生物多样性 ›› 2017, Vol. 25 ›› Issue (12): 1276-1284. DOI: 10.17520/biods.2017301
所属专题: 生物入侵
收稿日期:
2017-11-09
接受日期:
2017-12-26
出版日期:
2017-12-20
发布日期:
2017-12-10
通讯作者:
潘晓云
基金资助:
Fang Zhou, Zhijie Zhang, Mu Liu, Xiaoyun Pan*()
Received:
2017-11-09
Accepted:
2017-12-26
Online:
2017-12-20
Published:
2017-12-10
Contact:
Pan Xiaoyun
摘要:
竞争力增强进化假说(Evolution of Increased Competitive Ability, EICA)认为入侵植物在入侵地由于天敌逃逸导致对天敌防御投入降低而增加生长和繁殖等投入。然而, EICA假说所预测防御能力的进化主要集中在防御的组成抗性方面, 而从诱导抗性和耐受性的角度进行的验证还很有限, 并且忽视了生境资源可利用性对植物防御策略的影响。本研究采用同质园实验比较了喜旱莲子草(Alternanthera philoxeroides)原产地(阿根廷)和入侵地(美国)各9个种群, 在高、低养分和有、无专食性天敌取食处理下的防御相关功能性状(比茎长、根冠比)及其对天敌取食的诱导反应, 以及它们与植物适合度相关指标的关系。结果表明: 入侵地种群具有较高的总生物量(+14.7%)、较低的比茎长(防御钻茎化蛹天敌的重要指标, -27.5%), 暗示其个体大小增加而防御投入降低, 符合EICA假说的预测。入侵地种群耐受性与原产地种群没有显著差异。在高养分下, 入侵地种群的比茎长对专食性天敌取食的诱导反应显著增加, 且与总生物量呈显著正相关。这些结果表明, 相比原产地种群, 入侵地种群具有更高的生物量, 对专食性天敌的组成抗性降低, 且在高养分下对专食性天敌的诱导抗性增加, 推测生境的养分富集可能会降低喜旱莲子草的生物防治效果。
周方, 张致杰, 刘木, 潘晓云 (2017) 养分影响入侵种喜旱莲子草对专食性天敌的防御. 生物多样性, 25, 1276-1284. DOI: 10.17520/biods.2017301.
Fang Zhou, Zhijie Zhang, Mu Liu, Xiaoyun Pan (2017) Effects of nutrient levels on defense against specialist insects in an invasive alligator weed. Biodiversity Science, 25, 1276-1284. DOI: 10.17520/biods.2017301.
参数 Source of variation | d.f | F | |||
---|---|---|---|---|---|
总生物量 Total biomass | 贮藏根生物量 SRB | 根冠比 RSR | 比茎长 SSL | ||
采样地 Origin (O) | 1, 16 | 36.76*** | 2.07 | 3.67 | 51.71*** |
种群 Population (Pop) | 16, 264 | 9.01*** | 5.69*** | 10.05*** | 14.03*** |
养分 Nutrient (N) | 1, 264 | 1.56 | 53.41*** | 126.82*** | 57.00*** |
取食 Herbivory (H) | 1, 264 | 16.84*** | 7.23** | 10.46** | 3.86 |
养分 × 取食 (N × H) | 1, 264 | 37.81*** | 25.75*** | 46.80*** | 0.95 |
采样地 × 养分 (O × N) | 1, 264 | 0.33 | 0.74 | 0.10 | 0.36 |
采样地 × 取食 (O × H) | 1, 264 | 2.14 | 0.05 | 0.09 | 0.12 |
采样地 × 养分 × 取食 (O × N × H) | 1, 264 | 0.40 | 0.01 | 0.68 | 5.15* |
养分 × 种群 (N × Pop) | 16, 264 | 1.69 | 0.57 | 1.49 | 1.24 |
养分 × 取食 × 种群 (N × H × Pop) | 16, 264 | 1.51 | 0.95 | 1.49 | 1.37 |
协变量 Covariates | 1, 287 | 45.18*** | 2.15 | 23.74*** |
表1 喜旱莲子草原产地(阿根廷)和入侵地(美国)种群在两种养分处理(高养分; 低养分)和专食性天敌取食处理(有取食; 无取食)下适合度性状(生物量, 贮藏根生物量)和功能性状(根冠比, 比茎长)的方差分析或协方差分析结果
Table 1 ANOVA or ANCOVA of the effects of continental origin, population (pop), nutrient level and herbivory on total biomass, storage root biomass (SRB), root/shoot ratio (RSR), specific stem length (SSL) of Alternanthera philoxeroides.
参数 Source of variation | d.f | F | |||
---|---|---|---|---|---|
总生物量 Total biomass | 贮藏根生物量 SRB | 根冠比 RSR | 比茎长 SSL | ||
采样地 Origin (O) | 1, 16 | 36.76*** | 2.07 | 3.67 | 51.71*** |
种群 Population (Pop) | 16, 264 | 9.01*** | 5.69*** | 10.05*** | 14.03*** |
养分 Nutrient (N) | 1, 264 | 1.56 | 53.41*** | 126.82*** | 57.00*** |
取食 Herbivory (H) | 1, 264 | 16.84*** | 7.23** | 10.46** | 3.86 |
养分 × 取食 (N × H) | 1, 264 | 37.81*** | 25.75*** | 46.80*** | 0.95 |
采样地 × 养分 (O × N) | 1, 264 | 0.33 | 0.74 | 0.10 | 0.36 |
采样地 × 取食 (O × H) | 1, 264 | 2.14 | 0.05 | 0.09 | 0.12 |
采样地 × 养分 × 取食 (O × N × H) | 1, 264 | 0.40 | 0.01 | 0.68 | 5.15* |
养分 × 种群 (N × Pop) | 16, 264 | 1.69 | 0.57 | 1.49 | 1.24 |
养分 × 取食 × 种群 (N × H × Pop) | 16, 264 | 1.51 | 0.95 | 1.49 | 1.37 |
协变量 Covariates | 1, 287 | 45.18*** | 2.15 | 23.74*** |
图1 莲草直胸跳甲的取食处理(有取食, 无取食)和养分处理(高养分, 低养分)对原产地(阿根廷)和入侵地(美国)种群总生物量(a)、贮藏根生物量(b)、根冠比(c)与比茎长(d)的影响。误差棒代表+/-标准误。
Fig. 1 The effects of herbivory by Agasicles hygrophila (with, h+, without, h-) and nutrient level (high, N+, low, N-) on plant total biomass (a), storage root biomass (SRB) (b), root/shoot ratio (RSR) (c), and specific stem length (SSL) (d) of Alternanthera philoxeroides from native (Argentina) and introduced (USA) range. Error bars denote +/- SE.
图2 养分处理(高养分, 低养分)对原产地(阿根廷)和入侵地(美国)种群喜旱莲子草总生物量(a)和贮藏根生物量(b)对莲草直胸跳甲取食耐受性的影响。误差棒代表+/-标准误。
Fig. 2 The effects of nutrient level (high, N+, low, N-) on tolerance of total biomass (a) and SRB (b) to herbivory by Agasicles hygrophila of Alternanthera philoxeroides from native (Argentina) and introduced (USA) range. Error bars denote +/- SE.
图3 养分处理(高养分, 低养分)对原产地(阿根廷)和入侵地(美国)种群喜旱莲子草根冠比(a)和比茎长(b)对莲草直胸跳甲取食的诱导反应(即可塑性指数)的影响。误差棒代表+/-标准误。
Fig. 3 The effects of nutrient level (high, N+, low, N-) on the plasticity (RTR) of RSR (a) and SSL (b) in response to herbivory by Agasicles hygrophila of Alternanthera philoxeroides from native (Argentina) and introduced (USA) range. Error bars denote +/-SE.
图4 在两种养分处理下, 原产地(阿根廷)和入侵地(美国)喜旱莲子草种群的适合度(总生物量、贮藏根生物量SRB)及总生物量、贮藏根生物量对取食作用的耐受性(TBiomass、TSRB)与功能性状(根冠比RSR、比茎长SSL)及功能性状对莲草直胸跳甲取食的可塑性指数(RTR for RSR, RTR for SSL)的相关性。实线代表正相关, 虚线代表负相关。粗线代表显著性水平P < 0.01, 细线代表显著性水平P < 0.05。
Fig. 4 The correlations between plant fitness (total biomass, SRB), tolerance of total biomass (TBiomass) and SRB (TSRB) to herbivory and functional traits (root/shoot ratio, RSR; specific stem length, SSL), relative trait range of functional traits (RTR for RSR, RTR for SSL) in response to herbivory by Agasicles hygrophila for Alternanthera philoxeroides from native (Argentina) and introduced (USA) range grown under high and low nutrient levels. The solid lines signify positive correlation, and dashed ones mean negative, the thick lines mean significant at P < 0.01, and thin lines at P < 0.05.
[1] | Abhilasha D, Joshi J (2009) Enhanced fitness due to higher fecundity, increased defence against a specialist and toler¬ance towards a generalist herbivore in an invasive annual plant. Journal of Plant Ecology, 2, 77-86. |
[2] | Agrawal AA, Hastings AP, Bradburd GS, Woods EC, Zust T, Harvey JA, Bukovinszky T (2015) Evolution of plant growth and defense in a continental introduction. The American Naturalist, 186, E1-E15. |
[3] | Beaton LL, Van Zandt PA, Esselman EJ, Knight TM (2011) Comparison of the herbivore defense and competitive ability of ancestral and modern genotypes of an invasive plant, Lespedeza cuneata. Oikos, 120, 1413-1419. |
[4] | Bjorkman C, Bommarco R, Eklund K, Hoglund S (2004) Harvesting disrupts biological control of herbivores in a short-rotation coppice system. Ecological Applications, 14, 1624-1633. |
[5] | Blossey B, Notzold R (1995) Evolution of increased compe¬titive ability in invasive nonindigenous plants—a hypothesis. Journal of Ecology, 83, 887-889. |
[6] | Bossdorf O, Schroder S, Prati D, Auge H (2004) Palatability and tolerance to simulated herbivory in native and introduced populations of Alliaria petiolata (Brassicaceae). American Journal of Botany, 91, 856-862. |
[7] | Burghardt KT (2016) Nutrient supply alters goldenrod’s induced response to herbivory. Functional Ecology, 30, 1769-1778. |
[8] | Cano L, Escarre J, Fleck I, Blanco-Moreno JM, Sans FX (2008) Increased fitness and plasticity of an invasive species in its introduced range: a study using Senecio pterophorus. Journal of Ecology, 96, 468-476. |
[9] | Cipollini D, Mbagwu J, Barto K, Hillstrom C, Enright S (2005) Expression of constitutive and inducible chemical defenses in native and invasive populations of Alliaria petiolata. Journal of Chemical Ecology, 31, 1255-1267. |
[10] | Colautti RI, Maron JL, Barrett SCH (2009) Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evolutionary Applications, 2, 187-199. |
[11] | Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science, 230, 895-899. |
[12] | Davis MA, Grime JP, Thompson K (2000) Fluctuating resou¬rces in plant communities: a general theory of invasibility. Journal of Ecology, 88, 528-534. |
[13] | Endara MJ, Coley PD (2011) The resource availability hypot¬hesis revisited: a meta-analysis. Functional Ecology, 25, 389-398. |
[14] | Fornoni J (2011) Ecological and evolutionary implications of plant tolerance to herbivory. Functional Ecology, 25, 399-407. |
[15] | Genton BJ, Kotanen PM, Cheptou PO, Adolphe C, Shykoff JA (2005) Enemy release but no evolutionary loss of defence in a plant invasion: an inter-continental reciprocal transplant experiment. Oecologia, 146, 404-414. |
[16] | Huang W, Carrillo J, Ding JQ, Siemann E (2012) Invader partitions ecological and evolutionary responses to above- and belowground herbivory. Ecology, 93, 2343-2352. |
[17] | Huang W, Siemann E, Wheeler GS, Zou JW, Carrillo J, Ding JQ (2010) Resource allocation to defence and growth are driven by different responses to generalist and specialist herbivory in an invasive plant. Journal of Ecology, 98, 1157-1167. |
[18] | Julien MH, Broadbent JE (1980) The biology of Australian weeds. 3. Alternanthera philoxeroides (Mart.) Griseb. Journal of the Australian Institute of Agricultural Science, 46, 150-155. |
[19] | Julien MH, Skarratt B, Maywald GF (1995) Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. Journal of Aquatic Plant Management, 33, 55-60. |
[20] | Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170. |
[21] | Koricheva J, Nykanen H, Gianoli E (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? The American Naturalist, 163, E64-E75. |
[22] | Kumschick S, Hufbauer RA, Alba C, Blumenthal DM (2013) Evolution of fast-growing and more resistant phenotypes in introduced common mullein (Verbascum thapsus). Journal of Ecology, 101, 378-387. |
[23] | Li YP, Feng YL, Barclay G (2012) No evidence for evolutio¬narily decreased tolerance and increased fitness in invasive Chromolaena odorata: implications for invasi¬veness and biological control. Plant Ecology, 213, 1157-1166. |
[24] | Lu XM, Siemann E, He MY, Wei H, Shao X, Ding JQ (2015) Climate warming increases biological control agent impact on a non-target species. Ecology Letters, 18, 48-56. |
[25] | Lu XM, Siemann E, Shao X, Wei H, Ding JQ (2013) Climate warming affects biological invasions by shifting interactions of plants and herbivores. Global Change Biology, 19, 2339-2347. |
[26] | Maddox DM, Andres LA, Hennessey RD, Blackburn RD, Spe¬ncer NR (1971) Insects to control alligator weed: an invader of aquatic ecosystems in the United States. BioScience, 21, 985-991. |
[27] | Pan XY, Geng YP, Li B, Chen JK (2006) Phenotypic plasticity and dominance shift of co-occurring native and alien inva¬sive in contrasting habitats. Acta Oecologica, 30, 333-341. |
[28] | Pan XY, Geng YP, Sosa A, Zhang WJ, Li B, Chen JK (2007) Invasive Alternanthera philoxeroides: biology, ecology and management. Acta Phytotaxonomica Sinica, 45, 884-900. |
[29] | Pan XY, Jia X, Fu DJ, Li B (2013) Geographical diversification of growth-defense strategies in an invasive plant. Journal of Systematics and Evolution, 51, 308-317. |
[30] | Qing H, Yao YH, Xiao Y, Hu FQ, Sun YX, Zhou CF, An SQ (2011) Invasive and native tall forms of Spartina alterniflo¬ra respond differently to nitrogen availability. Acta Oecol¬og¬ica, 37, 23-30. |
[31] | Quiroz CL, Choler P, Baptist F, Gonzalez-Teuber M, Moli¬na-Montenegro MA, Cavieres LA (2009) Alpine dandelions originated in the native and introduced range differ in their responses to environmental constraints. Ecological Resea¬rch, 24, 175-183. |
[32] | Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993. |
[33] | Rogers WE, Siemann E (2004) Invasive ecotypes tolerate herbivory more effectively than native ecotypes of the Chinese tallow tree Sapium sebiferum. Journal of Applied Ecology, 41, 561-570. |
[34] | Stout MJ, Brovont RA, Duffey SS (1998) Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. Journal of Chemical Ecology, 24, 945-963. |
[35] | Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends in Ecology & Evol¬ution, 14, 179-185. |
[36] | Sun Y, Ding JQ, Rena MX (2009) Effects of simulated herb¬ivory and resource availability on the invasive plant, Alter¬nanthera philoxeroides in different habitats. Biological Con¬trol, 48, 287-293. |
[37] | Wei H, Lu XM, Ding JQ (2015) Direct and indirect impacts of different water regimes on the invasive plant, alligator weed (Alternanthera philoxeroides), and its biological control agent, Agasicles hygrophila. Weed Biology and Managem¬ent, 15, 1-10. |
[38] | Wise MJ, Abrahamson WG (2007) Effects of resource avail¬ability on tolerance of herbivory: a review and assessment of three opposing models. The American Naturalist, 169, 443-454. |
[39] | Zhang HJ, Chang RY, Guo X, Liang XQ, Wang RQ, Liu J (2017) Shifts in growth and competitive dominance of the invasive plant Alternanthera philoxeroides under different nitrogen and phosphorus supply. Environmental and Experimental Botany, 135, 118-125. |
[40] | Zhang ZJ, Pan XY, Zhang ZY, He KS, Li B (2015) Specialist insect herbivore and light availability do not interact in the evolution of an invasive plant. PLoS ONE, 10, 14. |
[41] | Zou JW, Siemann E, Rogers WE, DeWalt SJ (2008) Decreased resistance and increased tolerance to native herbivores of the invasive plant Sapium sebiferum. Ecography, 31, 663-671. |
[1] | 谭晓丹, 张鹏, 朱思睿, 刘向, 周淑荣, 刘木. 青藏高原高寒草甸灌丛化对圆穗蓼昆虫植食作用的影响[J]. 生物多样性, 2024, 32(1): 23417-. |
[2] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[3] | 邓铭先, 黄河燕, 沈诗韵, 吴纪华, 拉琼, 斯确多吉, 潘晓云. 喜旱莲子草在青藏高原对模拟增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(9): 1198-1205. |
[4] | 黄河燕, 朱政财, 吴纪华, 拉琼, 周永洪, 潘晓云. 喜旱莲子草对模拟全天增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(4): 419-427. |
[5] | 孙思邈, 陈吉欣, 冯炜炜, 张昶, 黄凯, 管铭, 孙建坤, 刘明超, 冯玉龙. 植物氮形态利用策略及对外来植物入侵性的影响[J]. 生物多样性, 2021, 29(1): 72-80. |
[6] | 石江艳, 杨海, 华俊钦, 赵玉泽, 李建强, 徐基良. 利用红外相机研究白冠长尾雉日活动节律与人为干扰的关系[J]. 生物多样性, 2020, 28(7): 796-805. |
[7] | 于良瑞, 朱政财, 潘晓云. 喜旱莲子草对同基因型邻体根系的表型可塑性: 入侵地和原产地的比较[J]. 生物多样性, 2020, 28(6): 651-657. |
[8] | 陈俊, 姚兰, 艾训儒, 朱江, 吴漫玲, 黄小, 陈思艺, 王进, 朱强. 基于功能性状的水杉原生母树种群生境适应策略[J]. 生物多样性, 2020, 28(3): 296-302. |
[9] | 王玉贤, 刘左军, 赵志刚, 侯盟, 张小瑞, 吕婉灵. 青藏高原高寒草甸植物花寿命对传粉环境的响应[J]. 生物多样性, 2018, 26(5): 510-518. |
[10] | 潘玉梅, 唐赛春, 韦春强, 李象钦. 不同光照和水分条件下鬼针草属入侵种与本地种生长、光合特征及表型可塑性的比较[J]. 生物多样性, 2017, 25(12): 1257-1266. |
[11] | 黎磊, 耿宇鹏, 兰志春, 陈家宽, 宋志平. 异质生境中水生植物表型可塑性的研究进展[J]. 生物多样性, 2016, 24(2): 216-227. |
[12] | 张紫妍, 张致杰, 潘晓云. 喜旱莲子草对遮荫的可塑性反应:入侵地与原产地种群的比较[J]. 生物多样性, 2015, 23(1): 18-22. |
[13] | 王坤, 杨继, 陈家宽. 不同土壤水分和养分条件下喜旱莲子草与同属种生长状况的比较研究[J]. 生物多样性, 2010, 18(6): 615-621. |
[14] | 张亦默, 王卿, 卢蒙, 贾昕, 耿宇鹏, 李博. 中国东部沿海互花米草种群生活史特征的纬度变异与可塑性[J]. 生物多样性, 2008, 16(5): 462-469. |
[15] | 潘晓云, 梁汉钊, Alejandro Sosa, 耿宇鹏, 李博, 陈家宽. 喜旱莲子草茎叶解剖结构从原产地到入侵地的变异式样[J]. 生物多样性, 2006, 14(3): 232-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn