生物多样性 ›› 2024, Vol. 32 ›› Issue (12): 24052. DOI: 10.17520/biods.2024052 cstr: 32101.14.biods.2024052
• 研究报告 • 下一篇
姚嘉1,2, 张聪伶1,2, 李时轩1,2, 林阳3, 王震4, 张煜涵4, 周伟龙5, 潘心禾6, 朱珊7, 吴逸卿8, 王丹9, 刘金亮10(), 谭珊珊2,*(
), 沈国春1,2(
), 于明坚4(
)
收稿日期:
2024-02-06
接受日期:
2024-07-26
出版日期:
2024-12-20
发布日期:
2025-01-10
通讯作者:
E-mail: 作者简介:
第一联系人:# 共同第一作者
基金资助:
Jia Yao1,2, Congling Zhang1,2, Shixuan Li1,2, Yang Lin3, Zhen Wang4, Yuhan Zhang4, Weilong Zhou5, Xinhe Pan6, Shan Zhu7, Yiqing Wu8, Dan Wang9, Jinliang Liu10(), Shanshan Tan2,*(
), Guochun Shen1,2(
), Mingjian Yu4(
)
Received:
2024-02-06
Accepted:
2024-07-26
Online:
2024-12-20
Published:
2025-01-10
Contact:
E-mail: About author:
First author contact:# Co-first authors
Supported by:
摘要: 在全球生物多样性热点区域中, 山地生态系统占据着举足轻重的地位。然而由于气候变化与人类活动的双重压力, 山地生态系统正在发生剧变。因此, 对山地生物多样性格局及其变化开展及时准确的监测, 对物种多样性理论和保护实践均具有深远的意义。本研究提出构建山地连续海拔样带的设想, 因为它是准确理解和预测气候变化背景下山地生物多样性变化的理想监测平台。同时, 我们以钱江源-百山祖国家公园候选区百山祖园区内的连续海拔样带为例, 初步探讨了样带内山地植物的区系特征、物种组成、群落结构以及多样性格局随海拔的连续变化特征。结果显示, 随着海拔升高, 温带成分属的比例逐渐增加, 而常绿物种的个体及物种比例均有所降低, 但仍以常绿物种为主; 森林的平均树高和最大树高均在海拔1,600 m左右达到峰值; 物种丰富度和系统发育多样性在海拔1,200 m左右最高, 在大尺度上呈单峰趋势; Shannon-Wiener等其他多样性指数则随海拔的升高逐步下降。最后, 本研究对连续海拔样带的独特优势、已知缺陷和未来发展方向进行了探讨。我们期望连续海拔样带能作为已有山地生物多样性监测体系的有益补充, 帮助我们及时准确地理解山地森林生态系统生物多样性的时空变化规律。
姚嘉, 张聪伶, 李时轩, 林阳, 王震, 张煜涵, 周伟龙, 潘心禾, 朱珊, 吴逸卿, 王丹, 刘金亮, 谭珊珊, 沈国春, 于明坚 (2024) 百山祖连续海拔样带植物群落特征. 生物多样性, 32, 24052. DOI: 10.17520/biods.2024052.
Jia Yao, Congling Zhang, Shixuan Li, Yang Lin, Zhen Wang, Yuhan Zhang, Weilong Zhou, Xinhe Pan, Shan Zhu, Yiqing Wu, Dan Wang, Jinliang Liu, Shanshan Tan, Guochun Shen, Mingjian Yu (2024) Characteristics of plant communities in the Baishanzu continuous elevational transect. Biodiversity Science, 32, 24052. DOI: 10.17520/biods.2024052.
图1 百山祖连续海拔样带地理位置。由五岭坑1号(海拔636-991 m)、凤阳山1号(海拔990-1,388 m)和2号(海拔1,377-1,928 m)共3条样带构成连续海拔样带。
Fig. 1 Location of the Baishanzu continuous elevational transect. Three transects, Wulingkeng No. 1 (636-991 m), Fengyangshan No. 1 (990-1,388 m) and Fengyangshan No. 2 (1,377-1,928 m), constitute a continuous elevational transect.
海拔 Altitude (m) | 垂直结构 Vertical structure | 物种 Species | 多度 Abundance | 优势度 Dominance | 重要值 Importance value |
---|---|---|---|---|---|
636-736 | 林冠层 Canopy layer | 木荷 Schima superba | 122 | 0.24 | 0.21 |
亚乔木层 Subtree layer | 赤楠 Syzygium buxifolium | 112 | 0.11 | 0.08 | |
灌木层 Shrub layer | 矩形叶鼠刺 Itea omeiensis | 231 | 0.17 | 0.12 | |
736-836 | 林冠层 Canopy layer | 甜槠 Castanopsis eyrei | 123 | 0.43 | 0.25 |
亚乔木层 Subtree layer | 赤楠 Syzygium buxifolium | 400 | 0.25 | 0.18 | |
灌木层 Shrub layer | 矩形叶鼠刺 Itea omeiensis | 289 | 0.10 | 0.09 | |
836-936 | 林冠层 Canopy layer | 甜槠 Castanopsis eyrei | 142 | 0.53 | 0.31 |
亚乔木层 Subtree layer | 甜槠 Castanopsis eyrei | 81 | 0.21 | 0.10 | |
灌木层 Shrub layer | 矩形叶鼠刺 Itea omeiensis | 166 | 0.10 | 0.08 | |
936-1,036 | 林冠层 Canopy layer | 甜槠 Castanopsis eyrei | 119 | 0.31 | 0.21 |
亚乔木层 Subtree layer | 甜槠 Castanopsis eyrei | 148 | 0.29 | 0.14 | |
灌木层 Shrub layer | 马银花 Rhododendron ovatum | 164 | 0.10 | 0.07 | |
1,036-1,136 | 林冠层 Canopy layer | 杉木 Cunninghamia lanceolata | 112 | 0.30 | 0.20 |
亚乔木层 Subtree layer | 甜槠 Castanopsis eyrei | 282 | 0.35 | 0.18 | |
灌木层 Shrub layer | 马银花 Rhododendron ovatum | 306 | 0.21 | 0.13 | |
1,136-1,236 | 林冠层 Canopy layer | 杉木 Cunninghamia lanceolata | 60 | 0.19 | 0.13 |
亚乔木层 Subtree layer | 甜槠 Castanopsis eyrei | 472 | 0.28 | 0.14 | |
灌木层 Shrub layer | 马银花 Rhododendron ovatum | 461 | 0.14 | 0.09 | |
1,236-1,336 | 林冠层 Canopy layer | 黄山松 Pinus taiwanensis | 54 | 0.21 | 0.16 |
亚乔木层 Subtree layer | 甜槠 Castanopsis eyrei | 304 | 0.25 | 0.12 | |
灌木层 Shrub layer | 麂角杜鹃 Rhododendron latoucheae | 770 | 0.13 | 0.10 | |
1,336-1,436 | 林冠层 Canopy layer | 褐叶青冈 Quercus stewardiana | 52 | 0.31 | 0.20 |
亚乔木层 Subtree layer | 褐叶青冈 Quercus stewardiana | 128 | 0.29 | 0.14 | |
灌木层 Shrub layer | 麂角杜鹃 Rhododendron latoucheae | 367 | 0.16 | 0.11 | |
1,436-1,536 | 林冠层 Canopy layer | 木荷 Schima superba | 276 | 0.23 | 0.23 |
亚乔木层 Subtree layer | 麂角杜鹃 Rhododendron latoucheae | 340 | 0.14 | 0.12 | |
灌木层 Shrub layer | 麂角杜鹃 Rhododendron latoucheae | 503 | 0.25 | 0.16 | |
1,536-1,636 | 林冠层 Canopy layer | 木荷 Schima superba | 167 | 0.21 | 0.21 |
亚乔木层 Subtree layer | 麂角杜鹃 Rhododendron latoucheae | 266 | 0.31 | 0.22 | |
灌木层 Shrub layer | 麂角杜鹃 Rhododendron latoucheae | 143 | 0.17 | 0.11 | |
1,636-1,736 | 林冠层 Canopy layer | 黄山松 Pinus taiwanensis | 267 | 0.68 | 0.46 |
亚乔木层 Subtree layer | 黄山松 Pinus taiwanensis | 258 | 0.33 | 0.17 | |
灌木层 Shrub layer | 猴头杜鹃 Rhododendron simiarum | 1,415 | 0.68 | 0.39 | |
1,736-1,836 | 林冠层 Canopy layer | 黄山松 Pinus taiwanensis | 89 | 1.00 | 1.00 |
亚乔木层 Subtree layer | 黄山松 Pinus taiwanensis | 253 | 0.42 | 0.20 | |
灌木层 Shrub layer | 猴头杜鹃 Rhododendron simiarum | 2,948 | 0.57 | 0.34 | |
1,836-1,928 | 亚乔木层 Subtree layer | 黄山松 Pinus taiwanensis | 14 | 0.91 | 0.67 |
灌木层 Shrub layer | 黄山松 Pinus taiwanensis | 698 | 0.58 | 0.25 |
表1 百山祖连续海拔样带沿海拔梯度3个垂直结构下重要值最大的优势种的相关信息。按物种高度(H)和生长型划分垂直结构: 林冠层(H ≥ 10 m)、亚乔木层(5 m ≤ H < 10 m)及灌木层(H < 5 m) (赵丽娟等, 2013; 陈金磊等, 2019)。
Table 1 Information of dominant species with the highest importance values under the three vertical layers along the altitude gradient of the Baishanzu continuous elevational transect. According to the species height (H) and growth type, vertical structure was divided into canopy layer (H ≥ 10 m), subtree layer (5 m ≤ H < 10 m) and shrub layer (H < 5 m) (Zhao et al, 2013; Chen et al, 2019).
海拔 Altitude (m) | 垂直结构 Vertical structure | 物种 Species | 多度 Abundance | 优势度 Dominance | 重要值 Importance value |
---|---|---|---|---|---|
636-736 | 林冠层 Canopy layer | 木荷 Schima superba | 122 | 0.24 | 0.21 |
亚乔木层 Subtree layer | 赤楠 Syzygium buxifolium | 112 | 0.11 | 0.08 | |
灌木层 Shrub layer | 矩形叶鼠刺 Itea omeiensis | 231 | 0.17 | 0.12 | |
736-836 | 林冠层 Canopy layer | 甜槠 Castanopsis eyrei | 123 | 0.43 | 0.25 |
亚乔木层 Subtree layer | 赤楠 Syzygium buxifolium | 400 | 0.25 | 0.18 | |
灌木层 Shrub layer | 矩形叶鼠刺 Itea omeiensis | 289 | 0.10 | 0.09 | |
836-936 | 林冠层 Canopy layer | 甜槠 Castanopsis eyrei | 142 | 0.53 | 0.31 |
亚乔木层 Subtree layer | 甜槠 Castanopsis eyrei | 81 | 0.21 | 0.10 | |
灌木层 Shrub layer | 矩形叶鼠刺 Itea omeiensis | 166 | 0.10 | 0.08 | |
936-1,036 | 林冠层 Canopy layer | 甜槠 Castanopsis eyrei | 119 | 0.31 | 0.21 |
亚乔木层 Subtree layer | 甜槠 Castanopsis eyrei | 148 | 0.29 | 0.14 | |
灌木层 Shrub layer | 马银花 Rhododendron ovatum | 164 | 0.10 | 0.07 | |
1,036-1,136 | 林冠层 Canopy layer | 杉木 Cunninghamia lanceolata | 112 | 0.30 | 0.20 |
亚乔木层 Subtree layer | 甜槠 Castanopsis eyrei | 282 | 0.35 | 0.18 | |
灌木层 Shrub layer | 马银花 Rhododendron ovatum | 306 | 0.21 | 0.13 | |
1,136-1,236 | 林冠层 Canopy layer | 杉木 Cunninghamia lanceolata | 60 | 0.19 | 0.13 |
亚乔木层 Subtree layer | 甜槠 Castanopsis eyrei | 472 | 0.28 | 0.14 | |
灌木层 Shrub layer | 马银花 Rhododendron ovatum | 461 | 0.14 | 0.09 | |
1,236-1,336 | 林冠层 Canopy layer | 黄山松 Pinus taiwanensis | 54 | 0.21 | 0.16 |
亚乔木层 Subtree layer | 甜槠 Castanopsis eyrei | 304 | 0.25 | 0.12 | |
灌木层 Shrub layer | 麂角杜鹃 Rhododendron latoucheae | 770 | 0.13 | 0.10 | |
1,336-1,436 | 林冠层 Canopy layer | 褐叶青冈 Quercus stewardiana | 52 | 0.31 | 0.20 |
亚乔木层 Subtree layer | 褐叶青冈 Quercus stewardiana | 128 | 0.29 | 0.14 | |
灌木层 Shrub layer | 麂角杜鹃 Rhododendron latoucheae | 367 | 0.16 | 0.11 | |
1,436-1,536 | 林冠层 Canopy layer | 木荷 Schima superba | 276 | 0.23 | 0.23 |
亚乔木层 Subtree layer | 麂角杜鹃 Rhododendron latoucheae | 340 | 0.14 | 0.12 | |
灌木层 Shrub layer | 麂角杜鹃 Rhododendron latoucheae | 503 | 0.25 | 0.16 | |
1,536-1,636 | 林冠层 Canopy layer | 木荷 Schima superba | 167 | 0.21 | 0.21 |
亚乔木层 Subtree layer | 麂角杜鹃 Rhododendron latoucheae | 266 | 0.31 | 0.22 | |
灌木层 Shrub layer | 麂角杜鹃 Rhododendron latoucheae | 143 | 0.17 | 0.11 | |
1,636-1,736 | 林冠层 Canopy layer | 黄山松 Pinus taiwanensis | 267 | 0.68 | 0.46 |
亚乔木层 Subtree layer | 黄山松 Pinus taiwanensis | 258 | 0.33 | 0.17 | |
灌木层 Shrub layer | 猴头杜鹃 Rhododendron simiarum | 1,415 | 0.68 | 0.39 | |
1,736-1,836 | 林冠层 Canopy layer | 黄山松 Pinus taiwanensis | 89 | 1.00 | 1.00 |
亚乔木层 Subtree layer | 黄山松 Pinus taiwanensis | 253 | 0.42 | 0.20 | |
灌木层 Shrub layer | 猴头杜鹃 Rhododendron simiarum | 2,948 | 0.57 | 0.34 | |
1,836-1,928 | 亚乔木层 Subtree layer | 黄山松 Pinus taiwanensis | 14 | 0.91 | 0.67 |
灌木层 Shrub layer | 黄山松 Pinus taiwanensis | 698 | 0.58 | 0.25 |
图3 百山祖连续海拔样带常绿和落叶树种相对显著度(a)、重要值(b)、个体占比(c)、种数占比(d)沿海拔梯度的变化
Fig. 3 Composition changes of relative dominance (a), importance value (b), proportion of individuals (c), and proportion of species (d) of evergreen and deciduous species along the altitude gradient in the Baishanzu continuous elevational transect
序号 Rank | 分布区类型 Areal types | 科数 No. of families (%) | 属数 No. of genera (%) |
---|---|---|---|
1 | 泛热带 Pantropic | 19 (38.78%) | 19 (17.59%) |
2 | 东亚及热带美洲间断 East Asia & Tropical America disjuncted | 5 (10.20%) | 5 (4.63%) |
3 | 旧世界热带 Old World Tropics | 2 (4.08%) | 6 (5.56%) |
4 | 热带亚洲及热带大洋洲 Tropical Asia and Tropical Australasia | 1 (2.04%) | 3 (2.78%) |
5 | 热带亚洲及热带非洲 Tropical Asia to Tropical Africa | 1 (2.04%) | 4 (3.70%) |
6 | 热带亚洲 Tropical Asia | 2 (4.08%) | 13 (12.04%) |
热带成分(1-6)小计 Subtotal of tropical elements (1-6) | 30 (61.22%) | 50 (46.30%) | |
7 | 北温带 North Temperate | 14 (28.57%) | 20 (18.52%) |
8 | 东亚及北美间断 East Asia & North America disjuncted | 3 (6.12%) | 19 (17.59%) |
9 | 旧世界温带 Old World Temperate | - | - |
10 | 温带亚洲 Temperate Asia | - | - |
11 | 东亚 East Asia | 2 (4.08%) | 15 (13.89%) |
温带成分(7-11)小计 Subtotal of temperate elements (7-11) | 19 (38.78%) | 54 (50.00%) | |
12 | 中国特有 Endemic to China | - | 4 (3.70%) |
总计 Total | 49 (100%) | 108 (100%) |
表2 百山祖连续海拔样带木本植物区系类型
Table 2 Areal types of woody plants in Baishanzu continuous elevational transect
序号 Rank | 分布区类型 Areal types | 科数 No. of families (%) | 属数 No. of genera (%) |
---|---|---|---|
1 | 泛热带 Pantropic | 19 (38.78%) | 19 (17.59%) |
2 | 东亚及热带美洲间断 East Asia & Tropical America disjuncted | 5 (10.20%) | 5 (4.63%) |
3 | 旧世界热带 Old World Tropics | 2 (4.08%) | 6 (5.56%) |
4 | 热带亚洲及热带大洋洲 Tropical Asia and Tropical Australasia | 1 (2.04%) | 3 (2.78%) |
5 | 热带亚洲及热带非洲 Tropical Asia to Tropical Africa | 1 (2.04%) | 4 (3.70%) |
6 | 热带亚洲 Tropical Asia | 2 (4.08%) | 13 (12.04%) |
热带成分(1-6)小计 Subtotal of tropical elements (1-6) | 30 (61.22%) | 50 (46.30%) | |
7 | 北温带 North Temperate | 14 (28.57%) | 20 (18.52%) |
8 | 东亚及北美间断 East Asia & North America disjuncted | 3 (6.12%) | 19 (17.59%) |
9 | 旧世界温带 Old World Temperate | - | - |
10 | 温带亚洲 Temperate Asia | - | - |
11 | 东亚 East Asia | 2 (4.08%) | 15 (13.89%) |
温带成分(7-11)小计 Subtotal of temperate elements (7-11) | 19 (38.78%) | 54 (50.00%) | |
12 | 中国特有 Endemic to China | - | 4 (3.70%) |
总计 Total | 49 (100%) | 108 (100%) |
图4 百山祖连续海拔样带不同区系科(a)、属(b)沿海拔梯度占比
Fig. 4 Family (a) and genus (b) proportion of areal types along the altitude gradient in the Baishanzu continuous elevational transect
图5 百山祖连续海拔样带树木个体平均树高(a)、最大树高(b)、物种丰富度(c)、Shannon-Wiener多样性指数(d)、Pielou均匀度指数(e)、Simpson优势度指数(f)、系统发育多样性指数(g)、净谱系亲缘关系指数(h)、净最近种间亲缘关系指数(i)沿海拔分布格局。虚线为计算值, 实线为R中geom_smooth函数平滑后的曲线。
Fig. 5 Distribution pattern of mean tree height (a), max tree height (b), species richness (c), Shannon-Wiener diversity index (d), Pielou evenness index (e), Simpson dominance index (f), phylogenetic diversity index (g), net relatedness index (h), and nearest taxon index (i) along the altitude gradient in the Baishanzu continuous elevational transect. The dashed line is the calculated value, and the solid line is the smoothed curve of the geom_smooth function in R.
图6 百山祖连续海拔样带多度前5位的优势种多度(a)、相对显著度(b)和重要值(c)沿海拔梯度的分布格局。虚线为计算值,实线为对应颜色折线通过R中ggplot2包的geom_smooth函数平滑后的曲线。
Fig. 6 Distribution pattern of abundance (a), relative dominance (b), and importance value (c) of the top 5 dominant species along the altitude gradient in the Baishanzu continuous elevational transect. The dashed line is the calculated value, and the solid line is the curve smoothed by the geom_smooth function in ggplot2 package in R.
[1] | Aleixo I, Norris D, Hemerik L, Barbosa A, Prata E, Costa F, Poorter L (2019) Amazonian rainforest tree mortality driven by climate and functional traits. Nature Climate Change, 9, 384-388. |
[2] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684. |
[3] | Anderegg WRL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3, 30-36. |
[4] | Chen JL, Fang X, Gu X, Li LD, Liu ZD, Wang LF, Zhang SJ (2019) Composition, structure, and floristic characteristics of two forest communities in the central subtropical China. Scientia Silvae Sinicae, 55, 159-172. (in Chinese with English abstract) |
[陈金磊, 方晰, 辜翔, 李雷达, 刘兆丹, 王留芳, 张仕吉 (2019) 中亚热带2种森林群落组成、结构及区系特征. 林业科学, 55, 159-172.] | |
[5] | Cheng QB, Wu MX, Chen HT (1996) Comprehensive observations report on Fengyangshan-Baishanzu Nature Reserve of Zhejiang. Journal of Zhejiang Forestry Science and Technology, 16(6), 1-7. (in Chinese with English abstract) |
[程秋波, 吴鸣翔, 陈豪庭 (1996) 浙江凤阳山-百山祖自然保护区综合考察报告. 浙江林业科技, 16(6), 1-7.] | |
[6] | Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoports effect. The American Naturalist, 144, 570-595. |
[7] | Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer-Verlag, Berlin. |
[8] | Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121-1134. |
[9] | Ding BY, Chen GR, Cheng QB, Chen HT, Zheng QZ, Ye LX (2000) A floristic statistics and analyses of seed plants of Fengyangshan Nature Reserve in Zhejiang Province. Acta Botanica Yunnanica, 26, 27-37. (in Chinese with English abstract) |
[丁炳扬, 陈根荣, 程秋波, 陈豪庭, 郑卿洲, 叶立新 (2000) 浙江凤阳山自然保护区种子植物区系的统计分析. 云南植物研究, 26, 27-37.] | |
[10] |
Feng JM, Wang XP, Li J, Fang JY (2006) Effects of area and mid-domain effect on altitudinal pattern of seed plants richness in Lijiang, Yunnan, China. Biodiversity Science, 14, 107-113. (in Chinese with English abstract)
DOI |
[冯建孟, 王襄平, 李晶, 方精云 (2006) 面积和中间膨胀效应对丽江地区种子植物物种丰富度垂直分布格局的影响. 生物多样性, 14, 107-113.]
DOI |
|
[11] | Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL (2018) Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Global Ecology and Biogeography, 27, 1268-1276. |
[12] | Garcia-Raventós A, Viza A, Riera JL, Múrria C (2017) Seasonality, species richness and poor dispersion mediate intraspecific trait variability in stonefly community responses along an elevational gradient. Freshwater Biology, 62, 916-928. |
[13] | Gonzalez A, Vihervaara P, Balvanera P, Bates AE, Bayraktarov E, Bellingham PJ, Bruder A, Campbell J, Catchen MD, Cavender-Bares J, Chase J, Coops N, Costello MJ, Czúcz B, Delavaud A, Dornelas M, Dubois G, Duffy EJ, Eggermont H, Fernandez M, Fernandez N, Ferrier S, Geller GN, Gill M, Gravel D, Guerra CA, Guralnick R, Harfoot M, Hirsch T, Hoban S, Hughes AC, Hugo W, Hunter ME, Isbell F, Jetz W, Juergens N, Daniel Kissling W, Krug CB, Kullberg P, Le Bras Y, Leung B, Londoño-Murcia MC, Lord JM, Loreau M, Luers A, Ma KP, MacDonald AJ, Maes J, McGeoch M, Mihoub JB, Millette KL, Molnar Z, Montes E, Mori AS, Muller-Karger FE, Muraoka H, Nakaoka M, Navarro L, Newbold T, Niamir A, Obura D, O’Connor M, Paganini M, Pelletier D, Pereira H, Poisot T, Pollock LJ, Purvis A, Radulovici A, Rocchini D, Roeoesli C, Schaepman M, Schaepman-Strub G, Schmeller DS, Schmiedel U, Schneider FD, Shakya MM, Skidmore A, Skowno AL, Takeuchi Y, Tuanmu MN, Turak E, Turner W, Urban MC, Urbina-Cardona N, Valbuena R, Van de Putte A, van Havre B, Wingate VR, Wright E, Torrelio CZ (2023) A global biodiversity observing system to unite monitoring and guide action. Nature Ecology & Evolution, 7, 1947-1952. |
[14] |
Hantak MM, McLean BS, Li DJ, Guralnick RP (2021) Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Communications Biology, 4, 972.
DOI PMID |
[15] | He FL, Legendre P, LaFrankie JV (1997) Distribution patterns of tree species in a Malaysian tropical rain forest. Journal of Vegetation Science, 8, 105-114. |
[16] | Hu SQ, Ding BY, Chen ZH (2002) The critical regions for conservation of rare and endangered plant species diversity in Zhejiang Province. Biodiversity Science, 10, 15-23. (in Chinese with English abstract) |
[胡绍庆, 丁炳扬, 陈征海 (2002) 浙江省珍稀濒危植物物种多样性保护的关键区域. 生物多样性, 10, 15-23.]
DOI |
|
[17] | Hubbell SP, Foster RB (1986) Commonness and rarity in a neotropical forest: Implications for tropical tree conservation. Conservation Biology, 18, 205-231. |
[18] |
Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: Not so simple. Current Opinion in Insect Science, 35, 103-108.
DOI PMID |
[19] | Jiang ZH, Ma KM, Liu HY, Tang ZY (2018) A trait-based approach reveals the importance of biotic filter for elevational herb richness pattern. Journal of Biogeography, 45, 2288-2298. |
[20] | Jiao HS, Zhong ZY, Cheng L, Fang Y, Cheng SL (2009) Vertical rule of woody plants diversity of forest communities in Wuyishan Nature Reserve of Jiangxi. Jiangxi Forestry Science and Technology, 37(1), 6-10. (in Chinese with English abstract) |
[矫恒盛, 钟志宇, 程林, 方毅, 程松林 (2009) 江西武夷山自然保护区森林群落木本植物多样性垂直规律研究. 江西林业科技, 37(1), 6-10.] | |
[21] | Jin XF, Ding BY, Zheng CZ, Ye ZL, Chen XR (2004) The floristic analysis of seed plants in Baishanzu Nature Reserve from Zhejiang Province. Acta Botanica Yunnanica, 30, 605-618. (in Chinese with English abstract) |
[金孝锋, 丁炳扬, 郑朝宗, 叶珍林, 陈小荣 (2004) 浙江百山祖自然保护区种子植物区系分析. 云南植物研究, 30, 605-618.] | |
[22] |
Jin Y, Qian H (2019) V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353-1359.
DOI |
[23] |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
DOI PMID |
[24] |
Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science, 320,1768-1771.
DOI PMID |
[25] | Lenoir J, Gégout JC, Pierrat JC, Bontemps JD, Dhôte JF (2009) Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986-2006). Ecography, 32, 765-777. |
[26] | Li MJ, He ZS, Jiang L, Gu XG, Jin MR, Chen B, Liu JF (2021) Distribution pattern and driving factors of species diversity and phylogenetic diversity along altitudinal gradient on the south slope of Daiyun Mountain. Acta Ecologica Sinica, 41, 1148-1157. (in Chinese with English abstract) |
[李梦佳, 何中声, 江蓝, 谷新光, 晋梦然, 陈博, 刘金福 (2021) 戴云山物种多样性与系统发育多样性海拔梯度分布格局及驱动因子. 生态学报, 41, 1148-1157.] | |
[27] | Li MQ, Hao Q, Zhang XL, Lu XZ (2011) Research on the current status and protection strategies of biodiversity in Fengyangshan Nature Reserve. China Science and Technology Information, 23(9), 17-19. (in Chinese) |
[李美琴, 郝琦, 张晓利, 鲁小珍 (2011) 凤阳山自然保护区生物多样性现状及保护对策研究. 中国科技信息, 23(9), 17-19.] | |
[28] | Lin Y, Li SX, Zhou WL, Long D, Yang ZJ, Mao ZB, Xiong YY, Liu SL, Pan XH, Liu JL, Shen GC, Ding BY, Yu MJ (2024) α and β diversity patterns of woody plant communities along an elevation gradient in Baishanzu National Park. Acta Ecologica Sinica, 44, 7700-7712. (in Chinese with English abstract) |
[林阳, 李时轩, 周伟龙, 龙丹, 杨中杰, 毛志斌, 熊艳云, 刘胜龙, 潘心禾, 刘金亮, 沈国春, 丁炳扬, 于明坚 (2024) 百山祖国家公园海拔梯度上木本植物群落α和β多样性. 生态学报, 44, 7700-7712.] | |
[29] | Linares-Palomino R, Ponce Alvarez SI (2005) Tree community patterns in seasonally dry tropical forests in the Cerros de Amotape Cordillera, Tumbes, Peru. Forest Ecology and Management, 209, 261-272. |
[30] | Luo YH (2016) Community Assembly and Turnover Mechanisms of Subalpine Forests along Elevational Gradient in Yulong Mountains in Northwest Yunnan, China. PhD dissertation, Yunnan University, Kunming. (in Chinese with English abstract) |
[罗亚皇 (2016) 滇西北玉龙雪山沿海拔梯度森林群落构建和转换机制研究. 博士学位论文, 云南大学, 昆明.] | |
[31] | Luo YH, Ma LL, Gao LM, Wang XJ, Zhao W, Yang XL, Mao SB, Shi XC, Liu J (2024) Spatiotemporal dynamics of forest arbor layer along an elevational gradient in the southern Gaoligong Mountains. Guihaia, 44, 793-805. (in Chinese with English abstract) |
[罗亚皇, 马梁梁, 高连明, 王兴杰, 赵玮, 杨兴亮, 马绍宾, 施晓春, 刘杰 (2024) 高黎贡山南段海拔梯度森林乔木层时空动态. 广西植物, 44, 793-805.] | |
[32] | Lü ZL, Liu B, Chang F, Ma ZJ, Cao QM (2023) Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient. Chinese Journal of Plant Ecology, 47, 822-832. (in Chinese with English abstract) |
[吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅 (2023) 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化. 植物生态学报, 47, 822-832.]
DOI |
|
[33] | Morueta-Holme N, Engemann K, Sandoval-Acuña P, Jonas JD, Max Segnitz R, Svenning JC (2015) Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proceedings of the National Academy of Sciences, USA, 112, 12741-12745. |
[34] | Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature, 453, 216-219. |
[35] | Peters MK, Hemp A, Appelhans T, Becker JN, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW, Frederiksen SB, Gebert F, Gerschlauer F, Gütlein A, Helbig-Bonitz M, Hemp C, Kindeketa WJ, Kühnel A, Mayr AV, Mwangomo E, Ngereza C, Njovu HK, Otte I, Pabst H, Renner M, Röder J, Rutten G, Costa DS, Sierra-Cornejo N, Vollstädt MGR, Dulle HI, Eardley CD, Howell KM, Keller A, Peters RS, Ssymank A, Kakengi V, Zhang J, Bogner C, Böhning-Gaese K, Brandl R, Hertel D, Huwe B, Kiese R, Kleyer M, Kuzyakov Y, Nauss T, Schleuning M, Tschapka M, Fischer M, Steffan-Dewenter I (2019) Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568, 88-92. |
[36] | R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.semanticscholar.org/paper/R%3A-A-language-and-environment-for-statistical-Team/659408b243cec55de8d0a3bc51b81173007aa89b/. (accessed on 2023-09-08) |
[37] | Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, Nogues-Bravo D, Whittaker RJ, Fjeldså J (2019) Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science, 365, 1108-1113. |
[38] | Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1-15. |
[39] | Rixen C, Wipf S, Rumpf SB, Giejsztowt J, Millen J, Morgan JW, Nicotra AB, Venn S, Zong SW, Dickinson KJM, Freschet GT, Kurzböck C, Li J, Pan HL, Pfund B, Quaglia E, Su X, Wang W, Wang XT, Yin H, Deslippe JR (2022) Intraspecific trait variation in alpine plants relates to their elevational distribution. Journal of Ecology, 110, 860-875. |
[40] | Sanders NJ (2002) Elevational gradients in ant species richness: Area, geometry, and Rapoport’s rule. Ecography, 25, 25-32. |
[41] | Shen ZH, Hu HF, Zhou Y, Fang JY (2004) Altitudinal patterns of plant species diversity on the southern slope of Mt. Shennongjia, Hubei, China. Biodiversity Science, 12, 99-107. (in Chinese with English abstract) |
[沈泽昊, 胡会峰, 周宇, 方精云 (2004) 神农架南坡植物群落多样性的海拔梯度格局. 生物多样性, 12, 99-107.]
DOI |
|
[42] | Song YC (2001) Vegetation Ecology. East China Normal University Press, Shanghai. (in Chinese) |
[宋永昌 (2001) 植被生态学. 华东师范大学出版社, 上海.] | |
[43] | Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics, 44, 261-280. |
[44] | Tan YJ, Yuan LB, Chen DL, Zhao L, Tan SS, Wu XH, Gu SM (2014) ALPHA diversity feature of plant communities in Fengyangshan-Baishanzu National Nature Reserve. Journal of Zhejiang Forestry Science and Technology, 34(3), 11-16. (in Chinese with English abstract) |
[谭毓佳, 袁留斌, 陈德良, 赵鹂, 谭珊珊, 吴香花, 顾少敏 (2014) 浙江凤阳山-百山祖国家级自然保护区植物群落ALPHA多样性特征. 浙江林业科技, 34(3), 11-16.] | |
[45] |
Umaña MN, Swenson NG (2019) Intraspecific variation in traits and tree growth along an elevational gradient in a subtropical forest. Oecologia, 191, 153-164.
DOI PMID |
[46] |
van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the western United States. Science, 323, 521-524.
DOI PMID |
[47] | Vitasse Y, Ursenbacher S, Klein G, Bohnenstengel T, Chittaro Y, Delestrade A, Monnerat C, Rebetez M, Rixen C, Strebel N, Schmidt BR, Wipf S, Wohlgemuth T, Yoccoz NG, Lenoir J (2021) Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biological Reviews, 96, 1816-1835. |
[48] | Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Annual Review of Ecology, Evolution, and Systematics, 30, 257-300. |
[49] | Whittaker RH (1972) Evolution and measurement of species diversity. Taxon, 21, 213-251. |
[50] | Wickham H (2016) ggplot2:Elegant Graphics for Data Analysis. Springer-Verlag, New York. |
[51] | Wu QS, Quan SL, Wu ZH (2008) Current situation and utilization of wild economic plant resources in Baishanzu Nature Reserve. Modern Agricultural Science and Technology, 37(20), 86-87. (in Chinese) |
[吴其盛, 全尚龙, 吴振伙 (2008) 百山祖自然保护区野生经济植物资源现状及利用. 现代农业科技, 37(20), 86-87.] | |
[52] | Wu ZY (1991) The distribution types of seed plant genera in China. Acta Botanica Yunnanica, 13(Suppl. IV), 1-139. (in Chinese with English abstract) |
[吴征镒 (1991) 中国种子植物属的分布区类型. Acta Botanica Yunnanica, 13(Suppl. IV), 1-139.] | |
[53] | Wu ZY (2003) Revision of the distribution area type system of world seed plant families. Acta Botanica Yunnanica, 25, 535-538. (in Chinese) |
[吴征镒 (2003) 《世界种子植物科的分布区类型系统》的修订. 云南植物研究, 25, 535-538.] | |
[54] | Wu ZY, Zhou ZK, Li DZ, Peng H, Sun H (2003) The areal- types of the world families of seed plants. Acta Botanica Yunnanica, 25, 245-257. (in Chinese with English abstract) |
[吴征镒, 周浙昆, 李德铢, 彭华, 孙航 (2003) 世界种子植物科的分布区类型系统. 云南植物研究, 25, 245-257.] | |
[55] | Xie ZJ, Lux J, Wu YG, Sun X, Chen TW, Zhu JL, Zhang J, Wu DH, Scheu S (2024) Intraspecific variability and species turnover drive variations in Collembola body size along a temperate-boreal elevation gradient. Geoderma, 441, 116731. |
[56] | Xu M, Luo ZR, Yu MJ, Ding BY, Wu YG (2007) Floristic composition and community structure of mid-montane evergreen broad-leaved forest in north slope of Baishanzu Mountain. Journal of Zhejiang University (Agriculture and Life Sciences), 33, 450-457. (in Chinese with English abstract) |
[徐敏, 骆争荣, 于明坚, 丁炳扬, 吴友贵 (2007) 百山祖北坡中山常绿阔叶林的物种组成和群落结构. 浙江大学学报(农业与生命科学版), 33, 450-457.] | |
[57] |
Xu WM, Tomlinson KW, Li J (2020) Strong intraspecific trait variation in a tropical dominant tree species along an elevational gradient. Plant Diversity, 42, 1-6.
DOI PMID |
[58] | Yan YJ, Yang X, Tang ZY (2013) Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai- Tibetan Plateau. Ecology and Evolution, 3, 4584-4595. |
[59] |
Yang GW, Ryo M, Roy J, Lammel DR, Ballhausen MB, Jing X, Zhu XF, Rillig MC (2022) Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nature Communications, 13, 4260.
DOI PMID |
[60] | Yu JH, Yao FP, Chen XR, Zhou RF, Cheng QB, Ding BY (2003) An introduction to main vegetation types in the Baishanzu National Nature Reserve. Journal of Tropical and Subtropical Botany, 11, 93-98. (in Chinese with English abstract) |
[余久华, 姚丰平, 陈小荣, 周荣飞, 程秋波, 丁炳扬 (2003) 百山祖自然保护区主要植被类型概述. 热带亚热带植物学报, 11, 93-98.] | |
[61] | Zhao LJ, Xiang WH, Li JX, Deng XW, Liu C (2013) Floristic composition, structure and phytogeographic characteristics in a Lithocarpus glaber-Cyclobalanopsis glauca forest community in the subtropical region. Scientia Silvae Sinicae, 49(12), 10-17. (in Chinese with English abstract) |
[赵丽娟, 项文化, 李家湘, 邓湘雯, 刘聪 (2013) 中亚热带石栎-青冈群落物种组成、结构及区系特征. 林业科学, 49(12), 10-17.] | |
[62] | Zu KL, Lenoir J, Fang JY, Tang ZY, Shen ZH, Ji CJ, Zheng CY, Luo A, Song WQ, Zimmermann NE, Pellissier L, Wang ZH (2023) Elevational shift in seed plant distributions in China’s mountains over the last 70 years. Global Ecology and Biogeography, 32, 1098-1112. |
[1] | 贾贞妮 张意岑 杜彦君 任海保. 干扰对中亚热带森林群落物种多样性演替动态的影响[J]. 生物多样性, 2025, 33(2): 24078-. |
[2] | 马文俊 刘思嘉 李柯懋 简生龙 薛长安 韩庆祥 魏金良 陈生学 牛依萌 崔洲平 隋瑞臣 田菲 赵凯. 青海省长江源区鱼类分布及多样性格局[J]. 生物多样性, 2025, 33(2): 24494-0. |
[3] | 何泽嵘 叶鹏 王舒婷 关永鑫 闫淑君 洪心茹. 中国城市草坪的杂草优势种组成及空间分布[J]. 生物多样性, 2025, 33(1): 24133-. |
[4] | 时永强, 栾青杉, 单秀娟, 韦超, 赵永松, 孙策策, 金显仕. 长岛南部海域浮游动物多样性周年变化[J]. 生物多样性, 2024, 32(7): 23428-. |
[5] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[6] | 林迪, 陈双林, 杜榷, 宋文龙, 饶固, 闫淑珍. 大别山黏菌的物种多样性调查[J]. 生物多样性, 2024, 32(2): 23242-. |
[7] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[8] | 陈明苗, 张楚然, 邓云, 李生发, 李逢昌, 唐志忠, 魏兆喆, 张彩彩, 林露湘. 地形因子对亚热带半湿润常绿阔叶林木本植物萌生特征的影响[J]. 生物多样性, 2024, 32(12): 24282-. |
[9] | 单航, 雷祖培, 郑方东, 韦博良, 仲磊, 于明坚. 2013-2023年浙江乌岩岭次生常绿阔叶林群落动态变化[J]. 生物多样性, 2024, 32(12): 24372-. |
[10] | 张楚然, 李生发, 李逢昌, 唐志忠, 刘辉燕, 王丽红, 顾荣, 邓云, 张志明, 林露湘. 云南鸡足山亚热带半湿润常绿阔叶林20 ha动态监测样地木本植物生境关联与群落数量分类[J]. 生物多样性, 2024, 32(1): 23393-. |
[11] | 王明慧, 陈昭铨, 李帅锋, 黄小波, 郎学东, 胡子涵, 尚瑞广, 刘万德. 云南普洱季风常绿阔叶林不同种子扩散方式的优势种空间点格局分析[J]. 生物多样性, 2023, 31(9): 23147-. |
[12] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[13] | 陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高. 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023, 31(5): 23059-. |
[14] | 林魏巍, 田呈明, 熊典广, 刘伟航, 热依汗古丽·斯地克, 梁英梅. 新疆杨树人工林中蜘蛛群落多样性及其影响因素[J]. 生物多样性, 2023, 31(3): 22493-. |
[15] | 刘文聪, 田希, 杨涛, 饶杰生, 王晓凤, 钱恒君, 涂梦灵, 单子铭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林优势树种的种群结构与更新特征[J]. 生物多样性, 2023, 31(11): 23251-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn