KT429009.1 | 2016c |
A. instabilis | KT429007.1 | 2016c |
A. jiriensis | NC_029879.1 | 2017 |
A. longisiphonus | KM199289.1 | 2015 |
A. moniliatus | KT429020.1 | 2016c |
A. morrisi | KT429011.1 | 2016c |
A. pectiniferus | KT429018.1 | 2016c |
A. redactus | KT429010.1 | 2016c |
A. robustus | KT429019.1 | 2016c |
A. rongshuiensis | KT429014.1 | 2016c |
A. seungpanensis | OL321943.1 | 未发表 Unpublished |
A. spatiosus | KT429013.1 | 2016c |
A. triastriatus | KT429016.1 | 2016c |
A. yunoshimensis | LC573969.1 | 2021 |
Duplodicodrilus schmardae | KT429015.1 | 2016c |
Metaphire californica | KP688581.1 | 2015 |
M. guillelmi | KT429017.1 | 2016c |
M. hilgendorfi | LC573968.1 | 2021 |
M. vulgaris | NC_023836.1 | 2016a |
Perionyx excavatus | NC_009631.1 | 未发表 Unpublished |
Tonoscolex birmanicus | KF425518.1 | 2015 |
链胃蚓科 Moniligastridae | ||
Drawida gisti | NC_058285.1 | 2020 |
D. japonica | KM199288.1 | 2016c |
D. ghilarovi | OL840312?OL840313 | 2022 |
图3 诺登爱胜蚓的线粒体基因组。青色代表蛋白编码基因, 红色代表转运RNA, 橙色代表核糖体RNA, 蓝色代表控制区。
Fig. 3 The mitochondrial genome of Eisenia nordenskioldi. Cyan color represents protein-coding genes, red color represents transporter RNA, orange color represents ribosomal RNA, and blue color represents the control region.
[1] |
Ahmed N, Al-Mutairi KA (2022) Earthworms effect on microbial population and soil fertility as well as their interaction with agriculture practices. Sustainability, 14, 7803.
DOI URL |
[2] |
Anderson C, Cunha L, Sechi P, Kille P, Spurgeon D (2017) Genetic variation in populations of the earthworm, Lumbricus rubellus, across contaminated mine sites. BMC Genetics, 18, 97.
DOI PMID |
[3] |
Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17, 81-92.
DOI PMID |
[4] | Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3, e3376. |
[5] |
Bertrand M, Barot S, Blouin M, Whalen J, Oliveira T, Roger-Estrade J (2015) Earthworm services for cropping systems. A review. Agronomy for Sustainable Development, 35, 553-567.
DOI URL |
[6] | Bhambri A, Dhaunta N, Patel SS, Hardikar M, Bhatt A, Srikakulam N, Shridhar S, Vellarikkal S, Pandey R, Jayarajan R, Verma A, Kumar V, Gautam P, Khanna Y, Khan JA, Fromm B, Peterson KJ, Scaria V, Sivasubbu S, Pillai B (2018) Large scale changes in the transcriptome of Eisenia fetida during regeneration. PLoS ONE, 13, e0204234. |
[7] |
Bhat SA, Singh J, Vig AP (2018) Earthworms as organic waste managers and biofertilizer producers. Waste and Biomass Valorization, 9, 1073-1086.
DOI URL |
[8] |
Boore JL, Brown WM (1995) Complete sequence of the mitochondrial DNA of the annelid worm Lumbricus terrestris. Genetics, 141, 305-319.
DOI PMID |
[9] | Bozorgi F, Seiedy M, Malek M, Aira M, Pérez-Losada M, Domínguez J (2019) Multigene phylogeny reveals a new Iranian earthworm genus (Lumbricidae: Philomontanus) with three new species. PLoS ONE, 14, e0208904. |
[10] |
Conrado AC, Arruda H, Stanton DWG, James SW, Kille P, Brown G, Silva E, Dupont L, Taheri S, Morgan AJ, Simões N, Rodrigues A, Montiel R, Cunha L (2017) The complete mitochondrial DNA sequence of the pantropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Clitellata): Mitogenome characterization and phylogenetic positioning. ZooKeys, 688, 1-13.
DOI URL |
[11] | Csuzdi CS (2012) Earthworm species, a searchable database. Opuscula Zoologica Budapest, 43(41), 97-99. |
[12] | Darwin C (1892) The Formation of Vegetable Mould, through the Action of Worms: With Observations on Their Habits. John Murray, London. |
[13] | Ding SY, Lin XT, He SE (2019) Earthworms: A source of protein. Journal of Food Science and Engineering, 9, 159-170. |
[14] |
Giska I, Sechi P, Babik W (2015) Deeply divergent sympatric mitochondrial lineages of the earthworm Lumbricus rubellus are not reproductively isolated. BMC Evolutionary Biology, 15, 217.
DOI URL |
[15] |
Gong P, Perkins EJ (2016) Earthworm toxicogenomics: A renewed genome-wide quest for novel biomarkers and mechanistic insights. Applied Soil Ecology, 104, 12-24.
DOI URL |
[16] | Hong Y, Kim MJ, Wang AR, Kim I (2017) Complete mitochondrial genome of the earthworm, Amynthas jiriensis (Clitellata: Megascolecidae). Mitochondrial DNA Part A, 28, 163-164. |
[17] |
Jiang JB, Qiu JP (2018) Origin and evolution of earthworms belonging to the family Megascolecidae in China. Biodiversity Science, 26, 1074-1082. (in Chinese with English abstract)
DOI |
[ 蒋际宝, 邱江平 (2018) 中国巨蚓科蚯蚓的起源与演化. 生物多样性, 26, 1074-1082.]
DOI |
|
[18] | Jin F, Zhou ZL, Guo Q, Liang ZW, Yang RY, Jiang JB, He YL, Zhao Q, Zhao Q (2020) High-quality genome assembly of Metaphire vulgaris. PeerJ, 8, e10313. |
[19] |
Li Y, Tang H, Hu Y, Wang X, Ai X, Tang L, Matthew C, Cavanagh J, Qiu J (2016) Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils. Journal of Hazardous Materials, 308, 312-320.
DOI URL |
[20] |
Li Y, Wang X, Sun Z (2020) Ecotoxicological effects of petroleum-contaminated soil on the earthworm Eisenia fetida. Journal of Hazardous Materials, 393, 122384.
DOI URL |
[21] | Liu C, Wang X, Tian JB, Ma PY, Meng FX, Zhang Q, Yu BF, Guo R, Liu ZZ, Wang HL, Xie J, Cheng NL, Wang JH, Niu B, Sun GQ (2019) Construction of a cDNA library and preliminary analysis of the expressed sequence tags of the earthworm Eisenia fetida (Savigny, 1826). Molecular Medicine Reports, 19, 2537-2550. |
[22] |
Liu CQ, Liu D, Guo Y, Lu TF, Li XC, Zhang MH, Ma JZ, Ma YH, Guan WJ (2013) Construction of a full-length enriched cDNA library and preliminary analysis of expressed sequence tags from Bengal tiger Panthera Tigris Tigris. International Journal of Molecular Sciences, 14, 11072-11083.
DOI URL |
[23] | Liu HY, Xu N, Zhang QZ, Wang GB, Xu HM, Ruan HH (2020) Characterization of the complete mitochondrial genome of Drawida gisti (Metagynophora, Moniligastridae) and comparison with other Metagynophora species. Genomics, 112, 3056-3064. |
[24] |
Liu HY, Zhang YF, Xu W, Fang Y, Ruan HH (2021) Characterization of five new earthworm mitogenomes (Oligochaeta: Lumbricidae): Mitochondrial phylogeny of Lumbricidae. Diversity, 13, 580.
DOI URL |
[25] |
Liu T, Chen XY, Gong X, Lubbers IM, Jiang YY, Feng W, Li XP, Whalen JK, Bonkowski M, Griffiths BS, Hu F, Liu MQ (2019) Earthworms coordinate soil biota to improve multiple ecosystem functions. Current Biology, 29, 3420-3429.
DOI PMID |
[26] |
Marchán DF, Decaëns T, Domínguez J, Novo M (2022) Perspectives in earthworm molecular phylogeny: Recent advances in Lumbricoidea and standing questions. Diversity, 14, 30.
DOI URL |
[27] |
Marchán DF, Fernandez R, de Sosa I, Díaz Cosín DJ, Novo M (2017) Pinpointing cryptic borders: Fine-scale phylogeography and genetic landscape analysis of the Hormogaster elisae complex (Oligochaeta, Hormogastridae). Molecular Phylogenetics and Evolution, 112, 185-193.
DOI PMID |
[28] |
Marchán DF, Fernández R, Domínguez J, Díaz Cosín DJ, Novo M (2020a) Genome-informed integrative taxonomic description of three cryptic species in the earthworm genus Carpetania (Oligochaeta, Hormogastridae). Systematics and Biodiversity, 18, 203-215.
DOI URL |
[29] |
Marchán DF, Novo M, Sánchez N, Domínguez J, Díaz Cosín DJ, Fernández R (2020b) Local adaptation fuels cryptic speciation in terrestrial annelids. Molecular Phylogenetics and Evolution, 146, 106767.
DOI URL |
[30] |
Medina-Sauza RM, Álvarez-Jiménez M, Delhal A, Reverchon F, Blouin M, Guerrero-Analco JA, Cerdán CR, Guevara R, Villain L, Barois I (2019) Earthworms building up soil microbiota, a review. Frontiers in Environmental Science, 7, 81.
DOI URL |
[31] |
Parolini M, Ganzaroli A, Bacenetti J (2020) Earthworm as an alternative protein source in poultry and fish farming: Current applications and future perspectives. Science of the Total Environment, 734, 139460.
DOI URL |
[32] |
Paul S, Arumugaperumal A, Rathy R, Ponesakki V, Arunachalam P, Sivasubramaniam S (2018) Data on genome annotation and analysis of earthworm Eisenia fetida. Data in Brief, 20, 525-534.
DOI URL |
[33] |
Pérez-Losada M, Ricoy M, Marshall JC, Domínguez J (2009) Phylogenetic assessment of the earthworm Aporrectodea caliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 52, 293-302.
DOI PMID |
[34] |
Phillips HRP, Guerra CA, Bartz MLC, Briones MJI, Brown G, Crowther TW, Ferlian O, Gongalsky KB, van den Hoogen J, Krebs J, Orgiazzi A, Routh D, Schwarz B, Bach EM, Bennett JM, Brose U, Decaëns T, König-Ries B, Loreau M, Mathieu J, Mulder C, van der Putten WH, Ramirez KS, Rillig MC, Russell D, Rutgers M, Thakur MP, de Vries FT, Wall DH, Wardle DA, Arai M, Ayuke FO, Baker GH, Beauséjour R, Bedano JC, Birkhofer K, Blanchart E, Blossey B, Bolger T, Bradley RL, Callaham MA, Capowiez Y, Caulfield ME, Choi A, Crotty FV, Crumsey JM, Dávalos A, Diaz Cosin DJ, Dominguez A, Duhour AE, van Eekeren N, Emmerling C, Falco LB, Fernández R, Fonte SJ, Fragoso C, Franco ALC, Fugère M, Fusilero AT, Gholami S, Gundale MJ, López MG, Hackenberger DK, Hernández LM, Hishi T, Holdsworth AR, Holmstrup M, Hopfensperger KN, Lwanga EH, Huhta V, Hurisso TT, Iannone BV III, Iordache M, Joschko M, Kaneko N, Kanianska R, Keith AM, Kelly CA, Kernecker ML, Klaminder J, Koné AW, Kooch Y, Kukkonen ST, Lalthanzara H, Lammel DR, Lebedev IM, Li YQ, Jesus Lidon JB, Lincoln NK, Loss SR, Marichal R, Matula R, Moos JH, Moreno G, Morón-Ríos A, Muys B, Neirynck J, Norgrove L, Novo M, Nuutinen V, Nuzzo V, Pansu J, Paudel S, Pérès G, Pérez-Camacho L, Piñeiro R, Ponge JF, Rashid MI, Rebollo S, Rodeiro-Iglesias J, Rodríguez MÁ, Roth AM, Rousseau GX, Rozen A, Sayad E, van Schaik L, Scharenbroch BC, Schirrmann M, Schmidt O, Schröder B, Seeber J, Shashkov MP, Singh J, Smith SM, Steinwandter M, Talavera JA, Trigo D, Tsukamoto J, Vanek SJ, Virto I, Wackett AA, Warren MW, Wehr NH, Whalen JK, Wironen MB, Wolters V, Zenkova IV, Zhang WX, Cameron EK, Eisenhauer N,Mujeeb Rahman P (2019) Global distribution of earthworm diversity. Science, 366, 480-485.
DOI PMID |
[35] | Pirooznia M, Gong P, Guan X, Inouye LS, Yang K, Perkins EJ, Deng YP (2007) Cloning, analysis and functional annotation of expressed sequence tags from the earthworm Eisenia fetida. BMC Bioinformatics, 8, S7. |
[36] | Rajesh D, Anant S (2020) Eisenia fetida and Eisenia andrei delimitation by automated barcode gap discovery and neighbor-joining analyses: A review. Journal of Applied Biology & Biotechnology, 8, 93-100. |
[37] | Seto A, Endo H, Minamiya Y, Matsuda M (2021) The complete mitochondrial genome sequences of Japanese earthworms Metaphire hilgendorfi and Amynthas yunoshimensis (Clitellata: Megascolecidae). Mitochondrial DNA Part B, Resources, 6, 965-967. |
[38] |
Shao Y, Wang XB, Zhang JJ, Li ML, Wu SS, Ma XY, Wang X, Zhao HF, Li Y, Zhu HH, Irwin DM, Wang DP, Zhang GJ, Ruan J, Wu DD (2020) Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nature Communications, 11, 2656.
DOI URL |
[39] |
Shekhovtsov SV, Efremov YR, Poluboyarova TV, Peltek SE (2021) Variation in nuclear genome size within the Eisenia nordenskioldi complex (Lumbricidae, Annelida). Vavilov Journal of Genetics and Breeding, 25, 647-651.
DOI URL |
[40] |
Shekhovtsov SV, Golovanova EV, Ershov NI, Poluboyarova TV, Berman DI, Bulakhova NA, Szederjesi T, Peltek SE (2020) Phylogeny of the Eisenia nordenskioldi complex based on mitochondrial genomes. European Journal of Soil Biology, 96, 103137.
DOI URL |
[41] |
Shekhovtsov SV, Golovanova EV, Peltek SE (2016) Mitochondrial DNA variation in Eisenia n. nordenskioldi (Lumbricidae) in Europe and Southern Urals. Mitochondrial DNA Part A, 27, 4643-4645.
PMID |
[42] |
Shekhovtsov SV, Peltek SE (2019) The complete mitochondrial genome of Aporrectodea rosea (Annelida: Lumbricidae). Mitochondrial DNA Part B, 4, 1752-1753.
DOI URL |
[43] |
Shi ZM, Tang ZW, Wang CY (2017) A brief review and evaluation of earthworm biomarkers in soil pollution assessment. Environmental Science and Pollution Research, 24, 13284-13294.
DOI URL |
[44] |
Sinha RK, Chauhan K, Valani D, Chandran V, Soni BK, Patel V (2010) Earthworms: Charles Darwin’s ‘unheralded soldiers of mankind’: Protective & productive for man & environment. Journal of Environmental Protection, 1, 251-260.
DOI URL |
[45] |
Velki M, Ečimović S (2017) Important issues in ecotoxicological investigations using earthworms. Reviews of Environmental Contamination and Toxicology, 239, 157-184.
DOI PMID |
[46] | Wang AR, Hong Y, Win TM, Kim I (2015) Complete mitochondrial genome of the Burmese giant earthworm, Tonoscolex birmanicus (Clitellata: Megascolecidae). Mitochondrial DNA, 26, 467-468. |
[47] |
Wang X, Zhang Y, Zhang YF, Kang MM, Li YB, James SW, Yang Y, Bi YM, Jiang H, Zhao Y, Sun ZJ (2021) Amynthas corticis genome reveals molecular mechanisms behind global distribution. Communications Biology, 4, 135.
DOI URL |
[48] |
Yuan Z, Jiang J, Dong Y, Zhao Q, Sun J, Qiu J (2020) Unearthing the genetic divergence and gene flow of the earthworm Amynthas_YN 2017 sp. (Oligochaeta: Megascolecidae) populations based on restriction site-associated DNA sequencing. European Journal of Soil Biology, 99, 103210.
DOI URL |
[49] |
Zhang LL, Jiang JB, Dong Y, Qiu JP (2015) Complete mitochondrial genome of four pheretimoid earthworms (Clitellata: Oligochaeta) and their phylogenetic reconstruction. Gene, 574, 308-316.
DOI PMID |
[50] | Zhang LL, Jiang JB, Dong Y, Qiu JP (2016a) Complete mitochondrial genome of a pheretimoid earthworm Metaphire vulgaris (Oligochaeta: Megascolecidae). Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 27, 297-298. |
[51] | Zhang LL, Jiang JB, Dong Y, Qiu JP (2016b) Complete mitochondrial genome of an Amynthas earthworm, Amynthas aspergillus (Oligochaeta: Megascolecidae). Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 27, 1876-1877. |
[52] |
Zhang LL, Sechi P, Yuan ML, Jiang JB, Dong Y, Qiu JP (2016c) Fifteen new earthworm mitogenomes shed new light on phylogeny within the Pheretima complex. Scientific Reports, 6, 20096.
DOI URL |
[53] | Zhang QZ, Liu HY, Zhang YF, Ruan HH (2019) The complete mitochondrial genome of Lumbricus rubellus (Oligochaeta, Lumbricidae) and its phylogenetic analysis. Mitochondrial DNA Part B, Resources, 4, 2677-2678. |
[54] |
Zhang YF, Ganin GN, Atopkin DM, Wu DH (2020) Earthworm Drawida (Moniligastridae) molecular phylogeny and diversity in Far East Russia and Northeast China. The European Zoological Journal, 87, 180-191.
DOI URL |
[55] |
Zhang YF, Zhang YM, Wu H, Li CS, Aspe NM, Wu DH (2022) Patterns of genetic variation in the Eisenia nordenskioldi complex (Oligochaeta: Lumbricidae) along an elevation gradient in Northern China. Diversity, 14, 35.
DOI URL |
[56] |
Zhao HF, Fan SH, Aspe NM, Feng LC, Zhang YF (2022) Characterization of 15 earthworm mitogenomes from Northeast China and its phylogenetic implication (Oligochaeta: Lumbricidae, Moniligastridae). Diversity, 14, 714.
DOI URL |
[57] |
Zwarycz AS, Nossa CW, Putnam NH, Ryan JF (2015) Timing and scope of genomic expansion within Annelida: Evidence from homeoboxes in the genome of the earthworm Eisenia fetida. Genome Biology and Evolution, 8, 271-281.
DOI URL |
[1] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[2] | 景昭阳, 程可光, 舒恒, 马永鹏, 刘平丽. 全基因组重测序方法在濒危植物保护中的应用[J]. 生物多样性, 2023, 31(5): 22679-. |
[3] | 陶洁, 李本强, 程靖华, 石迎, 刘佩红, 何桂霞, 徐伟杰, 刘惠莉. 基于宏病毒组学技术挖掘猪腹泻粪便的病毒群落组成[J]. 生物多样性, 2023, 31(11): 23170-. |
[4] | 罗瑞, 陈娅, 张汉马. 芸薹属植物全基因组重测序研究进展[J]. 生物多样性, 2023, 31(10): 23237-. |
[5] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[6] | 卢聪聪, 刘倩, 黄晓磊. 三种蚜虫的线粒体基因组数据[J]. 生物多样性, 2022, 30(7): 22204-. |
[7] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[8] | 赵琦, 蒋际宝, 张曾鲁, 金清, 李佳丽, 邱江平. 海南岛蚯蚓物种组成及其系统发育分析[J]. 生物多样性, 2022, 30(12): 22224-. |
[9] | 刘山林, 邱娜, 张纾意, 赵竹楠, 周欣. 基因组学技术在生物多样性保护研究中的应用[J]. 生物多样性, 2022, 30(10): 22441-. |
[10] | 陆奇丰, 黄至欢, 骆文华. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征[J]. 生物多样性, 2021, 29(5): 586-595. |
[11] | 李媛媛, 刘超男, 王嵘, 罗水兴, 农寿千, 王静雯, 陈小勇. 分子标记在濒危物种保护中的应用[J]. 生物多样性, 2020, 28(3): 367-375. |
[12] | 王伟, 刘阳. 植物生命之树重建的现状、问题和对策建议[J]. 生物多样性, 2020, 28(2): 176-188. |
[13] | 杜新宇, 卢金梅, 李德铢. 石松类和蕨类植物质体基因组结构演化研究进展[J]. 生物多样性, 2019, 27(11): 1172-1183. |
[14] | 汪浩, 张锐, 张娇, 沈慧, 戴锡玲, 严岳鸿. 转录组测序揭示翼盖蕨(Didymochlaena trancatula)的全基因组复制历史[J]. 生物多样性, 2019, 27(11): 1221-1227. |
[15] | 蒋际宝, 邱江平. 中国巨蚓科蚯蚓的起源与演化[J]. 生物多样性, 2018, 26(10): 1074-1082. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn