生物多样性 ›› 2014, Vol. 22 ›› Issue (4): 438-448. DOI: 10.3724/SP.J.1003.2014.14011
所属专题: 物种形成与系统进化
卢孟孟1,2,,A;*, 黄小翠1,2,,A;*, 慈秀芹1,2, 杨国平1, 李捷1,,A;,A;*()
收稿日期:
2014-01-10
接受日期:
2014-05-09
出版日期:
2014-07-20
发布日期:
2014-07-24
通讯作者:
卢孟孟,黄小翠,李捷
基金资助:
Mengmeng Lu1,2,*, Xiaocui Huang1,2,*, Xiuqin Ci1,2, Guoping Yang1, Jie Li1,**()
Received:
2014-01-10
Accepted:
2014-05-09
Online:
2014-07-20
Published:
2014-07-24
Contact:
Lu Mengmeng,Huang Xiaocui,Li Jie
摘要:
为揭示森林群落系统发育结构在海拔梯度上的变化及其驱动因素, 本研究以云南哀牢山西坡的亚热带森林群落为研究对象, 以APG III系统为基础框架, 结合DNA条形码序列信息解决末端分类单元亲缘关系的方法, 构建了哀牢山森林群落系统发育进化树, 采用净亲缘指数(net relatedness index, NRI)和最近亲缘指数(nearest taxon index, NTI), 探讨了不同植被类型的森林群落系统发育结构和沿海拔梯度的变化规律。结果表明, 从整体的海拔变化趋势上来看, 哀牢山森林群落系统发育结构随海拔上升由系统发育聚集(phylogenetic clustering)走向发散(phylogenetic overdispersion)或聚集程度降低。在低海拔地区, 群落表现为系统发育聚集, 表明生态位理论中的生境过滤作用在群落构建和生物多样性的维持中起着主导作用; 在中海拔地区, 出现了聚集与发散两种群落系统发育结构并存的现象, 推测可能是生境过滤和竞争排斥两种生态过程共同作用的结果; 在高海拔地区, 群落的系统发育结构因选择的指数不同而出现相反的结果, NRI表现出系统发育聚集, 而NTI却表现为随机或发散, 考虑到高海拔地区的环境胁迫可能促使植物发生趋同进化, 推测其群落构建的生态学过程需要更为综合的研究。本研究揭示群落系统发育结构沿海拔梯度确实存在显著的变化, 证明在生态群落的构建过程中非随机过程起到促进乃至关键作用。
卢孟孟, 黄小翠, 慈秀芹, 杨国平, 李捷 (2014) 沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构. 生物多样性, 22, 438-448. DOI: 10.3724/SP.J.1003.2014.14011.
Mengmeng Lu, Xiaocui Huang, Xiuqin Ci, Guoping Yang, Jie Li (2014) Phylogenetic community structure of subtropical forests along elevational gradients in Ailao Mountains of southwest China. Biodiversity Science, 22, 438-448. DOI: 10.3724/SP.J.1003.2014.14011.
群落构建过程 Community assembly processes | 生态性状的进化特征 Evolutionary characteristic of ecological traits | |
---|---|---|
系统发育保守 Phylogenetically conserved* | 系统发育趋同 Phylogenetically convergent | |
中性构建 Neutral assembly | 系统发育随机 Random dispersion | 系统发育随机 Random dispersion |
生境过滤作用 Habitat filtering | 系统发育聚集 Cluster dispersion | 系统发育发散 Over-dispersion |
竞争排斥作用 Competitive exclusion | 系统发育发散 Over-dispersion | 系统发育随机或系统发育聚集 Random or cluster dispersion |
表1 不同生态性状进化特征和不同群落构建过程下的群落期望系统发育结构(参考Webb et al., 2002; Kraft et al., 2007)
Table 1 Patterns of community phylogenetic dispersion predicted to be produced by various community assembly processes and different evolutionary characteristic of ecological traits (From Webb et al., 2002; Kraft et al., 2007)
群落构建过程 Community assembly processes | 生态性状的进化特征 Evolutionary characteristic of ecological traits | |
---|---|---|
系统发育保守 Phylogenetically conserved* | 系统发育趋同 Phylogenetically convergent | |
中性构建 Neutral assembly | 系统发育随机 Random dispersion | 系统发育随机 Random dispersion |
生境过滤作用 Habitat filtering | 系统发育聚集 Cluster dispersion | 系统发育发散 Over-dispersion |
竞争排斥作用 Competitive exclusion | 系统发育发散 Over-dispersion | 系统发育随机或系统发育聚集 Random or cluster dispersion |
植被类型 Vegetation types | 编号 Number | 样方地点 Location | 海拔 Elevation (m) | 纬度 Latitude | 经度 Longitude |
---|---|---|---|---|---|
山底季风常绿阔叶林 Seasonal evergreen broad-leaved forest | Plot 1 | 响水河1 Xiangshuihe 1 | 1,393 | 24°27′9.5″N | 100°54′55″E |
Plot 2 | 响水河2 Xiangshuihe 2 | 1,430 | 24°27′17″N | 100°53′53″E | |
Plot 3 | 道班 Daoban | 1,440 | 24°26′13″N | 100°54′09″E | |
Plot 4 | 三棵桩 Sankezhuang | 1,481 | 24°27′39″N | 100°54′21″E | |
Plot 5 | 大黑丫口1 Daheiyakou 1 | 2,015 | 24°30′12″N | 100°53′01″E | |
Plot 6 | 大黑丫口2 Daheiyakou 2 | 2,020 | 24°30′21″N | 100°53′01″E | |
Plot 7 | 大黑丫口3 Daheiyakou 3 | 2,055 | 24°30′13″N | 100°53′12″E | |
中山湿性常绿阔叶林 Mountain humid evergreen broad- leaved forest | Plot 8 | 生态站入口 Entrance to forest ecosystem research station | 2,395 | 24°31′07″N | 101°0′53″E |
Plot 9 | 6 ha样地1 Plot 1 (6 ha) | 2,495 | 24°32′12″N | 101°01′36″E | |
Plot 10 | 6 ha样地2 Plot 2 (6 ha) | 2,500 | 24°32′18″N | 101°01′32″E | |
Plot 11 | 6 ha样地3 Plot 3 (6 ha) | 2,505 | 24°32′22″N | 101°01′16″E | |
Plot 12 | 6 ha样地4 Plot 4 (6 ha) | 2,510 | 24°32′18″N | 101°01′41″E | |
Plot 13 | 6 ha样地5 Plot 5 (6 ha) | 2,516 | 24°32′33″N | 101°01′11″E | |
Plot 14 | 小新厂低部 Foot of Xiaoxinchang | 2,522 | 24°32′57″N | 101°01′37″E | |
山顶苔藓矮林 Mountain mossy evergreen broad- leaved forest | Plot 15 | 三棵树山顶 Hilltop in Sankeshu | 2,666 | 24°32′10″N | 101°01′52″E |
Plot 16 | 小新厂山顶 Hilltop in Xiaoxinchang | 2,720 | 24°33′48″N | 101°01′26″E |
表2 哀牢山西坡3种植被类型不同海拔梯度的样方信息
Table 2 The information of samples collected from three vegetation types on the west slope of Ailao Mountains along an elevational gradient
植被类型 Vegetation types | 编号 Number | 样方地点 Location | 海拔 Elevation (m) | 纬度 Latitude | 经度 Longitude |
---|---|---|---|---|---|
山底季风常绿阔叶林 Seasonal evergreen broad-leaved forest | Plot 1 | 响水河1 Xiangshuihe 1 | 1,393 | 24°27′9.5″N | 100°54′55″E |
Plot 2 | 响水河2 Xiangshuihe 2 | 1,430 | 24°27′17″N | 100°53′53″E | |
Plot 3 | 道班 Daoban | 1,440 | 24°26′13″N | 100°54′09″E | |
Plot 4 | 三棵桩 Sankezhuang | 1,481 | 24°27′39″N | 100°54′21″E | |
Plot 5 | 大黑丫口1 Daheiyakou 1 | 2,015 | 24°30′12″N | 100°53′01″E | |
Plot 6 | 大黑丫口2 Daheiyakou 2 | 2,020 | 24°30′21″N | 100°53′01″E | |
Plot 7 | 大黑丫口3 Daheiyakou 3 | 2,055 | 24°30′13″N | 100°53′12″E | |
中山湿性常绿阔叶林 Mountain humid evergreen broad- leaved forest | Plot 8 | 生态站入口 Entrance to forest ecosystem research station | 2,395 | 24°31′07″N | 101°0′53″E |
Plot 9 | 6 ha样地1 Plot 1 (6 ha) | 2,495 | 24°32′12″N | 101°01′36″E | |
Plot 10 | 6 ha样地2 Plot 2 (6 ha) | 2,500 | 24°32′18″N | 101°01′32″E | |
Plot 11 | 6 ha样地3 Plot 3 (6 ha) | 2,505 | 24°32′22″N | 101°01′16″E | |
Plot 12 | 6 ha样地4 Plot 4 (6 ha) | 2,510 | 24°32′18″N | 101°01′41″E | |
Plot 13 | 6 ha样地5 Plot 5 (6 ha) | 2,516 | 24°32′33″N | 101°01′11″E | |
Plot 14 | 小新厂低部 Foot of Xiaoxinchang | 2,522 | 24°32′57″N | 101°01′37″E | |
山顶苔藓矮林 Mountain mossy evergreen broad- leaved forest | Plot 15 | 三棵树山顶 Hilltop in Sankeshu | 2,666 | 24°32′10″N | 101°01′52″E |
Plot 16 | 小新厂山顶 Hilltop in Xiaoxinchang | 2,720 | 24°33′48″N | 101°01′26″E |
图1 利用DNA条形码与APG III系统相结合得到的哀牢山森林群落的16个样地144个物种系统发育进化树。每个节点靴带支持率数值用星号(≥ 85%, 高度支持)、菱形(空白)(70-84%, 中度支持)、菱形(黑色填充)(50-69%, 较弱支持)表示。
Fig. 1 A community phylogeny of 144 species from 16 plots along the elevational gradients in Ailao Mountains. The community phylogeny is constructed based on a maximum likelihood analysis of rbcL, matK, psbA-trnH and ITS sequence data with APG III as a constraint tree. Nodes with strong (≥ 85%), moderate (70-84%) and/or weak (50-69%) bootstrap support are indicated by an asterisk, a diamond filled with blank and a diamond filled with black, respectively.
图2 系统发育多样性PhyloSor指数和PD指数随海拔梯度变化的趋势
Fig. 2 Variation in community phylogenetic diversity along the elevation gradient from two indices: PhyloSor and PD
附图1 哀牢山亚热带不同植被类型的群落丰富度、优势度、均匀度和多样性指数
Fig. S1 Species richness, evenness and species diversity of different vegetation types in Ailao Mountains http://www.biodiversity-science.net/fileup/PDF/w2014-011-1.pdf
[1] | APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III.Botanical Journal of the Linnean Society, 161, 105-121. |
[2] | Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountain sides: contrasting elevational patterns of bacterial and plant diversity . Proceedings of the National Academy of Sciences,USA, 105, 11505-11511. |
[3] | Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology.Ecology Letters, 12, 693-715. |
[4] | CBOL Plant Working Group (2009) A DNA barcode for land plants.Proceedings of the National Academy of Sciences, USA, 106, 12794-12797. |
[5] | Darwin C (1859) On the Origin of Species by Means of Natural Selection. John Murray, London. |
[6] | Dinnage R (2009) Disturbance alters the phylogenetic composition and structure of plant communities in an old field system.PLoS ONE, 4, e7071. |
[7] | Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time.Trends in Ecology and Evolution, 23, 619-630. |
[8] | Faith DP (1992) Systematics and conservation: on predicting the feature diversity of subsets of taxa.Cladistics, 8, 361-373. |
[9] | Fang JY (方精云), Wang XP (王襄平), Tang ZY (唐志尧) (2009) Local and regional processes control species richness of plant communities: the species pool hypothesis.Biodiversity Science(生物多样性), 17, 605-612. (in Chinese with English abstract) |
[10] | Gaston KJ (2000) Global patterns in biodiversity.Nature, 405, 220-226. |
[11] | Ghosh-Harihar M (2014) Phylogenetic and ecomorphological structure of assemblages of breeding leaf warblers (Phylloscopidae) along Himalayan elevational gradients.Journal of Biogeography, 41, 1193-1203. |
[12] | Graham CH, Parra JL, Rahbekb C, McGuire JA (2009) Phylogenetic structure in tropical hummingbird communities.Proceedings of the National Academy of Sciences, USA, 106, 19673-19678. |
[13] | Goldberg DE, Miller TE (1990) Effects of different resource additions on species diversity in an annual plant community.Ecology, 71, 213-225. |
[14] | Gonzalez MA, Roger A, Courtois EA, Jabot F, Norden N, Paine CET, Baraloto C, Thébaud C, Chave J (2010) Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest.Journal of Ecology, 98, 137-146. |
[15] | Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology.Trends in Ecology and Evolution, 22, 250-257. |
[16] | Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology.Bioinformatics, 26, 1463-1464. |
[17] | Kikkawa J, Williams EE (1971) Altitude distribution of land birds in New Guinea.Search, 2, 64-65. |
[18] | Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities.The American Naturalist, 170, 271-283 |
[19] | Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama.Proceedings of the National Academy of Sciences, USA, 106, 18621-18626. |
[20] | Kress WJ, Erickson DL, Swenson NG, Thompson J, Uriarte M, Zimmerman JK (2010) Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.PLoS ONE, 5, e15409. |
[21] | Kooyman R, Rossetto M, Cornwell W, Westoby M (2011) Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests.Global Ecology and Biogeography, 20, 707-716. |
[22] | Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0.Bioinformatics, 23, 2947-2948. |
[23] | Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees.Science, 324, 1561-1564. |
[24] | Loya Y (1972) Community structure and species diversity of hermatypic corals at Eilat, Red Sea.Marine Biology, 13, 100-123. |
[25] | Ma KP (马克平) (1994) The measurement of community diversity. In: Principles and Methodologies of Biodiversity Studies (生物多样性研究的原理与方法) (eds Qian YQ (钱迎倩), Ma KP (马克平)), pp. 141-165. China Science and Technology Press, Beijing. (in Chinese) |
[26] | Machac A, Janda M, Dunn RR, Sanders N (2011) Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity.Ecography, 34, 364-371. |
[27] | McCain CM (2005) Elevational gradients in diversity of small mammals.Ecology, 86, 366-372. |
[28] | Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), pp.1-8, New Orleans, LA. |
[29] | Mo XX, Shi LL, Zhang YJ, Zhu H, Slik JWF (2013) Change in phylogenetic community structure during succession of traditionally managed tropical rainforest in Southwest China.PLoS ONE, 8, e71464. |
[30] | Monk CD, Child GI, Nicholson SA (1969) Species diversity of a stratified oak-hickory community.Ecology, 50, 468-470. |
[31] | Niu HY (牛红玉), Wang ZF (王峥峰), Lian JY (练琚愉), Ye WH (叶万辉), Shen H (沈浩) (2011) New progress in community assembly: community phylogenetic structure combining evolution and ecology.Biodiversity Science(生物多样性), 19, 275-283. (in Chinese with English abstract) |
[32] | Niu KC (牛克昌), Liu YN (刘怿宁), Shen ZH (沈泽昊), He FL (何芳良), Fang JY (方精云) (2009) Community assembly: the relative importance of neutral theory and niche theory.Biodiversity Science(生物多样性), 17, 579-593. (in Chinese with English abstract) |
[33] | Niu Y (牛跃), Liu Y (刘洋), Zhang YP (张一平), Gao JB (高进波) (2008) Vertical distribution patterns of plant species diversity in Ailao Mountains.Journal of West China Forestry Science(西部林业科学), 37, 27-34. (in Chinese with English abstract) |
[34] | Oomen MA, Shanker K (2005) Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants.Ecology, 86, 3039-3047. |
[35] | Pei NC, Lian JY, Erickson DL, Swenson NG, Kress WJ, Ye WH, Ge XJ (2011) Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci.PLoS ONE, 6, e21273. |
[36] | Pei NC (裴男才), Zhang JL (张金龙), Mi XC (米湘成), Ge XJ (葛学军) (2011) Plant DNA barcodes promote the development of phylogenetic community ecology.Biodiversity Science(生物多样性), 19, 284-294. (in Chinese with English abstract) |
[37] | Pei NC (裴男才) (2012) Building a subtropical forest community phylogeny based on plant DNA barcodes from Dinghushan plot.Plant Diversity and Resources(植物分类与资源学报), 34, 263-270. (in Chinese with English abstract) |
[38] | Pielou EC (1969) Introduction to Mathematical Ecology. Wiley-Interscience, New York. |
[39] | Rahbek C (1997) The relationship among area, elevation, and regional species richness in Neotropical birds.The American Naturalist, 149, 875-902. |
[40] | R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2013. URL. |
[41] | Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock.Bioinformatics, 19, 301-302. |
[42] | Shannon CE, Weaver W (1949) A Mathematical Theory of Communication. University of Illinois Press, Urbana, IL. |
[43] | Shi JP (施济普), Zhao CJ (赵崇奖), Zhu H (朱华) (2005) Characteristics and species composition of main vegetation types on west slope of the Ailao Mountains in Yunnan.Chinese Journal of Applied and Environmental Biology(应用与环境生物学报), 11, 1-7. (in Chinese with English abstract) |
[44] | Simpson EH (1949) Measurement of diversity.Nature, 163, 688. |
[45] | Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities.Ecography, 30, 3-12. |
[46] | Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics, 22, 2688-2690. |
[47] | Stevens RD (2006) Historical processes enhance patterns of diversity along latitudinal gradients.Proceedings of the National Academy of Sciences, USA, 273, 2283-2289. |
[48] | Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics.Ecology, 87, 2418-2424. |
[49] | Terborgh J (1977) Bird species diversity on an Andean elevation gradient.Ecology, 58, 1007-1019. |
[50] | Tunnicliffe V (1981) High species diversity and abundance of the epibenthic community in an oxygen-deficient basin.Nature, 294, 354-356. |
[51] | You GY, Zhang YP, Liu YH, Schaefer D, Gong HD, Gao JB, Lu ZY, Song QH, Zhao JB, Wu CS, Yu L, Xie YN (2013) Investigation of temperature and aridity at different elevations of Mt. Ailao, SW China.International Journal of Biometeorology, 57, 487-492. |
[52] | Vamosi SM, Heard SB, Vamosi JC, Webb CO (2009) Emerging patterns in the comparative analysis of phylogenetic community structure.Molecular Ecology, 18, 572-592. |
[53] | Walter H (1979) Vegetation of the Earth. Springer, New York. |
[54] | Wang GH (王国宏) (2002) Species diversity of plant communities along an altitudinal gradient in the middle section of northern slopes of Qilian Mountains, Zhangye, Gansu.Biodiversity Science(生物多样性), 10, 7-14. (in Chinese with English abstract) |
[55] | Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees.The American Naturalist, 156, 145-155. |
[56] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology.Annual Review of Ecology and Systematics, 33, 475-505. |
[57] | Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics.Molecular Ecology Notes, 5, 181-183. |
[58] | Wiens JJ, Parra-Olea G, Garcia-Paris MM, Wake DB (2007) Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders.Proceedings of the Royal Society B, 274, 919-928. |
[59] | Wu ZY (吴征镒), Qu ZX (曲仲湘), Jiang HQ (姜汉侨) (1983) Research of Forest Ecosystem on Ailao Mountains, Yunnan (云南哀牢山森林生态系统研究). Yunnan Science and Technology Press, Kunming. (in Chinese) |
[1] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[2] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[3] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[4] | 邢超, 林依, 周智强, 赵联军, 蒋仕伟, 林蓁蓁, 徐基良, 詹祥江. 基于DNA条形码技术构建王朗国家级自然保护区陆生脊椎动物遗传资源数据库及物种鉴定[J]. 生物多样性, 2023, 31(7): 22661-. |
[5] | 吴帆, 刘深云, 江虎强, 王茜, 陈开威, 李红亮. 中华蜜蜂和意大利蜜蜂秋冬期传粉植物多样性比较[J]. 生物多样性, 2023, 31(5): 22528-. |
[6] | 杨欣, 姚志良, 王彬, 温韩东, 邓云, 曹敏, 张志明, 谭正洪, 林露湘. 亚热带常绿阔叶林林分结构对物种组成变异的驱动作用: 从局域到区域尺度[J]. 生物多样性, 2023, 31(2): 22139-. |
[7] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[8] | 俞正森, 宋娜, 本村浩之, 高天翔. 中国银口天竺鲷属鱼类的分类厘定[J]. 生物多样性, 2021, 29(7): 971-979. |
[9] | 王群, 郭志祥, 李进斌, 王凯博, 吴文伟, 浦恩堂, 马方舟, 何成兴. 云南哀牢山、无量山国家级自然保护区蝴蝶种群动态及多样性[J]. 生物多样性, 2020, 28(8): 921-930. |
[10] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
[11] | 姚志良,温韩东,邓云,曹敏,林露湘. 哀牢山亚热带中山湿性常绿阔叶林树种beta多样性格局形成的驱动力[J]. 生物多样性, 2020, 28(4): 445-454. |
[12] | 胡芮, 王儒晓, 杜诗雨, 李萌, 邢雨辉, 潘达, 徐海根, 孙红英. 扬州宝应湖底栖大型无脊椎动物的生物多样性及其变化[J]. 生物多样性, 2020, 28(12): 1558-1569. |
[13] | 李明家, 吴凯媛, 孟凡凡, 沈吉, 刘勇勤, 肖能文, 王建军. 西藏横断山区溪流细菌beta多样性组分对气候和水体环境的响应[J]. 生物多样性, 2020, 28(12): 1570-1580. |
[14] | 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. |
[15] | 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn