生物多样性 ›› 2022, Vol. 30 ›› Issue (7): 21488. DOI: 10.17520/biods.2021488
所属专题: 土壤生物与土壤健康
李季蔓1,2, 靳楠1,2, 胥毛刚1,2, 霍举颂1,2, 陈小云1,2, 胡锋1,2, 刘满强1,2,*()
收稿日期:
2021-11-27
接受日期:
2022-01-08
出版日期:
2022-07-20
发布日期:
2022-01-09
通讯作者:
刘满强
作者简介:
*E-mail: liumq@njau.edu.cn基金资助:
Jiman Li1,2, Nan Jin1,2, Maogang Xu1,2, Jusong Huo1,2, Xiaoyun Chen1,2, Feng Hu1,2, Manqiang Liu1,2,*()
Received:
2021-11-27
Accepted:
2022-01-08
Online:
2022-07-20
Published:
2022-01-09
Contact:
Manqiang Liu
摘要:
土壤无脊椎动物可能会通过促进土壤持水能力和增加土壤肥力而缓解植物的干旱胁迫。本研究采用蚯蚓和干旱水平的双因子完全交互设计, 模拟了干旱胁迫条件下蚯蚓对土壤性质及番茄抗旱性的影响。结果表明, 在高干旱胁迫时, 蚯蚓通过增加番茄茎叶抗氧化能力提高了植物抗旱性, 上调番茄茎叶脱落酸和茉莉酸生物合成过程的基因表达(NCED、NSY、OPR、AOS和LOX), 促进脱落酸和茉莉酸含量分别增加43.2%和33.6%, 过氧化氢酶、过氧化物酶和超氧化物歧化酶含量分别增加12.9%、8.4%和47.3%。在低干旱胁迫时, 蚯蚓上调茉莉酸合成通路基因表达, 但降低了脱落酸含量, 对转录因子ABF4、MYC2基因表达和植物抗氧化能力无明显影响。干旱导致的土壤水分和养分条件变化影响着蚯蚓介导的植物抗旱性响应。本研究证明了土壤动物对植物抗旱的重要作用, 如蚯蚓对植物激素合成、信号传导和抗氧化能力的影响。了解土壤动物影响植物抗旱的内在机制, 有助于深挖和利用土壤动物的多样化生态功能。
李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强 (2022) 不同干旱水平下蚯蚓对番茄抗旱能力的影响. 生物多样性, 30, 21488. DOI: 10.17520/biods.2021488.
Jiman Li, Nan Jin, Maogang Xu, Jusong Huo, Xiaoyun Chen, Feng Hu, Manqiang Liu (2022) Effects of earthworm on tomato resistance under different drought levels. Biodiversity Science, 30, 21488. DOI: 10.17520/biods.2021488.
图1 不同干旱胁迫条件下, 威廉腔环蚓的生物量变化以及蚯蚓对土壤理化性质(土壤含水量、矿质态氮、速效磷、微生物生物量碳和微生物生物量氮含量)的影响(平均值 ± 标准差, n = 5)。采用双因素方差分析评估蚯蚓和干旱胁迫对土壤含水量的影响。* P < 0.05, ** P < 0.01, *** P < 0.001。
Fig. 1 Changes in biomass of Metaphire guillelmi and effects of earthworm on soil physical and chemical properties (soil water content, mineral nitrogen, available phosphorus, microbial biomass carbon and microbial biomass nitrogen) under low and high drought conditions (mean ± SD, n = 5). Statistical differences were assessed following a two-way ANOVA using earthworm and drought as factors. * P < 0.05, ** P < 0.01, *** P < 0.001.
图2 不同干旱胁迫条件下, 蚯蚓对番茄茎叶中的过氧化氢酶、过氧化物酶、超氧化物歧化酶和丙二醛含量的影响(平均值 ± 标准差, n = 5)。采用双因素方差分析评估蚯蚓和干旱胁迫对植物抗氧化指标的影响。* P < 0.05, ** P < 0.01, *** P < 0.001。
Fig. 2 Effects of earthworm on the contents of tomato shoot catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and malondialdehyde (MDA) under low and high drought conditions (mean ± SD, n = 5). Statistical differences were assessed following a two-way ANOVA using earthworm and drought as factors. * P < 0.05, ** P < 0.01, *** P < 0.001.
图3 蚯蚓对番茄抗旱激素信号通路的影响。(A)不同干旱胁迫条件下蚯蚓上调的番茄茎叶ABA和JA信号通路(M00372, M00113)差异基因数量(n = 5); (B)蚯蚓对相关基因表达量的影响, 数据为log2转换的表达式平均值, 符合校正P值 < 0.05; (C)蚯蚓对番茄茎叶ABA和JA含量的影响(* P < 0.05, ** P < 0.01, *** P < 0.001)。
Fig. 3 Effects of earthworm on drought resistance hormone signaling pathway in tomato shoot. (A) Venn diagram of up-regulated DEGs of tomato shoot ABA and JA signaling pathways (M00372, M00113) in response to earthworm. (B) Expression of ABA and JA signaling pathway-related genes in response to earthworm, data are mean values of log2-transformed expression values, false discovery rate-corrected P < 0.05 (n = 5). (C) Effects of earthworm on the contents of tomato shoot abscisic acid and jasmonic acid under low and high drought stress conditions (* P < 0.05, ** P < 0.01, *** P < 0.001).
图4 蚯蚓介导的土壤生物和非生物性质(矿质态氮、速效磷、微生物生物量碳和微生物生物量氮)与植物抗旱化合物(过氧化氢酶CAT、过氧化物酶POD、超氧化物歧化酶SOD、丙二醛MDA、脱落酸ABA和茉莉酸JA)的相关性分析。* P < 0.05, ** P < 0.01, *** P < 0.001。
Fig.4 Correlation analysis between soil biotic and abiotic properties and tomato drought-resistance compounds. CAT, Catalase; POD, Peroxidase; SOD, Superoxide dismutase; MDA, Malondialdehyde; ABA, Abscisic acid; JA, Jasmonic acid. * P < 0.05, ** P < 0.01, *** P < 0.001.
图5 不同干旱胁迫条件下, 蚯蚓影响番茄茎叶ABA和JA信号转导相关生理机制的概念模型。图中η代表上调作用, ι代表下调作用。NCED: 9-顺-环氧类胡萝卜素双加氧酶; AOS: 丙二烯氧化物合酶; OPR: OPDA还原酶; ABF: ABA响应元素结合因子; NSY: 新黄质合成酶; LOX: 脂氧合酶; MYC2: 髓细胞组织增生蛋白; JAZs: 茉莉酸转录抑制因子; CAT: 过氧化氢酶; POD: 过氧化物酶; SOD: 超氧化物歧化酶。
Fig. 5 Proposed model of earthworm induced resistance to drought stress in tomato. η and ι represent up- and down-regulation respectively. NCED, 9-cis-epoxycarotenoid dioxygenase; AOS, allene oxide synthase; OPR, 12-oxo-phytodienoic acid reductase; ABF, ABA-responsive element binding factor; NSY, Neoxanthinsynthase; LOX, Lipoxygenase; MYC2, Myelocytomatosis proteins 2; JAZs, Jasmonate ZIM-domain; CAT, Catalase; POD, Peroxidase; SOD, Superoxide dismutase.
[1] |
Batool T, Ali S, Seleiman MF, Naveed NH, Ali A, Ahmed K, Abid M, Rizwan M, Shahid MR, Alotaibi M, Al-Ashkar I, Mubushar M (2020) Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10, 16975.
DOI URL |
[2] |
Bertrand M, Barot S, Blouin M, Whalen J, Oliveira T, Roger-Estrade J (2015) Earthworm services for cropping systems: A review. Agronomy for Sustainable Development, 35, 553-567.
DOI URL |
[3] |
Blouin M (2018) Chemical communication: An evidence for co-evolution between plants and soil organisms. Applied Soil Ecology, 123, 409-415.
DOI URL |
[4] |
Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Peres G, Tondoh JE, Cluzeau D, Brun JJ (2013) A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science, 64, 161-182.
DOI URL |
[5] |
Blouin M, Lavelle P, Laffray D (2007) Drought stress in rice (Oryza sativa L.) is enhanced in the presence of the compacting earthworm Millsonia anomala. Environmental and Experimental Botany, 60, 352-359.
DOI URL |
[6] |
Dalby PR, Baker GH, Smith SE (1996) “Filter paper method” to remove soil from earthworm intestines and to standardise the water content of earthworm tissue. Soil Biology and Biochemistry, 28, 685-687.
DOI URL |
[7] |
de Ollas C, González-Guzmán M, Pitarch Z, Matus JT, Candela H, Rambla JL, Granell A, Gómez-Cadenas A, Arbona V (2021) Identification of ABA-mediated genetic and metabolic responses to soil flooding in tomato (Solanum lycopersicum L. mill). Frontiers in Plant Science, 12, 613059.
DOI URL |
[8] |
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R (2021) Integration of reactive oxygen species and hormone signaling during abiotic stress. The Plant Journal, 105, 459-476.
DOI PMID |
[9] |
de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020) Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 368, 270-274.
DOI URL |
[10] |
Feng HY, Li YZ, Yan YF, Wei XH, Yang YH, Zhang L, Ma L, Li W, Tang XR, Mo ZW (2020) Nitrogen regulates the grain yield, antioxidant attributes, and nitrogen metabolism in fragrant rice grown under lead-contaminated soil. Journal of Soil Science and Plant Nutrition, 20, 2099-2111.
DOI URL |
[11] | Ferlian O, Thakur MP, Castañeda González A, San Emeterio LM, Marr S, da Silva Rocha B, Eisenhauer N (2020) Soil chemistry turned upside down: A meta-analysis of invasive earthworm effects on soil chemical properties. Ecology, 101, e02936. |
[12] |
Grebner W, Stingl NE, Oenel A, Mueller MJ, Berger S (2013) Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiology, 161, 2159-2170.
DOI PMID |
[13] |
Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Senthil-Kumar M (2017) Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Scientific Reports, 7, 4017.
DOI URL |
[14] |
Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science, 368, 266-269.
DOI URL |
[15] |
Hallam J, Hodson ME (2020) Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity. Biology and Fertility of Soils, 56, 607-617.
DOI URL |
[16] |
Hettenhausen C, Baldwin IT, Wu JQ (2013) Nicotiana attenuata MPK4 suppresses a novel jasmonic acid (JA) signaling-independent defense pathway against the specialist insect Manduca sexta, but is not required for the resistance to the generalist Spodoptera littoralis. New Phytologist, 199, 787-799.
DOI PMID |
[17] | Intergovernmental Panel on Climate Change IPCC(2013) Climate Change 2013:The Physical Science Basis. Cambridge University Press, Cambridge. |
[18] |
Johnson SN, Lopaticki G, Barnett K, Facey SL, Powell JR, Hartley SE (2016) An insect ecosystem engineer alleviates drought stress in plants without increasing plant susceptibility to an above-ground herbivore. Functional Ecology, 30, 894-902.
DOI URL |
[19] |
Johnson SN, Staley JT, McLeod FAL, Hartley SE (2011) Plant-mediated effects of soil invertebrates and summer drought on above-ground multitrophic interactions. Journal of Ecology, 99, 57-65.
DOI URL |
[20] |
Kudo M, Kidokoro S, Yoshida T, Mizoi J, Kojima M, Takebayashi Y, Sakakibara H, Fernie AR, Shinozaki K, Yamaguchi-Shinozaki K (2019) A gene-stacking approach to overcome the trade-off between drought stress tolerance and growth in Arabidopsis. The Plant Journal, 97, 240-256.
DOI URL |
[21] |
Lauder JD, Moran EV, Hart SC (2019) Fight or flight? Potential tradeoffs between drought defense and reproduction in conifers. Tree Physiology, 39, 1071-1085.
DOI URL |
[22] |
Li SL, Li XN, Wei ZH, Liu FL (2020) ABA-mediated modulation of elevated CO2 on stomatal response to drought. Current Opinion in Plant Biology, 56, 174-180.
DOI URL |
[23] |
Liu W, Jiang Y, Jin YZ, Wang CH, Yang J, Qi HY (2021) Drought-induced ABA, H2O2 and JA positively regulate CmCAD genes and lignin synthesis in melon stems. BMC Plant Biology, 21, 83.
DOI URL |
[24] | Lu RK (2000) Analysis Method of Soil Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing. (in Chinese) |
[ 鲁如坤 (2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[25] |
Medina-Sauza RM, Álvarez-Jiménez M, Delhal A, Reverchon F, Blouin M, Guerrero-Analco JA, Cerdán CR, Guevara R, Villain L, Barois I (2019) Earthworms building up soil microbiota, a review. Frontiers in Environmental Science, 7, 81.
DOI URL |
[26] | Meng B, Li JQ, Maurer GE, Zhong SZ, Yao Y, Yang XC, Collins SL, Sun W (2021) Nitrogen addition amplifies the nonlinear drought response of grassland productivity to extended growing-season droughts. Ecology, 102, e03483. |
[27] |
Puga-Freitas R, Blouin M (2015) A review of the effects of soil organisms on plant hormone signalling pathways. Environmental and Experimental Botany, 114, 104-116.
DOI URL |
[28] |
Santos-Medellín C, Liechty Z, Edwards J, Nguyen B, Huang BH, Weimer BC, Sundaresan V (2021) Prolonged drought imparts lasting compositional changes to the rice root microbiome. Nature Plants, 7, 1065-1077.
DOI PMID |
[29] | Singh J, Schädler M, Demetrio W, Brown GG, Eisenhauer N (2019) Climate change effects on earthworms-A review. Soil Organisms, 91, 114-138. |
[30] |
Song Y, Haney CH (2021) Drought dampens microbiome development. Nature Plants, 7, 994-995.
DOI PMID |
[31] |
Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: A coping strategy. Environmental Science and Pollution Research International, 25, 33103- 33118.
DOI PMID |
[32] | van Groenigen JW, Lubbers IM, Vos HMJ, Brown GG, de Deyn GB, van Groenigen KJ (2014) Earthworms increase plant production: A meta-analysis. Scientific Reports, 4, 6365. |
[33] | Wang B, Chen MD, Lin L, Ye XR, Zhu HS, Wen QF (2020) Signal pathways and related transcription factors of drought stress in plants. Acta Botanica Boreali-Occidentalia Sinica, 40, 1792-1806. (in Chinese with English abstract) |
[ 王彬, 陈敏氡, 林亮, 叶新如, 朱海生, 温庆放 (2020) 植物干旱胁迫的信号通路及相关转录因子研究进展. 西北植物学报, 40, 1792-1806.] | |
[34] |
Wang X, Li Q, Xie JJ, Huang M, Cai J, Zhou Q, Dai TB, Jiang D (2021) Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. The Crop Journal, 9, 120-132.
DOI URL |
[35] |
Yang J, Duan GH, Li CQ, Liu L, Han GY, Zhang YL, Wang CM (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Frontiers in Plant Science, 10, 1349.
DOI URL |
[36] |
You J, Zhang YJ, Liu AL, Li DH, Wang X, Dossa K, Zhou R, Yu JY, Zhang YX, Wang LH, Zhang XR (2019) Transcriptomic and metabolomic profiling of drought- tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biology, 19, 267.
DOI URL |
[37] |
Zhang WW, Wang C, Lu TY, Zheng YJ (2018) Cooperation between arbuscular mycorrhizal fungi and earthworms promotes the physiological adaptation of maize under a high salt stress. Plant and Soil, 423, 125-140.
DOI URL |
[38] | Zhang WX, Shen ZF, Shao YH, Shi LL, Liu SJ, Shi NN, Fu SL (2020) Soil biota and sustainable agriculture: A review. Acta Ecologica Sinica, 40, 3183-3206. (in Chinese with English abstract) |
[ 张卫信, 申智锋, 邵元虎, 时雷雷, 刘胜杰, 史楠楠, 傅声雷 (2020) 土壤生物与可持续农业研究进展. 生态学报, 40, 3183-3206.] | |
[39] |
Zhang Y, Xiao ZG, Jiang LH, Qian L, Chen XY, Chen FJ, Hu F, Liu MQ (2018) Nitrogen levels modify earthworm- mediated tomato growth and resistance to pests. Biodiversity Science, 26, 1296-1307. (in Chinese with English abstract)
DOI |
[ 张宇, 肖正高, 蒋林惠, 钱蕾, 陈小云, 陈法军, 胡锋, 刘满强 (2018) 施氮水平影响蚯蚓介导的番茄生长及抗虫性. 生物多样性, 26, 1296-1307.]
DOI |
|
[40] | Zhang Z, Huang R (2013) Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-protocol, 3, e817. |
[41] |
Zhou R, Yu XQ, Zhao TM, Ottosen CO, Rosenqvist E, Wu Z (2019) Physiological analysis and transcriptome sequencing reveal the effects of combined cold and drought on tomato leaf. BMC Plant Biology, 19, 377.
DOI URL |
[42] |
Zhu XY, Hu YC, Wang W, Wu DH (2019) Earthworms promote the accumulation of maize root-derived carbon in a black soil of Northeast China, especially in soil from long-term no-till. Geoderma, 340, 124-132.
DOI URL |
[1] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[2] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[3] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[4] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[5] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[6] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[7] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[8] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
[9] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[10] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[11] | 翟俊杰, 赵慧峰, 商光申, 孙振钧, 张玉峰, 王兴. 蚯蚓基因组学的研究进展: 基于全基因组及线粒体基因组[J]. 生物多样性, 2022, 30(12): 22257-. |
[12] | 赵琦, 蒋际宝, 张曾鲁, 金清, 李佳丽, 邱江平. 海南岛蚯蚓物种组成及其系统发育分析[J]. 生物多样性, 2022, 30(12): 22224-. |
[13] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
[14] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[15] | 宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙. 三江并流区树线生境小型兽类多样性多维度评价及其保护启示[J]. 生物多样性, 2021, 29(9): 1215-1228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn