生物多样性 ›› 2023, Vol. 31 ›› Issue (2): 22139. DOI: 10.17520/biods.2022139
杨欣1,2, 姚志良2,3, 王彬2,4, 温韩东2,5, 邓云2,6, 曹敏2,5, 张志明4, 谭正洪1,4,*(), 林露湘2,6,*()
收稿日期:
2022-03-29
接受日期:
2022-05-25
出版日期:
2023-02-20
发布日期:
2022-06-23
通讯作者:
*谭正洪, E-mail: tan@ynu.edu.cn;林露湘 linluxa@xtbg.ac.cn
基金资助:
Xin Yang1,2, Zhiliang Yao2,3, Bin Wang2,4, Handong Wen2,5, Yun Deng2,6, Min Cao2,5, Zhiming Zhang4, Zhenghong Tan1,4,*(), Luxiang Lin2,6,*()
Received:
2022-03-29
Accepted:
2022-05-25
Online:
2023-02-20
Published:
2022-06-23
Contact:
*Zhenghong Tan, E-mail: tan@ynu.edu.cn;Luxiang Lin linluxa@xtbg.ac.cn
摘要:
林分结构可以表征森林群落光的可利用性和光环境的异质性, 对群落物种组成的变异具有重要驱动作用。然而, 目前还鲜有研究将林分结构用于解释群落物种组成的变异。本研究以哀牢山亚热带中山湿性常绿阔叶林20 ha森林动态监测样地及其周边区域按公里网格设置的19个1 ha森林动态样地为研究对象, 将林分结构参数、环境因子和空间结构变量共同作为解释变量, 采用基于冗余分析的变差分解和层次分割方法, 在局域和区域尺度上同时解析群落物种组成变异的驱动因素。结果表明, 在局域和区域尺度上, 纳入林分结构后均提高了对物种组成变异的解释率。在局域尺度上, 加入林分结构作为解释变量后, 单纯的空间结构的解释率明显下降, 林分结构与环境因子累计贡献了41.0%的解释率。在区域尺度上, 林分结构与环境因子累计贡献了23.0%的解释率。从局域到区域尺度, 环境过滤的相对作用明显增强。林分结构指示的光的可利用性对林冠下方的树种组成具有较强的塑造作用, 今后的研究应进一步探讨林分结构对亚热带常绿阔叶林物种组成变异的驱动机制。
杨欣, 姚志良, 王彬, 温韩东, 邓云, 曹敏, 张志明, 谭正洪, 林露湘 (2023) 亚热带常绿阔叶林林分结构对物种组成变异的驱动作用: 从局域到区域尺度. 生物多样性, 31, 22139. DOI: 10.17520/biods.2022139.
Xin Yang, Zhiliang Yao, Bin Wang, Handong Wen, Yun Deng, Min Cao, Zhiming Zhang, Zhenghong Tan, Luxiang Lin (2023) Driving effects of forest stand structure of a subtropical evergreen broad-leaved forest on species composition variation: From local to regional scales. Biodiversity Science, 31, 22139. DOI: 10.17520/biods.2022139.
图1 样地间物种组成相似性的距离衰减图。(a)由哀牢山亚热带中山湿性常绿阔叶林20 ha森林动态样地划分成的20个1 ha样地; (b)哀牢山20 ha样地周围按公里网格设置的19个1 ha森林动态样地。
Fig. 1 Distance decay of species compositional similarity between plots. (a) 20 1-ha plots divided by the 20 ha subtropical mid-mountain moist evergreen broad-leaved forest dynamics plot in Ailao Mountains; (b) 19 1-ha forest dynamics plots established among grids of 1 km2 near the 20 ha forest dynamics plot in Ailao Mountains.
图2 由哀牢山亚热带中山湿性常绿阔叶林20 ha森林动态样地划分成的20个1 ha样地和哀牢山20 ha样地周围按公里网格设置的19个1 ha森林动态样地的空间结构、环境因子变差分解(a、b)及空间结构、环境因子和林分结构变差分解(c、d) Venn图(< 0的部分不显示)
Fig. 2 The Venn diagram of variation partitioning explained by spatial structures and environmental factors (a, b) and by spatial structures, environmental factors and forest stand structures (c, d) of 20 1-ha plots divided by the 20 ha subtropical mid-mountain moist evergreen broad-leaved forest dynamics plot in Ailao Mountains and 19 1-ha forest dynamics plots established among grids of 1 km2 near the 20 ha forest dynamics plot in Ailao Mountains (values < 0 not shown)
图3 通过rdaca.hp解析由哀牢山亚热带中山湿性常绿阔叶林20 ha森林动态样地划分成的20个1 ha样地空间结构、环境因子和林分结构各变量的相对重要性。FS_PC1、FS_PC2分别代表林分结构的第一主成分和第二主成分; Env_PC1、Env_PC2、Env_PC3分别代表地形环境因子的第一至第三主成分; MEM3、MEM4、MEM5、MEM6、MEM8、x、y代表空间结构, 其中, x和y为空间结构的线性趋势。
Fig. 3 The relative importance of individual variables of spatial structures, environmental factors and forest stand structures in 20 1-ha plots divided by the 20 ha subtropical mid-mountain moist evergreen broad-leaved forest dynamics plot in Ailao Mountains by rdacca.hp. FS_PC1 and FS_PC2 represent the first and the second principal components of forest stand structures, respectively. Env_PC1, Env_PC2 and Env_PC3 represent the first, the second and the third principal components of topographic environmental factors, respectively. MEM3, MEM4, MEM5, MEM6, MEM8, x and y represent the spatial structures, where, x and y are linear trends of spatial structures.
图4 通过rdaca.hp解析哀牢山20 ha森林动态样地周围按公里网格设置的19个1 ha森林动态样地空间结构、环境因子和林分结构各变量的相对重要性。FS_PC1、FS_PC2分别代表林分结构的第一主成分和第二主成分; Env_PC1、Env_PC2、Env_PC3分别代表地形环境因子的第一至第三主成分; MEM1代表空间结构。
Fig. 4 The relative importance of individual variables of spatial structures, environmental factors and forest stand structures in 19 1 ha forest dynamics plots established among grids of 1 km2 near the 20 ha forest dynamics plot in Ailao Mountains by rdacca.hp. FS_PC1 and FS_PC2 represent the first and the second principal components of forest stand structures, respectively. Env_PC1, Env_PC2 and Env_PC3 represent the first, the second and the third principal components of environmental factors, respectively. MEM1 represents the spatial structures.
[1] |
Ali A (2019) Forest stand structure and functioning: Current knowledge and future challenges. Ecological Indicators, 98, 665-677.
DOI URL |
[2] |
Asefa M, Brown C, Cao M, Zhang GC, Ci XQ, Sha LQ, Li J, Lin LX, Yang J (2019) Contrasting effects of space and environment on functional and phylogenetic dissimilarity in a tropical forest. Journal of Plant Ecology, 12, 314-326.
DOI URL |
[3] |
Baselga A, Orme CDL (2012) betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808-812.
DOI URL |
[4] |
Binkley D, Stape JL, Bauerle WL, Ryan MG (2010) Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil. Forest Ecology and Management, 259, 1704-1713.
DOI URL |
[5] |
Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology, 89, 2623-2632.
DOI PMID |
[6] |
Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51-68.
DOI URL |
[7] |
Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826-1832.
DOI URL |
[8] | Brown C, Burslem DF, Illian JB, Bao L, Brockelman W, Cao M, Chang LW, Dattaraja HS, Davies S, Gunatilleke CV, Gunatilleke IA, Huang J, Kassim AR, Lafrankie JV, Lian J, Lin L, Ma K, Mi X, Nathalang A, Noor S, Ong P, Sukumar R, Su SH, Sun IF, Suresh HS, Tan S, Thompson J, Uriarte M, Valencia R, Yap SL, Ye W, Law R (2013) Multispecies coexistence of trees in tropical forests:Spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proceedings of the Royal Society B: Biological Sciences, 280, 20130502. |
[9] |
Chang LW, Zeleny D, Li CF, Chiu ST, Hsieh CF (2013) Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94, 2145-2151.
PMID |
[10] |
Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2351-2363.
DOI URL |
[11] |
Chave J, Leigh EG Jr (2002) A spatially explicit neutral model of beta-diversity in tropical forests. Theoretical Population Biology, 62, 153-168.
DOI PMID |
[12] |
Chen SB, Ouyang ZY, Xu WH, Xiao Y (2010) A review of beta diversity studies. Biodiversity Science, 18, 323-335. (in Chinese with English abstract)
DOI |
[陈圣宾, 欧阳志云, 徐卫华, 肖燚 (2010) Beta多样性研究进展. 生物多样性, 18, 323-335.]
DOI |
|
[13] | Condit R, Hubbel SP, Forster FB (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer, New York. |
[14] |
Condit R, Pitman N, Leigh EG Jr, Chave J, Terborgh J, Foster RB, Núñez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees. Science, 295, 666-669.
DOI PMID |
[15] |
De Cáceres M, Legendre P, Valencia R, Cao M, Chang LW, Chuyong G, Condit R, Hao Z, Hsieh CF, Hubbell S, Kenfack D, Ma K, Mi X, Supardi Noor MN, Kassim AR, Ren H, Su SH, Sun IF, Thomas D, Ye W, He F (2012) The variation of tree beta diversity across a global network of forest plots. Global Ecology and Biogeography, 21, 1191-1202.
DOI URL |
[16] | Drake JB, Knox RG, Dubayah RO, Clark DB, Condit R, Blair JB, Hofton M (2003) Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality of relationships. Global Ecology & Biogeography, 12, 147-159. |
[17] | Dray S, Blanchet FG, Borcard D, Clappe S, Guénard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner H (2021) adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-14. https://CRAN.R-project.org/package=adespatial/. (accessed on 2021-04-07) |
[18] |
Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257-275.
DOI URL |
[19] |
Fang JY, Wang XP, Tang ZY (2009) Local and regional processes control species richness of plant communities: The species pool hypothesis. Biodiversity Science, 17, 605-612. (in Chinese with English abstract)
DOI URL |
[方精云, 王襄平, 唐志尧 (2009) 局域和区域过程共同控制着群落的物种多样性: 种库假说. 生物多样性, 17, 605-612.]
DOI |
|
[20] | Fotis AT, Morin TH, Fahey RT, Hardiman BS, Bohrer G, Curtis PS (2018) Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agricultural and Forest Meteorology, 250/251, 181-191. |
[21] | Francois H, Julie J, Sebastien L, Jeremy M (2020) FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. R package version 2.4. https://CRAN.R-project.org/package=FactoMineR/. (accessed on 2020-12-11) |
[22] |
Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75, 1-34.
DOI URL |
[23] | Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences, USA, 101, 7651-7656. |
[24] |
Gómez-Rodríguez C, Baselga A (2018) Variation among European beetle taxa in patterns of distance decay of similarity suggests a major role of dispersal processes. Ecography, 41, 1825-1834.
DOI URL |
[25] |
Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: The continuum hypothesis. Ecology Letters, 9, 399-409.
PMID |
[26] |
Guo QH, Hu TY, Ma Q, Xu KX, Yang QL, Sun QH, Li YM, Su YJ (2020) Advances for the new remote sensing technology in ecosystem ecology research. Chinese Journal of Plant Ecology, 44, 418-435. (in Chinese with English abstract)
DOI URL |
[郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军 (2020) 新一代遥感技术助力生态系统生态学研究. 植物生态学报, 44, 418-435.]
DOI |
|
[27] |
Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtis PS (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92, 1818-1827.
PMID |
[28] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[29] | Ishii HT, Tanabe S, Hiura T (2004) Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. Forest Science, 50, 342-355. |
[30] | Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: Influence of environmental and spatial data quality. Oecologia, 155, 593-604. |
[31] |
Lai JS, Zou Y, Zhang JL, Peres-Neto PR (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788.
DOI URL |
[32] |
Laliberté E, Paquette A, Legendre P, Bouchard A (2009) Assessing the scale-specific importance of niches and other spatial processes on beta diversity: A case study from a temperate forest. Oecologia, 159, 377-388.
DOI PMID |
[33] |
Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies. BioScience, 52, 19-30.
DOI URL |
[34] |
Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecological Monographs, 75, 435-450.
DOI URL |
[35] |
Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674.
DOI PMID |
[36] |
Levine JM, Murrell DJ (2003) The community-level consequences of seed dispersal patterns. Annual Review of Ecology, Evolution, and Systematics, 34, 549-574.
DOI URL |
[37] |
Matsuo T, Martínez-Ramos M, Bongers F, van der Sande MT, Poorter L (2021) Forest structure drives changes in light heterogeneity during tropical secondary forest succession. Journal of Ecology, 109, 2871-2884.
DOI PMID |
[38] |
Meyer L, Diniz‐Filho JAF, Lohmann LG, Hortal J, Barreto E, Rangel T, Kissling WD, Pither J (2019) Canopy height explains species richness in the largest clade of neotropical lianas. Global Ecology and Biogeography, 29, 26-37.
DOI URL |
[39] |
Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R (2013) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151-157.
DOI PMID |
[40] |
Nekola JC, McGill BJ (2014) Scale dependency in the functional form of the distance decay relationship. Ecography, 37, 309-320.
DOI URL |
[41] |
Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009) Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract)
DOI |
[牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009) 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.]
DOI |
|
[42] | Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: Community Ecology Package. R packages version 2.5-7. https://CRAN.R-project.org/package=vegan/. (acces-sed on 2020-11-28) |
[43] | Page NV, Shanker K (2018) Environment and dispersal influence changes in species composition at different scales in woody plants of the Western Ghats, India. Journal of Vegetation Science, 29, 74-83. |
[44] |
Qian H, Ricklefs RE (2007) A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecology Letters, 10, 737-744.
DOI PMID |
[45] | Qiu XZ, Xie SC (1998) Study on the Forest Ecosystem in Ailao Mountains, Yunnan, China. Yunnan Science and Technology Press, Kunming. (in Chinese) |
[邱学忠, 谢寿昌 (1998) 哀牢山森林生态系统研究. 云南科技出版社, 昆明.] | |
[46] | R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. (accessed on 2021-08-10) |
[47] |
Ricklefs RE (1987) Community diversity: Relative roles of local and regional processes. Science, 235, 167-171.
PMID |
[48] |
Ruokolainen L, Ranta E, Kaitala V, Fowler MS (2009) When can we distinguish between neutral and non-neutral processes in community dynamics under ecological drift? Ecology Letters, 12, 909-919.
DOI PMID |
[49] |
Seidler TG, Plotkin JB (2006) Seed dispersal and spatial pattern in tropical trees. PLoS Biology, 4, e344.
DOI PMID |
[50] |
Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648-655.
DOI URL |
[51] |
Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography, 30, 3-12.
DOI URL |
[52] |
Steinbauer MJ, Dolos K, Reineking B, Beierkuhnlein C (2012) Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Global Ecology and Biogeography, 21, 1203-1212.
DOI URL |
[53] |
Tateno R, Takeda H (2003) Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecological Research, 18, 559-571.
DOI URL |
[54] |
Thom D, Taylor AR, Seidl R, Thuiller W, Wang J, Robideau M, Keeton WS (2021) Forest structure, not climate, is the primary driver of functional diversity in northeastern North America. Science of the Total Environment, 762, 143070.
DOI URL |
[55] |
Toledo M, Poorter L, Peña-Claros M, Alarcón A, Balcázar J, Chuviña J, Leaño C, Licona JC ter Steege H, Bongers F (2011) Patterns and determinants of floristic variation across lowland forests of Bolivia. Biotropica, 43, 405-413.
DOI URL |
[56] |
Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244.
DOI PMID |
[57] |
Vellend M (2010) Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183-206.
DOI URL |
[58] |
Wen HD, Lin LX, Yang J, Hu YH, Cao M, Liu YH, Lu ZY, Xie YN (2018) Species composition and community structure of a 20 hm2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts. Ailaoshan, Yunnan Province, China. Chinese Journal of Plant Ecology, 42, 419-429. (in Chinese with English abstract)
DOI URL |
[温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能 (2018) 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构. 植物生态学报, 42, 419-429.]
DOI |
|
[59] |
Whittaker RH (1956) Vegetation of the Great Smoky Mountains. Ecological Monographs, 26, 1-69.
DOI URL |
[60] |
Yao ZL, Wen HD, Deng Y, Cao M, Lin LX (2020) Driving forces underlying the beta diversity of tree species in subtropical mid-mountain moist evergreen broad-leaved forests in Ailao Mountains. Biodiversity Science, 28, 445-454. (in Chinese with English abstract)
DOI |
[姚志良, 温韩东, 邓云, 曹敏, 林露湘 (2020) 哀牢山亚热带中山湿性常绿阔叶林树种beta多样性格局形成的驱动力. 生物多样性, 28, 445-454.]
DOI |
|
[61] |
Yi X, Wang N, Ren H, Yu J, Hu T, Su Y, Mi X, Guo Q, Ma K (2022) From canopy complementarity to asymmetric competition: The negative relationship between structural diversity and productivity during succession. Journal of Ecology, 110, 457-465.
DOI URL |
[62] |
Yu F, Wang T, Groen TA, Skidmore AK, Yang X, Geng Y, Ma K (2015) Multi-scale comparison of topographic complexity indices in relation to plant species richness. Ecological Complexity, 22, 93-101.
DOI URL |
[63] | Zhang J, Huang S, He F (2015) Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences, USA, 112, 4009-4014. |
[64] |
Zhang J, Zhang ZC, Lutz JA, Chu CJ, Hu JB, Shen GC, Li BH, Yang QS, Lian JY, Zhang MH, Wang XH, Ye WH, He FL (2022) Drone-acquired data reveal the importance of forest canopy structure in predicting tree diversity. Forest Ecology and Management, 505, 119945.
DOI URL |
[65] |
Zhou CY, Wang B, Deng Y, Wu JJ, Cao M, Lin LX (2020) Canopy structure is an important factor driving local-scale woody plant functional beta diversity. Biodiversity Science, 28, 1546-1557. (in Chinese with English abstract)
DOI |
[周昌艳, 王彬, 邓云, 乌俊杰, 曹敏, 林露湘 (2020) 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力. 生物多样性, 28, 1546-1557.]
DOI |
|
[66] |
Zhu H (2021) Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China. Chinese Journal of Plant Ecology, 45, 224-241. (in Chinese with English abstract)
DOI URL |
[朱华 (2021) 云南常绿阔叶林的植被地理研究. 植物生态学报, 45, 224-241.] |
[1] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
[2] | 饶杰生, 杨涛, 田希, 刘文聪, 王晓凤, 钱恒君, 沈泽昊. 基于背包LiDAR的半湿润常绿阔叶林及其常见树种的垂直结构特征[J]. 生物多样性, 2023, 31(11): 23216-. |
[3] | 王群, 郭志祥, 李进斌, 王凯博, 吴文伟, 浦恩堂, 马方舟, 何成兴. 云南哀牢山、无量山国家级自然保护区蝴蝶种群动态及多样性[J]. 生物多样性, 2020, 28(8): 921-930. |
[4] | 姚志良,温韩东,邓云,曹敏,林露湘. 哀牢山亚热带中山湿性常绿阔叶林树种beta多样性格局形成的驱动力[J]. 生物多样性, 2020, 28(4): 445-454. |
[5] | 周中一, 刘冉, 时书纳, 苏艳军, 李文楷, 郭庆华. 基于激光雷达数据的物种分布模拟: 以美国加州内华达山脉南部区域食鱼貂分布模拟为例[J]. 生物多样性, 2018, 26(8): 878-891. |
[6] | 郭庆华, 胡天宇, 姜媛茜, 金时超, 王瑞, 关宏灿, 杨秋丽, 李玉美, 吴芳芳, 翟秋萍, 刘瑾, 苏艳军. 遥感在生物多样性研究中的应用进展[J]. 生物多样性, 2018, 26(8): 789-806. |
[7] | 谭剑波, 李爱农, 雷光斌, 陈国科, 马克平. IUCN生态系统红色名录研究进展[J]. 生物多样性, 2017, 25(5): 453-463. |
[8] | 徐远杰, 林敦梅, 石明, 谢妍洁, 王逸之, 管振华, 向建英. 云南哀牢山常绿阔叶林的空间分异及其影响因素[J]. 生物多样性, 2017, 25(1): 23-33. |
[9] | 郭庆华, 吴芳芳, 胡天宇, 陈琳海, 刘瑾, 赵晓倩, 高上, 庞树鑫. 无人机在生物多样性遥感监测中的应用现状与展望[J]. 生物多样性, 2016, 24(11): 1267-1278. |
[10] | 郭庆华, 刘瑾, 李玉美, 翟秋萍, 王永财, 吴芳芳, 胡天宇, 万华伟, 刘慧明, 申文明. 生物多样性近地面遥感监测: 应用现状与前景展望[J]. 生物多样性, 2016, 24(11): 1249-1266. |
[11] | 卢孟孟, 黄小翠, 慈秀芹, 杨国平, 李捷. 沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构[J]. 生物多样性, 2014, 22(4): 438-448. |
[12] | 冯建孟, 董晓东, 徐成东, 查凤书. 取样尺度效应对滇西北地区种子植物物种多样性纬度分布格局的影响[J]. 生物多样性, 2009, 17(3): 266-271. |
[13] | 王光美, 杨景成, 姜闯道, 赵洪涛, 张志东. 生物同质化研究透视[J]. 生物多样性, 2009, 17(2): 117-126. |
[14] | 马文章, 刘文耀, 杨礼攀, 杨国平. 边缘效应对山地湿性常绿阔叶林附生植物的影响[J]. 生物多样性, 2008, 16(3): 245-254. |
[15] | 李苏, 刘文耀, 王立松, 杨国平, 李达文. 云南哀牢山原生林及次生林群落附生地衣物种多样性与分布[J]. 生物多样性, 2007, 15(5): 445-455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn