生物多样性 ›› 2017, Vol. 25 ›› Issue (1): 23-33. DOI: 10.17520/biods.2016199
徐远杰1, 林敦梅2, 石明3, 谢妍洁3, 王逸之1, 管振华1,*(), 向建英1
收稿日期:
2016-07-20
接受日期:
2017-01-05
出版日期:
2017-01-20
发布日期:
2017-02-08
通讯作者:
管振华
基金资助:
Yuanjie Xu1, Dunmei Lin2, Ming Shi3, Yanjie Xie3, Yizhi Wang1, Zhenhua Guan1,*(), Jianying Xiang1
Received:
2016-07-20
Accepted:
2017-01-05
Online:
2017-01-20
Published:
2017-02-08
Contact:
Guan Zhenhua
摘要:
理解物种丰富度在空间上的变化, 阐明植物群落组成对生境异质性的响应是群落生态学研究的核心议题之一。与生境异质性有关的生态位分化对植物群落的多样性格局和物种分布具有重要影响。本文以分布在云南哀牢山的4种常绿阔叶林为研究对象, 通过对42个森林样地的调查取样, 探讨了常绿阔叶林的群落分布和树种丰富度在地形和土壤环境梯度上的变异。结果表明: 4种常绿阔叶林的树种组成有显著的差异。季风常绿阔叶林的树种丰富度极显著地高于其他3种类型; 中山湿性常绿阔叶林极显著地高于半湿润常绿阔叶林; 其他类型之间的差异不显著。非度量多维尺度分析显示, 海拔、坡度、土壤含水率及有机质等9个环境梯度是控制森林群落结构和树种分布的主要因素。土壤有效硼、海拔、全钾和凹凸度为树种丰富度的最佳预测变量, 累积解释了树种丰富度63.2%的变异。地形和土壤因子一起能够解释哀牢山常绿阔叶林的群落组成和树种丰富度的大部分变异。
徐远杰, 林敦梅, 石明, 谢妍洁, 王逸之, 管振华, 向建英 (2017) 云南哀牢山常绿阔叶林的空间分异及其影响因素. 生物多样性, 25, 23-33. DOI: 10.17520/biods.2016199.
Yuanjie Xu, Dunmei Lin, Ming Shi, Yanjie Xie, Yizhi Wang, Zhenhua Guan, Jianying Xiang (2017) Spatial heterogeneity and its causes in evergreen broad-leaved forests in the Ailao Mountains, Yunnan Province. Biodiversity Science, 25, 23-33. DOI: 10.17520/biods.2016199.
树种名 Species name | 苔藓矮林 MD | 中山湿性阔叶林 MM | 季风常绿阔叶林 MS | 半湿润常绿阔叶林 SH |
---|---|---|---|---|
倒卵叶石栎 Lithocarpus crassifolius | 25.54(23.40) | |||
云南桤叶树 Clethra delavayi | 12.81(17.81) | |||
露珠杜鹃 Rhododendron irroratum | 19.47(17.51) | |||
云南越桔 Vaccinium duclouxii | 8.37(13.47) | 8.68(21.18) | ||
珍珠花 Lyonia ovalifolia | 10.45(12.52) | 9.99(10.38) | ||
珊瑚冬青 Ilex corallina | 5.94(6.35) | 8.50(13.34) | ||
木果石栎 Lithocarpus xylocarpus | 16.88 (20.10) | |||
腾冲栲 Castanopsis wattii | 7.50(7.53) | |||
硬斗柯 Lithocarpus hancei | 8.96(6.42) | |||
薄叶马银花 Rhododendron leptothrium | 3.30(4.70) | |||
舟柄茶 Stewartia pteropetiolata | 3.94(3.51) | |||
滇木荷 Schima noronhae | 5.13(2.59) | |||
四川冬青 Ilex szechwanensis | 2.72(2.01) | |||
旱冬瓜 Alnus nepalensis | 19.39(21.73) | 9.71(18.22) | ||
高山栲 Castanopsis delavayi | 9.56(21.37) | |||
母猪果 Helicia nilagirica | 4.29(10.23) | |||
茶梨 Anneslea fragrans | 2.51(8.21) | |||
截头石栎 Lithocarpus truncatus | 10.20 (7.47) | |||
小果栲 Castanopsis fleuryi | 8.93(7.35) | |||
滇南木姜子 Litsea garrettii | 4.37(6.19) | |||
西南木荷 Schima wallichii | 6.13(4.77) | |||
红梗润楠 Machilus rufipes | 4.96(2.97) | |||
滇青冈 Cyclobalanopsis glaucoides | 35.04(27.95) | |||
白穗石栎 Lithocarpus craibianus | 28.38(27.93) | |||
多穗石栎 Lithocarpus polystachyus | 20.47(24.96) |
表1 4种常绿阔叶林样地树种相对优势度(%)及其对组内相似性的贡献率(括号内的数值, %)
Table 1 Relative dominance (%) of tree species and their contributions (%) to within-group similarities. The contributions of different tree species are shown in brackets.
树种名 Species name | 苔藓矮林 MD | 中山湿性阔叶林 MM | 季风常绿阔叶林 MS | 半湿润常绿阔叶林 SH |
---|---|---|---|---|
倒卵叶石栎 Lithocarpus crassifolius | 25.54(23.40) | |||
云南桤叶树 Clethra delavayi | 12.81(17.81) | |||
露珠杜鹃 Rhododendron irroratum | 19.47(17.51) | |||
云南越桔 Vaccinium duclouxii | 8.37(13.47) | 8.68(21.18) | ||
珍珠花 Lyonia ovalifolia | 10.45(12.52) | 9.99(10.38) | ||
珊瑚冬青 Ilex corallina | 5.94(6.35) | 8.50(13.34) | ||
木果石栎 Lithocarpus xylocarpus | 16.88 (20.10) | |||
腾冲栲 Castanopsis wattii | 7.50(7.53) | |||
硬斗柯 Lithocarpus hancei | 8.96(6.42) | |||
薄叶马银花 Rhododendron leptothrium | 3.30(4.70) | |||
舟柄茶 Stewartia pteropetiolata | 3.94(3.51) | |||
滇木荷 Schima noronhae | 5.13(2.59) | |||
四川冬青 Ilex szechwanensis | 2.72(2.01) | |||
旱冬瓜 Alnus nepalensis | 19.39(21.73) | 9.71(18.22) | ||
高山栲 Castanopsis delavayi | 9.56(21.37) | |||
母猪果 Helicia nilagirica | 4.29(10.23) | |||
茶梨 Anneslea fragrans | 2.51(8.21) | |||
截头石栎 Lithocarpus truncatus | 10.20 (7.47) | |||
小果栲 Castanopsis fleuryi | 8.93(7.35) | |||
滇南木姜子 Litsea garrettii | 4.37(6.19) | |||
西南木荷 Schima wallichii | 6.13(4.77) | |||
红梗润楠 Machilus rufipes | 4.96(2.97) | |||
滇青冈 Cyclobalanopsis glaucoides | 35.04(27.95) | |||
白穗石栎 Lithocarpus craibianus | 28.38(27.93) | |||
多穗石栎 Lithocarpus polystachyus | 20.47(24.96) |
环境因子 Environmental factors | NMDS第一轴 NMDS1 | NMDS第二轴 NMDS2 | r2 | P |
---|---|---|---|---|
海拔 Elevation | -0.779 | -0.627 | 0.897 | 0.001 |
凹凸度 Convexity | 0.992 | -0.128 | 0.098 | 0.134 |
坡向 Aspect | -0.025 | -1.000 | 0.035 | 0.490 |
坡度 Slope | -0.352 | -0.936 | 0.241 | 0.007 |
土壤含水率 Soil water content (SW) | -0.994 | -0.107 | 0.635 | 0.001 |
土壤有机质 Soil organic matter (SOM) | -0.825 | -0.566 | 0.293 | 0.003 |
土壤pH值 pH | 0.998 | 0.067 | 0.597 | 0.001 |
全氮 Total nitrogen (TN) | -0.367 | -0.930 | 0.060 | 0.312 |
全磷 Total phosphorus (TP) | -0.543 | 0.840 | 0.108 | 0.121 |
全钾 Total potassium (TK) | 0.150 | -0.989 | 0.374 | 0.002 |
有效氮 Available nitrogen (AN) | -0.582 | 0.813 | 0.079 | 0.210 |
有效磷 Available phosphorus (AP) | -0.918 | 0.396 | 0.432 | 0.001 |
有效钾 Available potassium (AK) | 0.112 | 0.994 | 0.316 | 0.001 |
有效硼 Available boron (AB) | -0.272 | 0.962 | 0.503 | 0.001 |
表2 NMDS排序轴与环境因子的相关性系数
Table 2 Correlation coefficients of the NMDS ordination axes and the environmental factors
环境因子 Environmental factors | NMDS第一轴 NMDS1 | NMDS第二轴 NMDS2 | r2 | P |
---|---|---|---|---|
海拔 Elevation | -0.779 | -0.627 | 0.897 | 0.001 |
凹凸度 Convexity | 0.992 | -0.128 | 0.098 | 0.134 |
坡向 Aspect | -0.025 | -1.000 | 0.035 | 0.490 |
坡度 Slope | -0.352 | -0.936 | 0.241 | 0.007 |
土壤含水率 Soil water content (SW) | -0.994 | -0.107 | 0.635 | 0.001 |
土壤有机质 Soil organic matter (SOM) | -0.825 | -0.566 | 0.293 | 0.003 |
土壤pH值 pH | 0.998 | 0.067 | 0.597 | 0.001 |
全氮 Total nitrogen (TN) | -0.367 | -0.930 | 0.060 | 0.312 |
全磷 Total phosphorus (TP) | -0.543 | 0.840 | 0.108 | 0.121 |
全钾 Total potassium (TK) | 0.150 | -0.989 | 0.374 | 0.002 |
有效氮 Available nitrogen (AN) | -0.582 | 0.813 | 0.079 | 0.210 |
有效磷 Available phosphorus (AP) | -0.918 | 0.396 | 0.432 | 0.001 |
有效钾 Available potassium (AK) | 0.112 | 0.994 | 0.316 | 0.001 |
有效硼 Available boron (AB) | -0.272 | 0.962 | 0.503 | 0.001 |
图2 哀牢山4种植被亚型森林样地非度量多维尺度分析。圆圈、+、箭头分别代表样地、树种及环境因子(图注同图1及表2)
Fig. 2 Non-metric multidimensional scaling ordination of forest plots (4 vegetation sub-types) in the Ailao Mountains. Colored circles, symbols “+” and arrows indicate plots, tree species and environmental factors respectively. Notes see Fig. 1 and Table 2.
有效硼 AB | 有效钾 AK | 凹凸度 Convexity | 海拔 Elevation | pH | 全钾 TK | 自由度 df | AICc | ΔAICc | 权重值 Weight | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.796 | -0.128 | -0.001 | -0.345 | 5 | 90.0 | 0.00 | 0.261 | ||
2 | 2.082 | -0.001 | -0.250 | 4 | 90.4 | 0.39 | 0.214 | |||
3 | 2.374 | -0.001 | 4 | 91.0 | 0.95 | 0.162 | ||||
4 | 2.001 | -0.005 | -0.124 | -0.002 | -0.409 | 6 | 91.3 | 1.26 | 0.139 | |
5 | 2.290 | -0.005 | -0.002 | -0.320 | 6 | 91.5 | 1.44 | 0.127 | ||
6 | 2.544 | 0.676 | -0.302 | 5 | 92.0 | 2.00 | 0.096 | |||
相对重要性Importance | 1.00 | 0.27 | 0.40 | 0.90 | 0.10 | 0.84 |
表3 “dredge”模型筛选表
Table 3 Model selection with the “dredge” function
有效硼 AB | 有效钾 AK | 凹凸度 Convexity | 海拔 Elevation | pH | 全钾 TK | 自由度 df | AICc | ΔAICc | 权重值 Weight | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.796 | -0.128 | -0.001 | -0.345 | 5 | 90.0 | 0.00 | 0.261 | ||
2 | 2.082 | -0.001 | -0.250 | 4 | 90.4 | 0.39 | 0.214 | |||
3 | 2.374 | -0.001 | 4 | 91.0 | 0.95 | 0.162 | ||||
4 | 2.001 | -0.005 | -0.124 | -0.002 | -0.409 | 6 | 91.3 | 1.26 | 0.139 | |
5 | 2.290 | -0.005 | -0.002 | -0.320 | 6 | 91.5 | 1.44 | 0.127 | ||
6 | 2.544 | 0.676 | -0.302 | 5 | 92.0 | 2.00 | 0.096 | |||
相对重要性Importance | 1.00 | 0.27 | 0.40 | 0.90 | 0.10 | 0.84 |
图4 树种丰富度对环境因子的响应。图中实线表示树种丰富度的期望值, 虚线表示95%置信区间。
Fig. 4 Responds of tree species richness to environmental factors. The solid line shows the estimations of tree richness, and the dashed lines indicate 95% confidence interval.
1 | Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D, Thomas DW, Madawala S, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Dalling JW (2013) Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20122532. |
2 | Balvanera P, Aguirre E (2006) Tree diversity, environmental heterogeneity, and productivity in a Mexican tropical dry forest. Biotropica, 38, 479-491. |
3 | Bao SD (2005) Agricultural Chemistry Analysis of Soil. China Agriculture Press, Beijing. (in Chinese) |
[鲍士旦 (2005)土壤农化分析. 中国农业出版社, 北京.] | |
4 | Bartoń K (2015) MuMIn: Multi-model Inference. R package version, 1.15.6. |
5 | Bohlman SA, Laurance WF, Laurance SG, Nascimento HE, Fearnside PM, Andrade A (2008) Importance of soils, topography and geographic distance in structuring central Amazonian tree communities. Journal of Vegetation Science, 19, 863-874. |
6 | Budke JC, Jarenkow JA, de Oliveira-Filho AT (2007) Relationships between tree component structure, topography and soils of a riverside forest, Rio Botucaraí, Southern Brazil. Plant Ecology, 189, 187-200. |
7 | Christensen M, Heilmann-Clausen J (2009) Forest biodiversity gradients and the human impact in Annapurna Conservation Area, Nepal. Biodiversity and Conservation, 18, 2205-2221. |
8 | Chuyong GB, Kenfack D, Harms KE, Thomas DW, Condit R, Comita LS (2011) Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212, 1363-1374. |
9 | Clark DB, Palmer MW, Clark DA (1999) Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology, 80, 2662-2675. |
10 | Comprehensive Investigation Group of the Ailao Mountain National Nature Reserve(1988) Reports on a Comprehen- sive Investigation of the Ailao Mountain National Nature Reserve. The Nationalities Publishing House of Yunnan, Kunming. (in Chinese) |
[哀牢山自然保护区综合考察团(1988) 哀牢山自然保护区综合考察报告集. 云南民族出版社, 昆明.] | |
11 | de Toledo JJ, Magnusson WE, Castilho CV, Nascimento HE (2011) How much variation in tree mortality is predicted by soil and topography in Central Amazonia? Forest Ecology and Management, 262, 331-338. |
12 | Dinno A (2015) Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. The Stata Journal, 15, 292-300. |
13 | Dinno A (2016) Dunn’s Test of Multiple Comparisons Using Rank Sums, R package version, 132. https://CRAN.R -project.org/package=dunn.test. |
14 | Editorial Committee of the Vegetation of Yunnan(1987) The Vegetation of Yunnan. Science Press, Beijing. (in Chinese) |
[云南植被编写组(1987) 云南植被. 科学出版社, 北京.] | |
15 | Engelbrecht BM, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447, 80-82. |
16 | Ferreira-Júnior WG, Silva AF, Schaefer CEGR, Neto JAAM, Dias AS, Ignácio M, Medeiros MCMP (2007) Influence of soils and topographic gradients on tree species distribution in a Brazilian Atlantic tropical semideciduous forest. Edinburgh Journal of Botany, 64, 137-157. |
17 | Gong HD, Yang GP, Lu ZY, Liu YH, Cao M (2011) Composition and spatio-temporal distribution of tree seedlings in an evergreen broad-leaved forest in the Ailao Mountains, Yunnan. Biodiversity Science, 19, 151-157. (in Chinese with English abstract) |
[巩合德, 杨国平, 鲁志云, 刘玉洪, 曹敏 (2011) 哀牢山常绿阔叶林乔木树种的幼苗组成及时空分布特征. 生物多样性, 19, 151-157.] | |
18 | Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Wen SJ, Li DX, He YL, Li XK (2016) Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 24, 30-39. (in Chinese with English abstract) |
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 文淑均, 李冬兴, 何运林, 李先琨 (2016) 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应. 生物多样性, 24, 30-39.] | |
19 | Guo YL, Wang B, Mallik AU, Huang FZ, Xiang WS, Ding T, Wen SJ, Lu SH, Li DX, He YL, Li XK (2016) Topographic species-habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. Journal of Plant Ecology, 9, 1-11. |
20 | Homeier J, Breckle SW, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich ecuadorian montane rain forest. Biotropica, 42, 140-148. |
21 | Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Palmiotto PA, LaFrankie JV, Ashton PS, Lee HS (2003) Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecological Research, 18, 307-320. |
22 | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences, USA, 104, 864-869. |
23 | Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia, 155, 593-604. |
24 | Lai JS, Mi XC, Ren HB, Ma KP (2009) Species-habitat associations change in a subtropical forest of China. Journal of Vegetation Science, 20, 415-423. |
25 | Laurance SG, Laurance WF, Andrade A, Fearnside PM, Harms KE, Vicentini A, Luizão RC (2010) Influence of soils and topography on Amazonian tree diversity: a landscape-scale study. Journal of Vegetation Science, 21, 96-106. |
26 | Lomolino MV (2001) Elevation gradients of species-density: historical and perspective views. Global Ecology and Biogeography, 10, 3-13. |
27 | Lundholm JT (2009) Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. Journal of Vegetation Science, 20, 377-391. |
28 | Magurran AE (2004) Measuring Biological Diversity. Blackwell Science Ltd., Blackwell Publishing Company, Victoria, Australia. |
29 | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) Vegan: Community Ecology Package, Version 2.3-5. https://CRAN.R-project.org/package=vegan (accessed on 2017-2-3). |
30 | Oliveira-Filho AT, Vilela EA, Carvalho DA, Gavilanes ML (1994) Effects of soils and topography on the distribution of tree species in a tropical riverine forest in south-eastern Brazil. Journal of Tropical Ecology, 10, 483-508. |
31 | Oliveira-Filho AD, Curi N, Vilela EA, Carvalho DA (2001) Variation in tree community composition and structure with changes in soil properties within a fragment of semi-deciduous forest in south-eastern Brazil. Edinburgh Journal of Botany, 58, 139-158. |
32 | Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, Ashton PS (2004) Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology, 92, 609-623. |
33 | Pereira JAA, Oliveira-Filho AT, Lemos-Filho JP (2007) Environmental heterogeneity and disturbance by humans control much of the tree species diversity of Atlantic montane forest fragments in SE Brazil. Plant Conservation and Biodiversity, 16, 1761-1784. |
34 | Peruggia M (2003) Model selection and multimodel inference: a practical information-theoretic approach. Journal of the American Statistical Association, 98, 778-779. |
35 | Pinto JRR, Oliveira-Filho AT, Hay JDV (2005) Influence of soil and topography on the composition of a tree community in a central Brazilian valley forest. Edinburgh Journal of Botany, 62, 69-90. |
36 | Potts MD, Ashton PS, Plotkin JB, Kaufmann LS (2002) Habitat patterns in tropical rainforests: a comparison of 105 plots in northwest Borneo. Ecology, 83, 2782-2797. |
37 | Poulos HM, Camp AE (2010) Topographic influences on vegetation mosaics and tree diversity in the Chihuahuan Desert Borderlands. Ecology, 91, 1140-1151. |
38 | Russo SE, Davies SJ, King DA, Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93, 879-889. |
39 | Steidinger B (2015) Qualitative differences in tree species distributions along soil chemical gradients give clues to the mechanisms of specialization: why boron may be the most important soil nutrient at Barro Colorado Island. New Phytologist, 206, 895-899. |
40 | Takyu M, Aiba S, Kitayama K (2002) Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecology, 159, 35-49. |
41 | Tateno R, Takeda H (2003) Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecological Research, 18, 559-571. |
42 | Tripler CE, Kaushal SS, Likens GE, Walter TM (2006) Patterns in potassium dynamics in forest ecosystems. Ecology Letters, 9, 451-466. |
43 | Tsui CC, Chen ZS, Hsieh CF (2004) Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma, 123, 131-142. |
44 | Urban DL, Miller C, Halpin PN, Stephenson NL (2000) Forest gradient response in Sierran landscapes: the physical template. Landscape Ecology, 15, 603-620. |
45 | Wood S (2016) Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation, Version 1.8-12.(accessed on 2017-2-3). |
46 | Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EV, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92, 1616-1625. |
47 | Xu YJ, Chen YN, Li WH, Fu AH, Ma XD, Gui DW, Chen YP (2011) Distribution pattern of plant species diversity in the mountainous region of Ili River Valley, Xinjiang. Environmental Monitoring and Assessment, 177, 681-694. |
48 | Yamakura T, Kanzaki A, Itoh T, Ohkubo K, Ogino EOK, Chai HS, Ashton PS (1995) Topography of a large-scale research plot established within a tropical rain forest at Lambir, Sarawak. Tropics, 5, 41-56. |
49 | Yasuhiro K, Hirofumi M, Kihachiro K (2004) Effects of topographic heterogeneity on tree species richness and stand dynamics in a subtropical forest in Okinawa Island, southern Japan. Journal of Ecology, 92, 230-240. |
50 | Yimer F, Ledin S, Abdelkadir A (2006) Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia. Forest Ecology and Management, 232, 90-99. |
[1] | 张楚然, 李生发, 李逢昌, 唐志忠, 刘辉燕, 王丽红, 顾荣, 邓云, 张志明, 林露湘. 云南鸡足山亚热带半湿润常绿阔叶林20 ha动态监测样地木本植物生境关联与群落数量分类[J]. 生物多样性, 2024, 32(1): 23393-. |
[2] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[3] | 王明慧, 陈昭铨, 李帅锋, 黄小波, 郎学东, 胡子涵, 尚瑞广, 刘万德. 云南普洱季风常绿阔叶林不同种子扩散方式的优势种空间点格局分析[J]. 生物多样性, 2023, 31(9): 23147-. |
[4] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[5] | 谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善. 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素[J]. 生物多样性, 2023, 31(5): 22345-. |
[6] | 周欣扬, 王誉陶, 李建平. 黄土高原典型草原植物群落组成对降水变化的响应[J]. 生物多样性, 2023, 31(3): 22118-. |
[7] | 杨欣, 姚志良, 王彬, 温韩东, 邓云, 曹敏, 张志明, 谭正洪, 林露湘. 亚热带常绿阔叶林林分结构对物种组成变异的驱动作用: 从局域到区域尺度[J]. 生物多样性, 2023, 31(2): 22139-. |
[8] | 王朝雅, 李金涛, 刘畅, 王波, 苗白鸽, 彭艳琼. 西双版纳热带植物园蝴蝶多样性稳定的年际变化及幼虫与植物的互作网络结构[J]. 生物多样性, 2023, 31(12): 23305-. |
[9] | 饶杰生, 杨涛, 田希, 刘文聪, 王晓凤, 钱恒君, 沈泽昊. 基于背包LiDAR的半湿润常绿阔叶林及其常见树种的垂直结构特征[J]. 生物多样性, 2023, 31(11): 23216-. |
[10] | 刘金花, 李风, 田桃, 肖海峰. 土壤细菌和线虫对热带雨林优势植物凋落物特性和多样性的响应[J]. 生物多样性, 2023, 31(11): 23276-. |
[11] | 罗彩访, 杨涛, 张秋雨, 王馨培, 沈泽昊. 滇中半湿润常绿阔叶林木本植物的功能特征和功能多样性及其影响因子[J]. 生物多样性, 2023, 31(11): 23215-. |
[12] | 杨涛, 沈泽昊, 王晓凤, 饶杰生, 刘文聪, 田希, 陈稀, 张秋雨, 刘倩, 钱恒君, 解宇阳, 刘其明, 徐衍潇, 涂梦灵, 单子铭, 张玉坤, 侯波, 李建斌, 欧晓昆. 滇中高原亚热带半湿润常绿阔叶林植物群落多样性特征[J]. 生物多样性, 2023, 31(11): 23238-. |
[13] | 田希, 刘文聪, 饶杰生, 王晓凤, 杨涛, 陈稀, 张秋雨, 刘其明, 徐衍潇, 张旭, 沈泽昊. 云南鸡足山半湿润常绿阔叶林的林隙干扰格局与成因[J]. 生物多样性, 2023, 31(11): 23219-. |
[14] | 左艳洁, 彭明春, 王崇云, 沈泽昊, 李永萍, 周新茂, 周杰, 周光信, 任佳昕, 刘忠安. 滇中高原半湿润常绿阔叶林的岛屿化与物种多样性[J]. 生物多样性, 2023, 31(11): 23252-. |
[15] | 刘文聪, 田希, 杨涛, 饶杰生, 王晓凤, 钱恒君, 涂梦灵, 单子铭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林优势树种的种群结构与更新特征[J]. 生物多样性, 2023, 31(11): 23251-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn