生物多样性 ›› 2023, Vol. 31 ›› Issue (4): 22632. DOI: 10.17520/biods.2022632
所属专题: 生物入侵
收稿日期:
2022-11-10
接受日期:
2023-03-02
出版日期:
2023-04-20
发布日期:
2023-04-20
通讯作者:
*E-mail: 基金资助:
Yaochu Sun1, Yuanfei Pan1, Mu Liu2, Xiaoyun Pan1,3,4,*()
Received:
2022-11-10
Accepted:
2023-03-02
Online:
2023-04-20
Published:
2023-04-20
Contact:
*E-mail: 摘要:
外来植物从原产地到入侵地通常会经历植食性天敌选择压力的变化, 其生长防御性状的快速适应性进化是成功入侵的重要机制之一。植食性天敌按食性专一性分为专食性天敌与广食性天敌, 并对植物生长防御性状产生不同的选择压力。然而, 在自然群落中两类植食性天敌的相对比例可能会随时间和空间的改变而改变, 这些变化对入侵植物生长防御进化的影响尚不清楚。本研究以喜旱莲子草(Alternanthera philoxeroides)为研究对象, 在同质园条件下比较了原产地(阿根廷)和入侵地(中国)种群在不同专食性-广食性天敌比例处理下生长防御性状的差异。结果显示: 专食性-广食性天敌比例对喜旱莲子草生长防御性状的影响无显著差异, 但其与来源地之间的交互作用对生长性状中的贮藏根生物量与根冠比具有显著影响。其中入侵地种群的贮藏根生物量与根冠比随着专食性天敌比例的增加而增加, 而原产地种群正好相反。通过对比原产地与入侵地种群生长防御相关性状发现, 入侵地种群的总生物量(-21.4%, P = 0.027)、地上生物量(-22.6%, P = 0.026)、生长速率(-17.5%, P < 0.001)和黄酮含量(-38.4%, P = 0.010)显著低于原产地种群, 分枝强度(+357.9%, P < 0.001)、比茎长(+62.2%, P < 0.001)、比叶面积(+13.6%, P < 0.001)和叶毛密度(+221.9%, P = 0.002)显著高于原产地种群。综上, 入侵植物会通过改变生长性状而不是防御性状以响应专食性-广食性天敌比例的连续性变化。该结果为探究入侵植物生长防御进化提供了新的研究思路与证据。
孙尧初, 潘远飞, 刘木, 潘晓云 (2023) 专食性-广食性天敌比例影响入侵植物喜旱莲子草生长防御策略. 生物多样性, 31, 22632. DOI: 10.17520/biods.2022632.
Yaochu Sun, Yuanfei Pan, Mu Liu, Xiaoyun Pan (2023) The specialist-to-generalist ratio affects growth and defense strategy of invasive plant Alternanthera philoxeroides. Biodiversity Science, 31, 22632. DOI: 10.17520/biods.2022632.
变量 Variables | 专食性-广食性 天敌比例 SGR | 来源地 Origin | SGR × O |
---|---|---|---|
生长性状 Growth traits | |||
总生物量 Total biomass | 0.723 (0.401) | 5.318 (0.027) | 0.203 (0.655) |
地上生物量 Shoot biomass | 0.699 (0.409) | 5.374 (0.026) | 0.060 (0.808) |
贮藏根生物量 Storage root biomass | 0.540 (0.467) | 0.430 (0.516) | 5.302 (0.027) |
生长速率 Growth rate | 0.372 (0.546) | 15.854 (< 0.001) | 0.710 (0.405) |
分枝强度 Branch intensity | 2.344 (0.135) | 18.876 (< 0.001) | 1.017 (0.320) |
根冠比 Root/shoot ratio | 0.209 (0.650) | 1.120 (0.297) | 4.714 (0.037) |
比茎长 Specific stem length | 0.061 (0.806) | 61.237 (< 0.001) | 0.253 (0.618) |
比叶面积 Specific leaf area | 0.092 (0.763) | 21.948 (< 0.001) | 0.563 (0.458) |
防御性状 Defense traits | |||
叶毛密度 Leaf trichome density | 0.037 (0.848) | 10.974 (0.002) | 0.141 (0.709) |
三萜皂苷含量 Triterpenoid saponins content | 0.311 (0.581) | 3.517 (0.069) | 0.040 (0.842) |
黄酮含量 Flavones content | 2.106 (0.155) | 7.437 (0.010) | 1.101 (0.301) |
单宁含量 Tannins content | 0.569 (0.456) | 1.085 (0.305) | 3.431 (0.072) |
木质素含量 Lignin content | 0.038 (0.847) | 3.336 (0.076) | 1.398 (0.245) |
表1 来源地、专食性-广食性天敌比例及其交互作用对喜旱莲子草各性状的效应(F(P))。粗体表示效应显著(P < 0.05), 斜体表示边际显著(P < 0.10)。
Table 1 Effects of origin (O), specialist-to-generalist ratio (SGR), and their interaction on various traits of Alternanthera philoxeroides. Significant effects (P < 0.05) are marked in bold, and marginally significant effects (P < 0.10) are marked in italics.
变量 Variables | 专食性-广食性 天敌比例 SGR | 来源地 Origin | SGR × O |
---|---|---|---|
生长性状 Growth traits | |||
总生物量 Total biomass | 0.723 (0.401) | 5.318 (0.027) | 0.203 (0.655) |
地上生物量 Shoot biomass | 0.699 (0.409) | 5.374 (0.026) | 0.060 (0.808) |
贮藏根生物量 Storage root biomass | 0.540 (0.467) | 0.430 (0.516) | 5.302 (0.027) |
生长速率 Growth rate | 0.372 (0.546) | 15.854 (< 0.001) | 0.710 (0.405) |
分枝强度 Branch intensity | 2.344 (0.135) | 18.876 (< 0.001) | 1.017 (0.320) |
根冠比 Root/shoot ratio | 0.209 (0.650) | 1.120 (0.297) | 4.714 (0.037) |
比茎长 Specific stem length | 0.061 (0.806) | 61.237 (< 0.001) | 0.253 (0.618) |
比叶面积 Specific leaf area | 0.092 (0.763) | 21.948 (< 0.001) | 0.563 (0.458) |
防御性状 Defense traits | |||
叶毛密度 Leaf trichome density | 0.037 (0.848) | 10.974 (0.002) | 0.141 (0.709) |
三萜皂苷含量 Triterpenoid saponins content | 0.311 (0.581) | 3.517 (0.069) | 0.040 (0.842) |
黄酮含量 Flavones content | 2.106 (0.155) | 7.437 (0.010) | 1.101 (0.301) |
单宁含量 Tannins content | 0.569 (0.456) | 1.085 (0.305) | 3.431 (0.072) |
木质素含量 Lignin content | 0.038 (0.847) | 3.336 (0.076) | 1.398 (0.245) |
图1 喜旱莲子草不同来源地种群生长与防御性状差异。* P < 0.05; ** P < 0.01; *** P < 0.001。
Fig. 1 Differences in growth and defense traits of Alternanthera philoxeroides populations from different sources. * P < 0.05; ** P < 0.01; *** P < 0.001.
图2 专食性-广食性天敌比例对喜旱莲子草入侵地种群(浅色)和原产地种群(深色)生长性状的影响。图中标注了专食性-广食性天敌比例与来源地交互作用(SGR × O)的显著性、线性拟合系数以及不同来源地组间差异的显著性: ns, 不显著; * P < 0.05; ** P < 0.01; *** P < 0.001。
Fig. 2 Effect of the specialist-to-generalist ratios on the growth traits between invasive (light) and native (dark) populations of Alternanthera philoxeroides. The significance of the interaction between specialist-to-generalist ratio and origin (SGR × O), the linear fitting coefficient, and the significance of the different origin is marked in the figure. ns, P > 0.1; * P < 0.05; ** P < 0.01; *** P < 0.001.
[1] |
Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science, 17, 293-302.
DOI PMID |
[2] |
Ballhorn DJ, Godschalx AL, Smart SM, Kautz S, Schädler M (2014) Chemical defense lowers plant competitiveness. Oecologia, 176, 811-824.
DOI PMID |
[3] |
Blossey B, Notzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. Journal of Ecology, 83, 887-889.
DOI URL |
[4] | Choquenot D, McLeod S (1997) Large herbivore population dynamics. Trends in Ecology & Evolution, 12, 400-401. |
[5] |
Cronin JT, Bhattarai GP, Allen WJ, Meyerson LA (2015) Biogeography of a plant invasion: Plant-herbivore interactions. Ecology, 96, 1115-1127.
PMID |
[6] |
Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL, Marquis RJ, Ricklefs RE, Greeney HF, Wagner DL, Morais HC, Diniz IR, Kursar TA, Coley PD (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448, 696-699.
DOI |
[7] | Forister ML, Novotny V, Panorska AK, Baje L, Basset Y, Butterill PT, Cizek L, Coley PD, Dem F, Diniz IR, Drozd P, Fox M, Glassmire AE, Hazen R, Hrcek J, Jahner JP, Kaman O, Kozubowski TJ, Kursar TA, Lewis OT, Lill J, Marquis RJ, Miller SE, Morais HC, Murakami M, Nickel H, Pardikes NA, Ricklefs RE, Singer MS, Smilanich AM, Stireman JO, Villamarín-Cortez S, Vodka S, Volf M, Wagner DL, Walla T, Weiblen GD, Dyer LA (2015) The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences, USA, 112, 442-447. |
[8] |
Franks SJ, Pratt PD, Dray FA, Simms EL (2008) Selection on herbivory resistance and growth rate in an invasive plant. The American Naturalist, 171, 678-691.
DOI PMID |
[9] |
Geng YP, van Klinken RD, Sosa A, Li B, Chen JK, Xu CY (2016) The relative importance of genetic diversity and phenotypic plasticity in determining invasion success of a clonal weed in the USA and China. Frontiers in Plant Science, 7, 213.
DOI PMID |
[10] |
Huang HY, Zhu ZC, Wu JH, La Q, Zhou YH, Pan XY (2021) Phenotypic plasticity of Alternanthera philoxeroides in response to simulated daily warming: Introduced vs. native populations. Biodiversity Science, 29, 419-427. (in Chinese with English abstract)
DOI URL |
[ 黄河燕, 朱政财, 吴纪华, 拉琼, 周永洪, 潘晓云 (2021) 喜旱莲子草对模拟全天增温的可塑性: 引入地和原产地种群的比较. 生物多样性, 29, 419-427.]
DOI |
|
[11] |
Huang W, Siemann E, Wheeler GS, Zou JW, Carrillo JL, Ding JQ (2010) Resource allocation to defence and growth are driven by different responses to generalist and specialist herbivory in an invasive plant. Journal of Ecology, 98, 1157-1167.
DOI URL |
[12] |
Joshi J, Vrieling K (2005) The enemy release and EICA hypothesis revisited: Incorporating the fundamental difference between specialist and generalist herbivores. Ecology Letters, 8, 704-714.
DOI URL |
[13] |
Keane R, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170.
DOI URL |
[14] |
Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytologist, 175, 176-184.
DOI PMID |
[15] | Liu M, Pan YF, Pan XY, Sosa A, Blumenthal DM, Van Kleunen M, Li B (2021) Plant invasion alters latitudinal pattern of plant-defense syndromes. Ecology, 102, e03511. |
[16] | Liu M, Zhou F, Pan XY, Zhang ZJ, Traw MB, Li B (2018) Specificity of herbivore-induced responses in an invasive species, Alternanthera philoxeroides (alligator weed). Ecology and Evolution, 8, 59-70. |
[17] | Ma RY, Wang R (2005) Invasion mechanism and biological control of alligatorweed Alternanthera philoxeroides (Amaranthaceae), in China. Chinese Journal of Applied and Environmental Biology, 11, 246-250. (in Chinese with English abstract) |
[ 马瑞燕, 王韧 (2005) 喜旱莲子草在中国的入侵机理及其生物防治. 应用与环境生物学报, 11, 246-250.] | |
[18] |
Maddox DM, Andres LA, Hennessey RD, Blackburn RD, Spencer NR (1971) Insects to control alligatorweed: An invader of aquatic ecosystems in the United States. BioScience, 21, 985-991.
DOI URL |
[19] |
Maron JL, Vilà M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecological Monographs, 74, 261-280.
DOI URL |
[20] |
Meiners SJ, Handel SN (2000) Additive and nonadditive effects of herbivory and competition on tree seedling mortality, growth, and allocation. American Journal of Botany, 87, 1821-1826.
PMID |
[21] |
Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: Implications for biological control. Trends in Ecology & Evolution, 19, 417-422.
DOI URL |
[22] |
Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of lierbivorous insects in a tropical forest. Nature, 416, 841-844.
DOI URL |
[23] |
Pan XY, Geng YP, Sosa A, Zhang WJ, Li B, Chen JK (2007) Invasive Alternanthera philoxeroides: Biology, ecology and management. Acta Phytotaxonomica Sinica, 45, 884-900. (in Chinese with English abstract)
DOI URL |
[ 潘晓云, 耿宇鹏, Sosa A, 张文驹, 李博, 陈家宽 (2007) 入侵植物喜旱莲子草——生物学、生态学及管理. 植物分类学报, 45, 884-900.] | |
[24] |
Pan XY, Jia X, Fu DJ, Li B (2013) Geographical diversification of growth-defense strategies in an invasive plant. Journal of Systematics and Evolution, 51, 308-317.
DOI URL |
[25] |
Pan YF, Pan XY, Faria LDB, Li B (2022) Interactive effect matters: A combination of herbivory degree and the ratio of generalist to specialist better predicts evolution of plant defense. bioRxiv, doi: 10.1101/2022.01.13.476260.
DOI |
[26] | Saldamando CI, Marquez EJ (2012) Approach to Spodoptera (Lepidoptera: Noctuidae) phylogeny based on the sequence of the cytocrhome oxydase I (COI) mitochondrial gene. Revista de Biología Tropical, 60, 1237-1248. |
[27] |
Stam JM, Kroes A, Li Y, Gols R, van Loon JJ, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: From community to genes. Annual Review of Plant Biology, 65, 689-713.
DOI PMID |
[28] |
Stamp N (2003) Out of the quagmire of plant defense hypotheses. The Quarterly Review of Biology, 78, 23-55.
DOI URL |
[29] |
Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends in Ecology & Evolution, 14, 179-185.
DOI URL |
[30] |
Thomas SM, Abbott KC, Moloney KA (2017) Effects of aboveground herbivory on plants with long-term belowground biomass storage. Theoretical Ecology, 10, 35-50.
DOI URL |
[31] |
van der Meijden E (1996) Plant defence, an evolutionary dilemma: Contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomologia Experimentalis et Applicata, 80, 307-310.
DOI URL |
[32] |
Wang Y, Carrillo JL, Siemann E, Wheeler GS, Zhu L, Gu X, Ding JQ (2013) Specificity of extrafloral nectar induction by herbivores differs among native and invasive populations of tallow tree. Annals of Botany, 112, 751-756.
DOI PMID |
[33] |
Wei XQ, Vrieling K, Mulder PPJ, Klinkhamer PGL (2015) Testing the generalist-specialist dilemma: The role of pyrrolizidine alkaloids in resistance to invertebrate herbivores in Jacobaea species. Journal of Chemical Ecology, 41, 159-167
DOI URL |
[34] |
Yang Y, Liu M, Pan YF, Huang HY, Pan XY, Sosa A, Hou YP, Zhu ZC, Li B (2021) Rapid evolution of latitudinal clines in growth and defence of an invasive weed. New Phytologist, 230, 845-856.
DOI PMID |
[1] | 谭晓丹, 张鹏, 朱思睿, 刘向, 周淑荣, 刘木. 青藏高原高寒草甸灌丛化对圆穗蓼昆虫植食作用的影响[J]. 生物多样性, 2024, 32(1): 23417-. |
[2] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[3] | 肖俞, 李宇然, 段禾祥, 任正涛, 冯圣碧, 姜志诚, 李家华, 张品, 胡金明, 耿宇鹏. 高黎贡山外来植物入侵现状及管控建议[J]. 生物多样性, 2023, 31(5): 23011-. |
[4] | 崔夏, 刘全儒, 吴超然, 何宇飞, 马金双. 京津冀外来入侵植物[J]. 生物多样性, 2022, 30(8): 21497-. |
[5] | 林秦文, 肖翠, 马金双. 中国外来植物数据集[J]. 生物多样性, 2022, 30(5): 22127-. |
[6] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
[7] | 郭朝丹, 朱金方, 柳晓燕, 赵彩云, 李俊生. 贵州典型自然保护区内外外来入侵草本植物的比较[J]. 生物多样性, 2021, 29(5): 596-604. |
[8] | 王亚, 王玮倩, 王钦克, 李晓霞, 刘延, 黄乔乔. 土壤养分对菊科一年生入侵种和本地种繁殖性状的影响[J]. 生物多样性, 2021, 29(1): 1-9. |
[9] | 韩雪, 苏锦权, 姚娜娜, 陈宝明. 外来入侵植物的根系觅养行为研究进展[J]. 生物多样性, 2020, 28(6): 727-733. |
[10] | 邓亨宁, 鞠文彬, 高云东, 张君议, 李诗琦, 高信芬, 徐波. 新建川藏铁路(雅安-昌都段)沿线外来入侵植物种类及分布特征[J]. 生物多样性, 2020, 28(10): 1174-1181. |
[11] | 余文生,郭耀霖,江佳佳,孙可可,鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[12] | 土艳丽,王力平,王喜龙,王林林,段元文. 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位[J]. 生物多样性, 2019, 27(3): 306-313. |
[13] | 薛晨阳, 许玉凤, 曲波. 不同氮水平下瘤突苍耳、苍耳及其杂交种形态、光合及生长特征比较[J]. 生物多样性, 2018, 26(6): 554-563. |
[14] | 孙士国, 卢斌, 卢新民, 黄双全. 入侵植物的繁殖策略以及对本土植物繁殖的影响[J]. 生物多样性, 2018, 26(5): 457-467. |
[15] | 陈宏, 冼晓青, 邱荣洲, 池美香, 赵健. 基于GIS的外来入侵植物调查规划与外业实施[J]. 生物多样性, 2018, 26(1): 44-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn