生物多样性 ›› 2015, Vol. 23 ›› Issue (1): 101-108. DOI: 10.17520/biods.2014156
所属专题: 昆虫多样性与生态功能; 生物入侵
收稿日期:
2014-07-17
接受日期:
2014-10-08
出版日期:
2015-01-20
发布日期:
2015-05-04
通讯作者:
李博
作者简介:
E-mail: bool@fudan.edu.cn基金资助:
Ma Ding1, Ju Ruiting1,2, Li Bo1,*()
Received:
2014-07-17
Accepted:
2014-10-08
Online:
2015-01-20
Published:
2015-05-04
Contact:
Li Bo
摘要:
外来植物入侵后会改变其对入侵地植食性昆虫的防御能力以应对入侵地生物环境的变化, 因此, 对土著昆虫防御能力变化的研究将有助于解释外来植物成功入侵的机制。互花米草(Spartina alterniflora)是广泛入侵中国东部沿海地区的外来植物, 研究其入侵后对本地植食性昆虫的响应, 可从一个侧面部分地回答其成功入侵的生态机制。利用Y型嗅觉仪, 结合室内取食实验, 我们比较了中国的土著昆虫素毒蛾(Laelia coenosa)对互花米草3个原产地种群和5个入侵地种群的选择偏好, 这些种群分别来自美国的德克萨斯(Texas Point)、卡纳维拉尔国家海岸(Canaveral National Seashore)、佛罗里达大西洋大学(Florida Atlantic University), 以及中国的唐海、天津、盐城、崇明、珠海。结果表明, 虽然素毒蛾幼虫对互花米草不同地理种群叶片气味没有显著的选择偏好, 但对原产地种群的取食相对选择系数显著高于入侵地种群, 说明互花米草入侵地种群对素毒蛾的抵抗能力相对较强。这从某种层面上可以推测互花米草入侵中国东部沿海地区以后, 其对植食性昆虫取食的防御能力有所增强, 而这种能力将在一定程度上减少素毒蛾等入侵地植食动物对它的攻击。
马丁, 鞠瑞亭, 李博 (2015) 土著昆虫素毒蛾对入侵植物互花米草地理种群的选择性. 生物多样性, 23, 101-108. DOI: 10.17520/biods.2014156.
Ma Ding, Ju Ruiting, Li Bo (2015) Preference of Laelia coenosa for native and introduced populations of invasive Spartina alterniflora. Biodiversity Science, 23, 101-108. DOI: 10.17520/biods.2014156.
种群 Population | 采集点 Collecting site | 经纬度 Latitude and longitude |
---|---|---|
US | 德克萨斯 Texas Point (TP) | 29°42′ N, 93°51′ W |
卡纳维拉尔国家海岸 Canaveral National Seashore (CNS) | 28°57′ N, 80°50′ W | |
佛罗里达大西洋大学 Florida Atlantic University (FAU) | 27°28′ N, 80°19′ W | |
China | 唐海 Tanghai (TH) | 39°02′ N, 118°20′ E |
天津 Tianjin (TJ) | 38°58′ N, 117°45′ E | |
盐城 Yancheng (YC) | 33°32′ N, 120°38′ E | |
崇明 Chongming (CM) | 31°31′ N, 121°58′ E | |
珠海 Zhuhai (ZH) | 22°25′ N, 113°37′ E |
表1 互花米草美国种群和中国种群种子采集点
Fig. 1 Sampling sites of Spartina alterniflora seeds in US and China
种群 Population | 采集点 Collecting site | 经纬度 Latitude and longitude |
---|---|---|
US | 德克萨斯 Texas Point (TP) | 29°42′ N, 93°51′ W |
卡纳维拉尔国家海岸 Canaveral National Seashore (CNS) | 28°57′ N, 80°50′ W | |
佛罗里达大西洋大学 Florida Atlantic University (FAU) | 27°28′ N, 80°19′ W | |
China | 唐海 Tanghai (TH) | 39°02′ N, 118°20′ E |
天津 Tianjin (TJ) | 38°58′ N, 117°45′ E | |
盐城 Yancheng (YC) | 33°32′ N, 120°38′ E | |
崇明 Chongming (CM) | 31°31′ N, 121°58′ E | |
珠海 Zhuhai (ZH) | 22°25′ N, 113°37′ E |
图2 素毒蛾对互花米草的气味选择偏好。(A) 素毒蛾幼虫对不同互花米草地理种群叶片气味的选择百分比。种群符号同表1。ns表示无显著差异(P > 0.05)。(B) 素毒蛾幼虫对互花米草原产地和入侵地种群叶片气味的相对选择系数。误差棒表示标准误。
Fig. 2 Smell preference of Laelia coenosa for Spartina alterniflora. (A) Percentages of caterpillar preference for the smell of leaves from different S. alterniflora populations. See the meaning of abbreviations for populations in Table 1. ‘ns’ represents statistically non-significant differences (P > 0.05). (B) Relative choice index (RCI) of caterpillars to the smell of leaves from native and introduced populations of S. alterniflora. Error bars represent standard error.
图3 素毒蛾对互花米草的取食偏好。(A) 素毒蛾幼虫对不同互花米草地理种群的取食选择百分比。种群符号同表1。(B) 素毒蛾幼虫对互花米草原产地和入侵地种群叶片取食的相对选择系数。误差棒表示标准误, ns表示无显著差异(P > 0.05), *表示有显著差异(P < 0.05)。
Fig. 3 Feeding preference of Laelia coenosa for Spartina alterniflora. (A) Percentages of caterpillar preference for the taste of leaves from different S. alterniflora populations. See the meaning of abbreviations for populations in Table 1. (B) Relative choice index (RCI) of caterpillars to the taste of leaves from native and introduced populations of S. alterniflora. Error bars represent standard error, ‘ns’ represents statistically non-significant differences (P > 0.05), and asterisks (*) represent statistically significant differences (P < 0.05).
1 |
Agrawal AA, Fishbein M ( 2006) Plant defense syndromes. Ecology, 87, S132-S149.
DOI URL PMID |
2 |
Caño L, Escarre J, Vrieling K, Sans FX ( 2009) Palatability to a generalist herbivore, defence and growth of invasive and native Senecio species: testing the evolution of increased competitive ability hypothesis. Oecologia, 159, 95-106.
DOI URL PMID |
3 |
Chen HY, Welter CS ( 2007) Crop domestication creates a refuge from parasitism for a native moth. Journal of Applied Ecology, 44, 238-245.
DOI URL |
4 |
Chen ZY, Li B, Zhong Y, Chen JK ( 2004) Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia, 528, 99-106.
DOI URL |
5 |
Clissold FJ, Sanson GD, Read J, Simpson SJ ( 2009) Gross vs. net income: how plant toughness affects performance of an insect herbivore. Ecology, 90, 3393-3405.
DOI URL PMID |
6 |
Daehler CC, Strong DR ( 1994) Variable reproductive output among clones of Spartina alterniflora(Poaceae) invading San-Francisco Bay, California: the influence of herbivory, pollination, and establishment site. American Journal of Botany, 81, 307-313.
DOI URL |
7 |
Daehler CC, Strong DR ( 1997) Reduced herbivore resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivore-free growth. Oecologia, 110, 99-108.
DOI URL PMID |
8 |
Doorduin LJ, Vrieling K ( 2011) A review of the phytochemical support for the shifting defence hypothesis. Phytochemistry Reviews, 10, 99-106.
DOI URL PMID |
9 | Fan H ( 樊慧), Jin YJ ( 金幼菊), Li JQ ( 李继泉), Chen HJ ( 陈华君 ) ( 2004) Advances on plant volatile semiochemicals attracting herbivorous insects. Journal of Beijing Forestry University (北京林业大学学报), 26(3), 76-81. (in Chinese with English abstract) |
10 |
Fritz RS, Hochwender CG, Lewkiewicz DA, Bothwell S, Orians CM ( 2001) Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance. Oecologia, 129, 87-97.
DOI URL PMID |
11 |
Gan XJ, Cai ZY, Choi CY, Ma ZJ, Chen JK, Li B ( 2009) Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance. Estuarine, Coastal and Shelf Science, 83, 211-218.
DOI URL |
12 |
Gao H ( 高慧), Peng XW ( 彭筱葳), Li B ( 李博), Wu QH ( 吴千红), Dong HQ ( 董慧琴 ) ( 2006) Effects of the invasive plant Spartina alterniflora on insect diversity in Jiuduansha wetlands in the Yangtze River Estuary. Biodiversity Science (生物多样性), 14, 400-409. (in Chinese with English abstract)
DOI URL |
13 |
Garcia-Rossi D, Rank N, Strong DR ( 2003) Potential for self-defeating biological control? Variation in herbivore vulnerability among invasive Spartina genotypes. Ecological Applications, 13, 1640-1649.
DOI URL |
14 |
Grevstad FS, Strong DR, Garcia-Rossi D, Switzer RW, Wecker MS ( 2003) Biological control of Spartina alterniflora in Willapa Bay, Washington using the planthopper Prokelisia marginata: agent specificity and early results. Biological Control, 27, 32-42.
DOI URL |
15 | Guo YW ( 郭云文), Chen LL ( 陈莉丽), Lu BL ( 卢百灵), Zeng YQ ( 曾艳琼), Meng DM ( 孟冬梅), Lei J ( 雷静 ) ( 2007) Research advances of Spartina alterniflora in China. Prataculture and Animal Husbandry (草业与畜牧), ( 9), 1-5. (in Chinese with English abstract) |
16 |
Hare JD ( 2012) How insect herbivores drive the evolution of plants. Science, 338, 50-51.
DOI URL PMID |
17 | Hoffland E, Dicke M, van Tintelen W, Dijkman H, van Beusichem ML ( 2000) Nitrogen availability and defense of tomato against two-spotted spider mite. Journal of Chemical Ecology, 26, 2697-2711. |
18 |
Joshi J, Vrieling K ( 2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecology Letters, 8, 704-714.
DOI URL |
19 | Karban R, Baldwin IT ( 1997) Induced Responses to Herbivory. University of Chicago Press, Chicago. |
20 |
Keane RM, Crawley MJ ( 2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution, 17, 164-170.
DOI URL |
21 |
Leger EA, Forister ML ( 2005) Increased resistance to generalist herbivores in invasive populations of the California poppy (Eschscholzia californica). Diversity and Distributions, 11, 311-317.
DOI URL |
22 |
Lewis KC, Bazzaz FA, Liao Q, Orians CM ( 2006) Geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata. Oecologia, 148, 384-395.
DOI URL PMID |
23 |
Mattson WJ ( 1980) Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11, 119-161.
DOI URL |
24 | McNeill S, Southwood TRE ( 1978) The role of nitrogen in the development of insect/plant relationships. In: Biochemical Aspects of Plant and Animal Coevolution (ed. Harborne JB), pp. 77-98. Academic Press, London. |
25 |
Moles AT, Bonser SP, Poore AGB, Wallis IR, Foley WJ ( 2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Functional Ecology, 25, 380-388.
DOI URL |
26 |
Nalam VJ, Shah J, Nachappa P ( 2013) Emerging role of roots in plant responses to aboveground insect herbivory. Insect Science, 20, 286-296.
DOI URL PMID |
27 | Pei YH ( 裴元慧), Kong F ( 孔锋), Han GH ( 韩国华), Sun LG ( 孙垒光), Sun XG ( 孙绪艮 ) ( 2007) The research development on the feeding behavior of insects. Shandong Forestry Science and Technology (山东林业科技), ( 6), 97-101. (in Chinese with English abstract) |
28 | Qin JD ( 钦俊德 ) ( 2003) Decrypting how herbivorous insects select their food plants. Bulletin of Biology (生物学通报), 38(6), 1-3. (in Chinese) |
29 |
Ridenour WM, Vivanco JM, Feng YL, Horiuchi J, Callaway RM ( 2008) No evidence for trade-offs: Centaurea plants from America are better competitors and defenders. Ecological Monographs, 78, 369-386.
DOI URL |
30 |
Silliman BR, Newell SY ( 2003) Fungal farming in a snail. Proceedings of the National Academy of Sciences, USA, 100, 15643-15648.
DOI URL |
31 |
Siska EL, Pennings SC, Buck TL, Hanisak MD ( 2002) Latitudinal variation in palatability of salt-marsh plants: which traits are responsible? Ecology, 83, 3369-3381.
DOI URL |
32 | Stowe KA, Marquis RJ, Hochwender CG, Simms EL ( 2000) The evolutionary ecology of tolerance to consumer damage. Annual Review of Ecology and Systematics, 31, 565-595. |
33 |
Strauss SY, Agrawal AA ( 1999) The ecology and evolution of plant tolerance to herbivory. Trends in Ecology and Evolution, 14, 179-185.
DOI URL PMID |
34 |
Teulon DAJ, Penman DR, Ramader PMJ ( 1993) Volatile chemicals for thrips (Thysanoptera : Thripidae) host-finding and applications for thrips pest management. Journal of Economic Entomology, 86, 1405-1415.
DOI URL |
35 |
Wang Q ( 王卿), An SQ ( 安树青), Ma ZJ ( 马志军), Zhao B ( 赵斌), Chen JK ( 陈家宽), Li B ( 李博 ) ( 2006) Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica (植物分类学报), 44, 559-588. (in Chinese with English abstract)
DOI URL |
36 |
Wang Q, Wang CH, Zhao B, Ma ZJ, Luo YQ, Chen JK, Li B ( 2006) Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biological Invasions, 8, 1547-1560.
DOI URL |
37 | Wei J ( 魏娟), Qin WQ ( 覃伟权), Ma ZL ( 马子龙), Huang SC ( 黄山春), Yan W ( 阎伟), Han CW ( 韩超文 ) ( 2009) Behavior response of Rhynchophorus ferrugineus (Olivier) adult to volatile compounds from fermented plants. Chinese Journal of Tropical Crops (热带作物学报), 30, 1651-1655. (in Chinese with English abstract) |
38 |
Wu YT, Wang CH, Zhang XD, Zhao B, Jiang LF, Chen JK, Li B ( 2009) Effects of saltmarsh invasion by Spartina alterniflora on arthropod community structure and diets. Biological Invasions, 11, 635-649.
DOI URL |
39 | Zhang HJ ( 张辉洁), Sun LN ( 孙乐娜), Yang CY ( 杨承远), Xia QY ( 夏庆友 ) ( 2012) An observation on food selection behavior of silkworm larvae to non-Moraceae plants with four-arm olfactometer. Science of Sericulture (蚕业科学), 38(1), 74-81. (in Chinese with English abstract) |
40 | Zhao DX ( 赵冬香), Gao JL ( 高景林), Chen ZM ( 陈宗懋), Cheng JA ( 程家安), Xu HH ( 徐汉虹 ) ( 2002) Orientation response of Empoasca vitis to tea shoots volatiles. Journal of South China Agricultural University (华南农业大学学报), 23(4), 27-29. (in Chinese with English abstract) |
[1] | 谭晓丹, 张鹏, 朱思睿, 刘向, 周淑荣, 刘木. 青藏高原高寒草甸灌丛化对圆穗蓼昆虫植食作用的影响[J]. 生物多样性, 2024, 32(1): 23417-. |
[2] | 孙尧初, 潘远飞, 刘木, 潘晓云. 专食性-广食性天敌比例影响入侵植物喜旱莲子草生长防御策略[J]. 生物多样性, 2023, 31(4): 22632-. |
[3] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[4] | 邓铭先, 黄河燕, 沈诗韵, 吴纪华, 拉琼, 斯确多吉, 潘晓云. 喜旱莲子草在青藏高原对模拟增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(9): 1198-1205. |
[5] | 陈旭, 王国严, 彭培好, 李景吉, 石松林, 张廷斌. 四川攀西地区云南松群落物种多样性和谱系多样性对紫茎泽兰入侵的影响[J]. 生物多样性, 2021, 29(7): 865-874. |
[6] | 黄河燕, 朱政财, 吴纪华, 拉琼, 周永洪, 潘晓云. 喜旱莲子草对模拟全天增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(4): 419-427. |
[7] | 孙思邈, 陈吉欣, 冯炜炜, 张昶, 黄凯, 管铭, 孙建坤, 刘明超, 冯玉龙. 植物氮形态利用策略及对外来植物入侵性的影响[J]. 生物多样性, 2021, 29(1): 72-80. |
[8] | 于良瑞, 朱政财, 潘晓云. 喜旱莲子草对同基因型邻体根系的表型可塑性: 入侵地和原产地的比较[J]. 生物多样性, 2020, 28(6): 651-657. |
[9] | 余文生,郭耀霖,江佳佳,孙可可,鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[10] | 周方, 张致杰, 刘木, 潘晓云. 养分影响入侵种喜旱莲子草对专食性天敌的防御[J]. 生物多样性, 2017, 25(12): 1276-1284. |
[11] | 蒋林惠, 罗琌, 肖正高, 李大明, 陈小云, 刘满强, 胡锋. 长期施肥对水稻生长和抗虫性的影响: 解析土壤生物的贡献[J]. 生物多样性, 2016, 24(8): 907-915. |
[12] | 朱珣之, 李强, 李扬苹, 韩洪波, 马克平. 紫茎泽兰入侵对土壤细菌的群落组成和多样性的影响[J]. 生物多样性, 2015, 23(5): 665-672. |
[13] | 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481-487. |
[14] | 王思凯, 盛强, 储忝江, 李博, 陈家宽, 吴纪华. 植物入侵对食物网的影响及其途径[J]. 生物多样性, 2013, 21(3): 249-259. |
[15] | 许湘琴, 王莹莹, 陆强, 林植华, 陈慧丽. 加拿大一枝黄花入侵对杭州湾地区土壤线虫群落的影响[J]. 生物多样性, 2011, 19(5): 519-527. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn