生物多样性 ›› 2024, Vol. 32 ›› Issue (1): 23417. DOI: 10.17520/biods.2023417 cstr: 32101.14.biods.2023417
• 研究报告: 生态系统多样性 • 上一篇
谭晓丹1, 张鹏2, 朱思睿2, 刘向2, 周淑荣1, 刘木2,*()
收稿日期:
2023-11-05
接受日期:
2024-01-05
出版日期:
2024-01-20
发布日期:
2024-02-07
通讯作者:
*E-mail: liumu@lzu.edu.cn
基金资助:
Xiaodan Tan1, Peng Zhang2, Sirui Zhu2, Xiang Liu2, Shurong Zhou1, Mu Liu2,*()
Received:
2023-11-05
Accepted:
2024-01-05
Online:
2024-01-20
Published:
2024-02-07
Contact:
*E-mail: liumu@lzu.edu.cn
摘要:
灌丛化在青藏高原高寒草甸普遍存在, 其发生的可能原因包括全球变暖、CO2浓度增加、过度放牧和人类活动等。灌丛化对草地生态系统有正负两方面的影响, 且该影响的方向和强度依赖于环境条件。虽然已有诸多研究探讨了灌丛化对草地生态系统的影响, 但其对昆虫植食作用的影响格局和机制仍不清楚。本研究以青藏高原高寒草甸常见物种圆穗蓼(Polygonum macrophyllum)为研究对象, 通过比较不同盖度(0、50%、100%)的金露梅(Potentilla fruticosa)灌丛下圆穗蓼的昆虫植食作用, 探究了灌丛化对昆虫植食作用的影响, 以及这种影响如何随气候和土壤条件变化而变化。结果表明: (1)圆穗蓼昆虫植食作用随灌丛盖度增加而增强; (2)灌丛化对圆穗蓼昆虫植食作用的影响在年均温低、土壤有效磷含量低、土壤碳含量和氮含量高的情况下更显著。本研究揭示了灌丛化对青藏高原高寒草甸生态系统中圆穗蓼昆虫植食作用的影响, 并进一步揭示这种影响具有环境依赖性。这一结论为探究灌丛化对草地昆虫植食作用的影响提供了证据, 对于认识和科学管理青藏高原灌丛化草地具有重要的现实意义。
谭晓丹, 张鹏, 朱思睿, 刘向, 周淑荣, 刘木 (2024) 青藏高原高寒草甸灌丛化对圆穗蓼昆虫植食作用的影响. 生物多样性, 32, 23417. DOI: 10.17520/biods.2023417.
Xiaodan Tan, Peng Zhang, Sirui Zhu, Xiang Liu, Shurong Zhou, Mu Liu (2024) Effect of shrub encroachment on insect herbivory of Polygonum macrophyllum in alpine meadow of Qinghai-Xizang Plateau. Biodiversity Science, 32, 23417. DOI: 10.17520/biods.2023417.
图2 昆虫植食作用及不同灌丛盖度处理。(a)、(b)、(c)分别是灌丛盖度为0、50%、100%的处理。
Fig. 2 Insect herbivory and different shrub coverage treatments. (a), (b) and (c) are treatments with shrub coverage of 0, 50% and 100%, respectively.
图3 灌丛盖度对昆虫植食作用的影响。图中阴影区域为95%的置信区间。Rc2指固定效应和随机效应共同的R2; Rm2指固定效应的R2。
Fig. 3 Effect of shrub coverage on insect herbivory. The shaded areas are 95% confidence intervals. Rc2 means R2 of fixed effect and random effect; Rm2 means R2 of fixed effect.
图4 不同环境条件下灌丛盖度对昆虫植食作用的影响。(a)、(b)、(c)、(d)分别显示在年平均温度较低、土壤碳含量和氮含量较高以及土壤有效磷含量较低的条件下, 灌丛盖度对昆虫植食作用的正效应更显著。阴影区域为95%的置信区间。
Fig. 4 Effects of shrub cover on insect herbivory under different environmental factors. Under the conditions of lower mean annual temperature (a), higher soil carbon content (b) and nitrogen content (c), and lower soil available phosphorus content (d), the positive effect of shrub cover on insect herbivory was stronger. The shaded area is a 95% confidence interval.
变量 Variable | 分子自由度 Num df | 分母自由度 Den df | 估计值 Estimate | F | P |
---|---|---|---|---|---|
盖度 Coverage | 1 | 105 | -0.097 | 0.681 | 0.411 |
海拔 Elevation | 1 | 105 | -0.001 | 0.074 | 0.807 |
盖度 × 海拔 Coverage × Elevation | 1 | 105 | < 0.001 | 1.330 | 0.252 |
盖度 Coverage | 1 | 105 | 0.043 | 24.591 | < 0.001 |
年均温 Mean annual temperature | 1 | 105 | -0.182 | 0.175 | 0.703 |
盖度 × 年均温 Coverage × Mean annual temperature | 1 | 105 | -0.008 | 4.604 | 0.034 |
盖度 Coverage | 1 | 105 | 0.297 | 3.342 | 0.070 |
年均降水 Mean annual precipitation | 1 | 105 | 0.015 | 0.147 | 0.732 |
盖度 × 年均降水 Coverage × Mean annual precipitation | 1 | 105 | > -0.001 | 2.543 | 0.114 |
盖度 Coverage | 1 | 105 | 0.015 | 0.714 | 0.400 |
土壤含水量 Soil water content | 1 | 105 | -2.094 | 0.243 | 0.662 |
盖度 × 土壤含水量 Coverage × Soil water content | 1 | 105 | 0.040 | 2.085 | 0.152 |
盖度 Coverage | 1 | 105 | 0.054 | 0.645 | 0.424 |
土壤酸碱度 Soil pH | 1 | 105 | 0.447 | 0.075 | 0.805 |
盖度 × 土壤酸碱度 Coverage × Soil pH | 1 | 105 | -0.003 | 0.055 | 0.815 |
盖度 Coverage | 1 | 105 | < 0.001 | < 0.001 | 0.983 |
土壤全磷含量 Soil total phosphorus | 1 | 105 | -0.434 | 0.004 | 0.954 |
盖度 × 土壤全磷含量 Coverage × Soil total phosphorus | 1 | 105 | 0.042 | 0.855 | 0.357 |
盖度 Coverage | 1 | 105 | 0.140 | 12.999 | < 0.001 |
土壤有效磷含量 Soil available phosphorus | 1 | 105 | -0.058 | 0.005 | 0.950 |
盖度 × 土壤有效磷含量 Coverage × Soil available phosphorus | 1 | 105 | -0.019 | 7.195 | 0.008 |
盖度 Coverage | 1 | 105 | -0.142 | 6.596 | 0.012 |
土壤碳含量 Soil carban content | 1 | 105 | 0.035 | 0.534 | 0.467 |
盖度 × 土壤碳含量 Coverage × Soil carbon content | 1 | 105 | 0.002 | 10.859 | 0.001 |
盖度 Coverage | 1 | 105 | -0.129 | 4.280 | 0.041 |
土壤氮含量 Soil nitrogen content | 1 | 105 | 0.561 | 0.542 | 0.491 |
盖度 × 土壤氮含量 Coverage × Soil nitrogen content | 1 | 105 | 0.010 | 7.341 | 0.008 |
表1 灌丛盖度、环境因子及其交互效应对昆虫植食作用的影响。粗体表示效应显著(P < 0.05)
Table 1 Effects of shrub cover, environmental factors and their interaction effects on insect herbivory. Bold indicates significant effects (P < 0.05)
变量 Variable | 分子自由度 Num df | 分母自由度 Den df | 估计值 Estimate | F | P |
---|---|---|---|---|---|
盖度 Coverage | 1 | 105 | -0.097 | 0.681 | 0.411 |
海拔 Elevation | 1 | 105 | -0.001 | 0.074 | 0.807 |
盖度 × 海拔 Coverage × Elevation | 1 | 105 | < 0.001 | 1.330 | 0.252 |
盖度 Coverage | 1 | 105 | 0.043 | 24.591 | < 0.001 |
年均温 Mean annual temperature | 1 | 105 | -0.182 | 0.175 | 0.703 |
盖度 × 年均温 Coverage × Mean annual temperature | 1 | 105 | -0.008 | 4.604 | 0.034 |
盖度 Coverage | 1 | 105 | 0.297 | 3.342 | 0.070 |
年均降水 Mean annual precipitation | 1 | 105 | 0.015 | 0.147 | 0.732 |
盖度 × 年均降水 Coverage × Mean annual precipitation | 1 | 105 | > -0.001 | 2.543 | 0.114 |
盖度 Coverage | 1 | 105 | 0.015 | 0.714 | 0.400 |
土壤含水量 Soil water content | 1 | 105 | -2.094 | 0.243 | 0.662 |
盖度 × 土壤含水量 Coverage × Soil water content | 1 | 105 | 0.040 | 2.085 | 0.152 |
盖度 Coverage | 1 | 105 | 0.054 | 0.645 | 0.424 |
土壤酸碱度 Soil pH | 1 | 105 | 0.447 | 0.075 | 0.805 |
盖度 × 土壤酸碱度 Coverage × Soil pH | 1 | 105 | -0.003 | 0.055 | 0.815 |
盖度 Coverage | 1 | 105 | < 0.001 | < 0.001 | 0.983 |
土壤全磷含量 Soil total phosphorus | 1 | 105 | -0.434 | 0.004 | 0.954 |
盖度 × 土壤全磷含量 Coverage × Soil total phosphorus | 1 | 105 | 0.042 | 0.855 | 0.357 |
盖度 Coverage | 1 | 105 | 0.140 | 12.999 | < 0.001 |
土壤有效磷含量 Soil available phosphorus | 1 | 105 | -0.058 | 0.005 | 0.950 |
盖度 × 土壤有效磷含量 Coverage × Soil available phosphorus | 1 | 105 | -0.019 | 7.195 | 0.008 |
盖度 Coverage | 1 | 105 | -0.142 | 6.596 | 0.012 |
土壤碳含量 Soil carban content | 1 | 105 | 0.035 | 0.534 | 0.467 |
盖度 × 土壤碳含量 Coverage × Soil carbon content | 1 | 105 | 0.002 | 10.859 | 0.001 |
盖度 Coverage | 1 | 105 | -0.129 | 4.280 | 0.041 |
土壤氮含量 Soil nitrogen content | 1 | 105 | 0.561 | 0.542 | 0.491 |
盖度 × 土壤氮含量 Coverage × Soil nitrogen content | 1 | 105 | 0.010 | 7.341 | 0.008 |
[1] | Allen MR, Dube OP, Solecki W, Aragón-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, Mahowald N, Mulugetta Y, Perez R, Wairiu W, Zickfeld K (2018) Special Report:Global Warming of 1.5℃. Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK and New York, NY, USA. |
[2] |
Andrade JF, Alvarado F, Carlos Santos J, Santos BA (2020) Rainfall reduction increases insect herbivory in tropical herb communities. Journal of Vegetation Science, 31, 487-496.
DOI URL |
[3] |
Angassa A, Oba G (2007) Relating long-term rainfall variability to cattle population dynamics in communal rangelands and a government ranch in southern Ethiopia. Agricultural Systems, 94, 715-725.
DOI URL |
[4] |
Anthelme F, Cavieres LA, Dangles O (2014) Facilitation among plants in alpine environments in the face of climate change. Frontiers in Plant Science, 5, 387.
DOI PMID |
[5] |
Bailey AW (1970) Barrier effect of the shrub Elaeagnus commutata on grazing cattle and forage production in central Alberta. Journal of Range Management, 23, 248-251.
DOI URL |
[6] | De Frenne P, Zellweger F, Rodríguez-Sánchez F, Scheffers BR, Hylander K, Luoto M, Vellend M, Verheyen K, Lenoir J (2019) Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3, 744-749. |
[7] |
Ding J, Eldridge DJ (2021) The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant and Soil, 459, 173-183.
DOI |
[8] | D’Odorico P, Fuentes JD, Pockman WT, Collins SL, He YF, Medeiros JS, DeWekker S, Litvak ME (2010) Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan Desert. Ecosphere, 1, 1-11. |
[9] |
Dorji T, Moe SR, Klein JA, Totland Ø (2014) Plant species richness, evenness, and composition along environmental gradients in an alpine meadow grazing ecosystem in central Tibet, China. Arctic, Antarctic, and Alpine Research, 46, 308-326.
DOI URL |
[10] |
Ebeling A, Strauss AT, Adler PB, Arnillas CA, Barrio IC, Biederman LA, Borer ET, Bugalho MN, Caldeira MC, Cadotte MW, Daleo P, Eisenhauer N, Eskelinen A, Fay PA, Firn J, Graff P, Hagenah N, Haider S, Komatsu KJ, McCulley RL, Mitchell CE, Moore JL, Pascual J, Peri PL, Power SA, Prober SM, Risch AC, Roscher C, Sankaran M, Seabloom EW, Schielzeth H, Schütz M, Speziale KL, Tedder M, Virtanen R, Blumenthal DM (2022) Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. Journal of Ecology, 110, 327-339.
DOI URL |
[11] |
Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG (2011) Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 14, 709-722.
DOI PMID |
[12] |
Garner W, Steinberger Y (1989) A proposed mechanism for the formation of ‘fertile islands’ in the desert ecosystem. Journal of Arid Environments, 16, 257-262.
DOI URL |
[13] |
Ghazian N, Zuliani M, Lortie CJ (2020) Micro-climatic amelioration in a California desert: Artificial shelter versus shrub canopy. Journal of Ecological Engineering, 21, 216-228.
DOI URL |
[14] |
Hahn PG, Maron JL (2016) A framework for predicting intraspecific variation in plant defense. Trends in Ecology & Evolution, 31, 646-656.
DOI URL |
[15] |
Herms DA, Mattson WJ (1992) The dilemma of plants: To grow or defend. The Quarterly Review of Biology, 67, 283-335.
DOI URL |
[16] |
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
DOI URL |
[17] | Hunziker P, Lambertz SK, Weber K, Crocoll C, Halkier BA, Schulz A (2021) Herbivore feeding preference corroborates optimal defense theory for specialized metabolites within plants. Proceedings of the National Academy of Sciences, USA, 118, e2111977118. |
[18] |
Jankielsohn A (2018) The importance of insects in agricultural ecosystems. Advances in Entomology, 6, 62-73.
DOI URL |
[19] |
Jaworski T, Hilszczański J (2013) The effect of temperature and humidity changes on insects development their impact on forest ecosystems in the expected climate change. Forest Research Papers, 74, 345-355.
DOI URL |
[20] |
Joern A, Laws AN (2013) Ecological mechanisms underlying arthropod species diversity in grasslands. Annual Review of Entomology, 58, 19-36.
DOI PMID |
[21] | Koerner SE, Smith MD, Burkepile DE, Hanan NP, Avolio ML, Collins SL, Knapp AK, Lemoine NP, Forrestel EJ, Eby S, Thompson DI, Aguado-Santacruz GA, Anderson JP, Anderson TM, Angassa A, Bagchi S, Bakker ES, Bastin G, Baur LE, Beard KH, Beever EA, Bohlen PJ, Boughton EH, Canestro D, Cesa A, Chaneton E, Cheng J, D’Antonio CM, Deleglise C, Dembélé F, Dorrough J, Eldridge DJ, Fernandez-Going B, Fernández-Lugo S, Fraser LH, Freedman B, García-Salgado G, Goheen JR, Guo L, Husheer S, Karembé M, Knops JMH, Kraaij T, Kulmatiski A, Kytöviita MM, Lezama F, Loucougaray G, Loydi A, Milchunas DG, Milton SJ, Morgan JW, Moxham C, Nehring KC, Olff H, Palmer TM, Rebollo S, Riginos C, Risch AC, Rueda M, Sankaran M, Sasaki T, Schoenecker KA, Schultz NL, Schütz M, Schwabe A, Siebert F, Smit C, Stahlheber KA, Storm C, Strong DJ, Su J, Tiruvaimozhi YV, Tyler C, Val J, Vandegehuchte ML, Veblen KE, Vermeire LT, Ward D, Wu J, Young TP, Yu Q, Zelikova TJ (2018) Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology & Evolution, 2, 1925-1932. |
[22] |
Kőrösi Á, Batáry P, Orosz A, Rédei D, Báldi A (2012) Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary. Insect Conservation and Diversity, 5, 57-66.
DOI URL |
[23] | Kozlov MV, Zvereva EL (2018) Background insect herbivory: Impacts, patterns and methodology. Progress in Botany, 79, 313-355. |
[24] |
Kristensen JÅ, Rousk J, Metcalfe DB (2020) Below-ground responses to insect herbivory in ecosystems with woody plant canopies: A meta-analysis. Journal of Ecology, 108, 917-930.
DOI URL |
[25] |
La Pierre KJ, Smith MD (2016) Soil nutrient additions increase invertebrate herbivore abundances, but not herbivory, across three grassland systems. Oecologia, 180, 485-497.
DOI URL |
[26] |
Lehndal L, Ågren J (2015) Latitudinal variation in resistance and tolerance to herbivory in the perennial herb Lythrum salicaria is related to intensity of herbivory and plant phenology. Journal of Evolutionary Biology, 28, 576-589.
DOI PMID |
[27] |
Levey DJ, Caughlin TT, Brudvig LA, Haddad NM, Damschen EI, Tewksbury JJ, Evans DM (2016) Disentangling fragmentation effects on herbivory in understory plants of longleaf pine savanna. Ecology, 97, 2248-2258.
DOI PMID |
[28] |
Li X, Jiang D, Zhou Q, Oshida T (2014) Soil seed bank characteristics beneath an age sequence of Caragana microphylla shrubs in the Horqin Sandy Land region of northeastern China. Land Degradation & Development, 25, 236-243.
DOI URL |
[29] |
Li Q, Shen XD, Huang Q, Sun FD, Zhou JQ, Ma X, Ran ZY, Chen YJ, Li Z, Yan YH, Zhang XQ, Gao WC, Liu L (2021) Resource islands of Salix cupularis facilitating seedling emergence of the companion herbs in the restoration process of desertified alpine meadow, the Tibetan Plateau. Journal of Environmental Management, 289, 112434.
DOI URL |
[30] | Liang E, Wang YF, Piao SL, Lu XM, Camarero JJ, Zhu HF, Zhu LP, Ellison AM, Ciais P, Peñuelas J (2016) Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences, USA, 113, 4380-4385. |
[31] |
Lind EM, La Pierre KJ, Seabloom EW, Alberti J, Iribarne O, Firn J, Gruner DS, Kay AD, Pascal J, Wright JP, Yang L, Borer ET (2017) Increased grassland arthropod production with mammalian herbivory and eutrophication: A test of mediation pathways. Ecology, 98, 3022-3033.
DOI PMID |
[32] |
Liu M, Wang Y, Sun J, Zhang ZC, Xu XL, Zhou HK, Wu GL, Xu M, Tsunekawa A, Haregeweyn N, Tsubo M (2020) Shift in nurse effect from facilitation to competition with increasing size of Salix cupularis canopy in a desertified alpine meadow on the Tibetan Plateau. CATENA, 195, 104757.
DOI URL |
[33] |
Liu X, Lin ZY, Hu K, Wang XX, Zhang P, Xiao Y, Zhang L, Liu M (2023) Geographical variation in community-wide herbivory matches patterns of intraspecific variation instead of species turnover. Global Ecology and Biogeography, 32, 1140-1151.
DOI URL |
[34] |
Maestre FT, Eldridge DJ, Soliveres S (2016) A multifaceted view on the impacts of shrub encroachment. Applied Vegetation Science, 19, 369-370.
DOI PMID |
[35] | Meng LH, Wang ZK, Liu CY, Zhu WL (2011) Reproductive allocation of an alpine perennial, Polygonum macrophyllum. Acta Botanica Boreali-Occidentalia Sinica, 31, 1157-1163. |
[36] |
Navarro-Cano JA, Goberna M, Valiente-Banuet A, Montesinos-Navarro A, García C, Verdú M (2014) Plant phylodiversity enhances soil microbial productivity in facilitation-driven communities. Oecologia, 174, 909-920.
PMID |
[37] |
Pistón N, Schöb C, Armas C, Prieto I, Pugnaire FI (2016) Contribution of co-occurring shrub species to community richness and phylogenetic diversity along an environmental gradient. Perspectives in Plant Ecology, Evolution and Systematics, 19, 30-39.
DOI URL |
[38] |
Phillips CA, Wurzburger N (2019) Elevated rates of heterotrophic respiration in shrub-conditioned Arctic tundra soils. Pedobiologia, 72, 8-15.
DOI |
[39] |
Reynolds JF, Virginia RA, Kemp PR, de Soyza AG, Tremmel DC (1999) Impact of drought on desert shrubs: Effects of seasonality and degree of resource island development. Ecological Monographs, 69, 69-106.
DOI URL |
[40] | Rhoades DF (1979) Evolution of plant chemical defenses against herbivores. In: Herbivores: Their Interaction with Secondary Plant Metabolites (eds Rosenthal GA, Janzen DH), pp. 3-54. Academic Press, San Diego. |
[41] |
Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517-544.
DOI URL |
[42] | Schlinkert H, Westphal C, Clough Y, Grass I, Helmerichs J, Tscharntke T (2016) Plant size affects mutualistic and antagonistic interactions and reproductive success across 21 Brassicaceae species. Ecosphere, 7, e01529. |
[43] |
Shi HJ, Jiang SJ, Bian JH, He JS (2023) Livestock exclusion enhances shrub encroachment in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Land Degradation & Development, 34, 1390-1402.
DOI URL |
[44] | Thompson JA, Zinnert JC, Young DR (2017) Immediate effects of microclimate modification enhance native shrub encroachment. Ecosphere, 8, e01687. |
[45] |
Wang XS, Michalet R, He S, Wang XT (2023) The subalpine shrub Dasiphora fruticosa alters seasonal and elevational effects on soil microbial diversity and ecosystem functions on the Tibetan Plateau. Journal of Applied Ecology, 60, 52-63.
DOI URL |
[46] |
Wang XT, Xiao S, Yang XL, Liu ZY, Zhou XH, Du GZ, Zhang LM, Guo AF, Chen SY, Nielsen UN (2019) Dominant plant species influence nematode richness by moderating understory diversity and microbial assemblages. Soil Biology and Biochemistry, 137, 107566.
DOI URL |
[47] |
Wright DM, Jordan GJ, Lee WG, Duncan RP, Forsyth DM, Coomes DA (2010) Do leaves of plants on phosphorus- impoverished soils contain high concentrations of phenolic defence compounds? Functional Ecology, 24, 52-61.
DOI URL |
[48] |
Xue YJ, Cheng AP, Li S, Liu XJ, Li JW (2023) The effects of environment and species diversity on shrub survival in subtropical forests. Biodiversity Science, 31, 22443. (in Chinese with English abstract)
DOI URL |
[薛玉洁, 程安鹏, 李珊, 刘晓娟, 李景文 (2023) 亚热带森林中环境和物种多样性对灌木存活的影响. 生物多样性, 31, 22443.] | |
[49] |
Zhang ZC, Liu YF, Cui Z, Huang Z, Liu Y, Leite PAM, Zhao JX, Wu GL (2022) Shrub encroachment impaired the structure and functioning of alpine meadow communities on the Qinghai-Tibetan Plateau. Land Degradation & Development, 33, 2454-2463.
DOI URL |
[50] |
Zhong ZW, Wang DL, Zhu H, Wang L, Feng C, Wang ZN (2014) Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity. Ecology, 95, 1055-1064.
PMID |
[51] |
Zhou LH, Shen HH, Chen LY, Li H, Zhang PJ, Zhao X, Liu TY, Liu SS, Xing AJ, Hu HF, Fang JY (2019) Ecological consequences of shrub encroachment in the grasslands of Northern China. Landscape Ecology, 34, 119-130.
DOI |
[52] |
Zhou T, Zhang W (2021) Anthropogenic warming of Tibetan Plateau and constrained future projection. Environmental Research Letters, 16, 044039.
DOI |
[53] |
Zhou YK (2019) Characterizing the spatio-temporal dynamics and variability in climate extremes over the Tibetan Plateau during 1960-2012. Journal of Resources and Ecology, 10, 397-414.
DOI |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn