生物多样性 ›› 2010, Vol. 18 ›› Issue (6): 577-589. DOI: 10.3724/SP.J.2010.577
所属专题: 外来物种入侵:机制、影响与防控; 物种形成与系统进化; 生物入侵
收稿日期:
2010-06-07
接受日期:
2010-07-27
出版日期:
2010-11-20
发布日期:
2011-01-31
通讯作者:
卢宝荣
作者简介:
*E-mail: brlu@fudan.edu.cn基金资助:
Bao-Rong Lu*(), Hui Xia, Wei Wang, Xiao Yang
Received:
2010-06-07
Accepted:
2010-07-27
Online:
2010-11-20
Published:
2011-01-31
Contact:
Bao-Rong Lu
摘要:
生物入侵给全球生态环境与社会经济都带来了严重危害, 对其入侵机制的研究非常重要。生物入侵是一个适应性进化的过程, 天然杂交与遗传渐渗可以改变外来物种对环境的适应性并提高其入侵能力, 使其进化成为入侵种。因此了解杂交-渐渗在促进生物入侵过程中的遗传作用, 将有助于我们采取有效措施来控制生物入侵及其危害。本文从杂交-渐渗对生物适应性进化和物种形成影响的角度, 阐明外来种如何通过杂交-渐渗在新的生境中改变其适应性、生存竞争能力和入侵能力。杂交-渐渗可以导致物种发生多倍体水平和同倍体水平的进化, 虽然二者的进化过程不尽相同, 但均能使杂种群体在遗传上产生较大变化, 进而影响杂种群体的适合度, 这一过程可能促使外来种在新的生境中的成功入侵进而转变为入侵种。随着转基因生物技术的迅速发展, 大量转基因作物进入环境释放和商品化种植, 具有特定功能的转基因可能通过杂交-渐渗进入野生近缘种群体, 也可能使之成为入侵性强的农田杂草, 带来难以预测的生态后果。总之, 生物入侵是一个复杂的进化和生态过程, 利用杂交-渐渗的理论来解释植物的入侵性, 仅从一个方面反映了入侵生物学的研究, 杂交-渐渗与其他理论的结合, 将从更深的层次来解释外来种的入侵机制。
卢宝荣, 夏辉, 汪魏, 杨箫 (2010) 天然杂交与遗传渐渗对植物入侵性的影响. 生物多样性, 18, 577-589. DOI: 10.3724/SP.J.2010.577.
Bao-Rong Lu, Hui Xia, Wei Wang, Xiao Yang (2010) Impacts of natural hybridization and introgression on biological invasion of plant species. Biodiversity Science, 18, 577-589. DOI: 10.3724/SP.J.2010.577.
图1 异源多倍体和同倍体物种的形成过程及其促进新物种产生遗传变异和入侵能力的图示。(1)两个含不同基因组(AA或BB)的二倍体物种经天然杂交和染色体加倍形成一个异源四倍体新物种。该新形成的四倍体物种包含了来自双亲的基因组(AABB), 其植株的体形和遗传重组类型都可能远远大于二倍体亲本物种。(2) 两个含相同基因组(AA)的二倍体物种经天然杂交形成一个新的二倍体物种。该新形成的二倍体物种包含了来自双亲的基因组(AA), 染色体数目未发生变化, 部分或完全可育, 但包含了由于来自双亲经过基因组的遗传重组而产生的大量遗传变异。
Fig. 1 A schematic illustration demonstrates allopolyploid and homoploid speciation that can significantly promote genetic variation and invasiveness of the newly formed species. (1) A tetraploid species evolved through the natural hybridization of two diploid species with different genomes (AA or BB) followed by chromosome doubling. The newly formed tetraploid species contains the AABB genomes from both parents and may have a much larger body size and more abundant genetic recombinants than its diploid parents. (2) A homoploid species evolved through the natural hybridization of two closely related diploid species with the same AA genome. The newly formed diploid species contains the AA genome without any change in chromosome numbers and is partially or fully fertile with new genetic recombinants from the two parents.
图2 同一物种或近缘物种的不同个体之间通过杂交-渐渗而促进遗传变异和入侵能力的图示。通过不同个体(双亲)之间的杂交和杂种与亲本的不断回交和自交, 在杂种及其后代群体中产生了大量的遗传重组和分离类型。植株1, 5代表亲本类型, 植株2, 3, 4代表各类重组分离类型(包括超亲类型4)。
Fig. 2 A schematic illustration demonstrates introgressive hybridization between individuals of the same or closely related or species to promote genetic variation and invasiveness. Through the hybridization-introgression process: crosses between two individuals and backcrosses of the hybrids with both parents, a large number of new genetic recombinants are generated in hybrid populations and their offspring. Plants 1, 5 represent the parental types, plants 2, 3, 4 represents a wide range of recombination and segregation types, including the “super type” (plant 4) from transgressive segregation.
[1] | Abbott RJ, Brennan AC, James JK, Forbes DG, Hegarty MJ, Hiscock SJ (2009) Recent hybrid origin and invasion of the British Isles by a self-incompatible species, Oxford ragwort ( Senecio squalidus L., Asteraceae). Biological Invasions, 11, 1145-1158. |
[2] | Ainouche ML, Baumel A, Salmon A, Yannic G (2004) Hybridization, polyploidy and speciation in Spartina Schreb. (Poaceae). New Phytologist, 161, 165-172. |
[3] | Ainouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien MA, Fukunaga K, Ricou M, Misset MT (2009) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biological Invasions, 11, 1159-1173. |
[4] | Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conservation Biology, 17, 24-30. |
[5] | Alpert P (2006) The advantages and disadvantages of being introduced. Biological Invasions, 8, 1523-1534. |
[6] |
Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecology Letters, 9, 196-214.
URL PMID |
[7] |
Baack EJ, Rieseberg LH (2007) A genomic view of introgression and hybrid speciation. Current Opinion in Genetics and Development, 17, 513-518.
DOI URL PMID |
[8] | Baack EJ, Whitney KD, Rieseberg LH (2005) Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytologist, 167, 623-630. |
[9] | Barrett SCH (1983) Crop mimicry in weeds. Economic Botany, 37, 25-28. |
[10] | Bartomeus I, Vilá M, Steffan-Dewenter I (2010) Combined effects of Impatiens glandulifera invasion and landscape structure on native plant pollination. Journal of Ecology, 98, 440-450. |
[11] | Bartsch D, Brand U, Morak C, Pohl-Orf M, Schuphan I, Ellstrand NC (2001) Biosafety of hybrids between transgenic virus-resistant sugar beet and Swiss chard. Ecological Applications, 11, 142-147. |
[12] |
Blair AC, Hufbauer RA (2010) Hybridization and invasion: one of North America’s most devastating invasive plants shows evidence for a history of interspecific hybridization. Evolutionary Applications, 3, 40-51.
DOI URL PMID |
[13] |
Bleeker W (2003) Hybridization and Rorippa austriaca (Brassicaceae) invasion in Germany. Molecular Ecology, 12, 1831-1841.
URL PMID |
[14] | Bradley BA (2010) Assessing ecosystem threats from global and regional change: hierarchical modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA. Ecography, 33, 198-208. |
[15] |
Campbell CS, Wojciechowski MF, Baldwin BG, Alice LA, Donoghue MJ (1997) Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Molecular Biology and Evolution, 14, 81-90.
DOI URL PMID |
[16] |
Campbell LG, Snow AA, Ridley CE (2006) Weed evolution after crop gene introgression: greater survival and fecundity of hybrids in a new environment. Ecology Letters, 9, 1198-1209.
DOI URL PMID |
[17] |
Campbell LG, Snow AA, Sweeney PM, Ketner JM (2009) Rapid evolution in crop-weed hybrids under artificial selection for divergent life histories. Evolutionary Applications, 2, 172-186.
DOI URL PMID |
[18] |
Cao QJ, Xia H, Yang X, Lu B-R (2009) Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments: implication for environmental biosafety assessment. Journal of Integrative Plant Biology, 51, 1138-1148.
DOI URL PMID |
[19] | Chen ZY (陈中义), Li B (李博), Chen JK (陈家宽) (2004) Ecological consequences and management of Spartina spp. invasions in coastal ecosystem. Biodiversity Science (生物多样性), 12, 280-289. (in Chinese with English abstract) |
[20] |
Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell, 12, 1551-1567.
DOI URL PMID |
[21] | Culley TM, Hardiman NA (2009) The role of intraspecific hybridization in the evolution of invasiveness: a case study of the ornamental pear tree Pyrus calleryana. Biological Invasions, 11, 1107-1119. |
[22] | Cummings CL, Alexander HM, Snow AA, Rieseberg LH, Kim MJ, Culley TM (2002) Fecundity selection in a sunflower crop-wild study: can ecological data predict crop allele changes. Ecological Applications, 12, 1661-1671. |
[23] | Elam DR, Ridley CE, Goodell K, Ellstrand NC (2007) Population size and relatedness affect fitness of a self-incompatible invasive plant. Proceedings of the National Academy of Sciences, USA, 104, 549-552. |
[24] | Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 30, 539-563. |
[25] | Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences, USA, 97, 7043-7050. |
[26] |
Facon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. Journal of Evolutionary Biology, 18, 524-535.
URL PMID |
[27] | Feldman M, Levy AA (2009) Genome evolution in allopolyploid wheat—a revolutionary reprogramming followed by gradual changes. Journal of Genetic Genomics, 36, 511-518. |
[28] |
Gressel J (2000) Molecular biology of weed control. Transgenic Research, 9, 355-382.
DOI URL PMID |
[29] |
Hails RS, Morley K (2005) Genes invading new populations: a risk assessment perspective. Trends in Ecology and Evolution, 20, 245-252.
DOI URL PMID |
[30] | Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Science, 48, 688-694. |
[31] |
Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ (2009) Extreme changes to gene expression associated with homoploid hybrid speciation. Molecular Ecology, 18, 877-889.
DOI URL PMID |
[32] | Hegarty MJ, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytologist, 165, 411-423. |
[33] | Huxel GR (1999) Rapid displacement of native species by invasive species: effects of hybridization. Biological Conservation, 89, 143-152. |
[34] |
Johansen-Morris AD, Latta RG (2006) Fitness consequences of hybridization between ecotypes of Avena barbata: hybrid breakdown, hybrid vigor, and transgressive segregation. Evolution, 60, 1585-1595.
URL PMID |
[35] | Koenig WD, Ashley MV (2003) Is pollen limited? The answer is blowing in the wind. Trends in Ecology and Evolution, 18, 157-159. |
[36] | Lande R (1995) Mutation and conservation. Conservation Biology, 9, 782-791. |
[37] |
Latta RG, Gardner KM, Johansen-Morris AD (2007) Hybridization, recombination, and the genetic basis of fitness variation across environments in Avena barbata. Genetica, 129, 167-177.
URL PMID |
[38] | Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences, USA, 104, 3883-3888. |
[39] |
Leger EA, Espeland EK, Merrill KR, Meyer SE (2009) Genetic variation and local adaptation at a cheatgrass (Bromus tectorum) invasion edge in western Nevada. Molecular Ecology, 18, 4366-4379.
DOI URL PMID |
[40] |
Lexer C, Welch ME, Durphy JL, Rieseberg LH (2003) Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. Molecular Ecology, 12, 1225-1235.
URL PMID |
[41] |
Londo LP, Schaal BA (2007) Origins and population genetics of weedy red rice in the USA. Molecular Ecology, 16, 4523-4535.
URL PMID |
[42] |
Lowe AJ, Abbott RJ (2000) Routes of origin of two recently evolved hybrid taxa: Senecio vulgaris var. hibernicus and York radiate groundsel (Asteraceae). American Journal of Botany, 87, 1159-1167.
URL PMID |
[43] | Lu B-R, Snow AA (2005) Gene flow from genetically modified rice and its environmental consequences. BioScience, 55, 669-678. |
[44] |
Lu B-R, Yang C (2009) Gene flow from genetically modified rice to its wild relatives: assessing potential ecological consequences. Biotechnology Advances, 27, 1083-1091.
DOI URL PMID |
[45] | Mack RH, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications, 10, 689-710. |
[46] |
Mallet J (2005) Hybridization as an invasion of the genome. Trends in Ecology and Evolution, 20, 229-237.
DOI URL PMID |
[47] |
Milne RI, Abbott RJ (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Molecular Ecology, 9, 541-556.
DOI URL PMID |
[48] |
Moon HS, Li Y, Stewart CN Jr (2009) Keeping the genie in the bottle: transgene biocontainment by excision in pollen. Trends in Biotechnology, 28, 3-8.
URL PMID |
[49] | NRCNA (National Research Council of the National Academies) (2004) Biological Confinement of Genetically Engineered Organisms. The National Academies Press, Washington D. C., USA. |
[50] | Olson A, Paul J, Freeland JR (2009) Habitat preferences of cattail species and hybrids ( Typha spp.) in eastern Canada. Aquatic Botany, 91, 67-70. |
[51] | Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytologist, 186, 37-45. |
[52] |
Pearson DE (2009) Invasive plant architecture alters trophic interactions by changing predator abundance and behavior. Oecologia, 159, 549-558.
URL PMID |
[53] | Peltzer DA, Allen RB, Lovett GM, Whitehead D, Wardle DA (2010) Effects of biological invasions on forest carbon sequestration. Global Change Biology, 16, 732-746. |
[54] | Pétillon J, Puzin C, Acou A, Outreman Y (2009) Plant invasion phenomenon enhances reproduction performance in an endangered spider. Aturwissenschaften, 96, 1241-1246. |
[55] | Petit RJ (2004) Biological invasions at the gene level. Diversity and Distributions, 10, 159-165. |
[56] | Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273-288. |
[57] |
Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends in Plant Science, 13, 288-294.
URL PMID |
[58] | Prevéy JS, Germino MJ, Huntly NJ, Inouye RS (2010) Exotic plants increase and native plants decrease with loss of foundation species in sagebrush steppe. Plant Ecology, 207, 39-51. |
[59] | Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Biological Invasions (ed. Nentwig W), pp. 97- 125. Springer, New York. |
[60] | Rejmănek M (2000) Invasive plants: approaches and predictions. Austral Ecology, 25, 497-506. |
[61] |
Ridley CE, Ellstrand NC (2009) Rapid evolution of morphology and adaptive life history in the invasive California wild radish ( Raphanus sativus) and the implications for management. Evolutionary Applications, 3, 64-76.
DOI URL PMID |
[62] |
Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity, 83, 363-372.
URL PMID |
[63] | Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytologist, 140, 599-624. |
[64] |
Rieseberg LH, Kim SC, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica, 129, 149-165.
URL PMID |
[65] |
Rieseberg LH, Sinervo B, Linder CR, Ungerer MC, Arias DM (1996) Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science, 272, 741-745.
DOI URL PMID |
[66] |
Rieseberg LH, Sternberg SB, Doan K (1990) Helianthus annuus ssp. texanus has chloroplast DNA and unclear ribosomal RNA genes of Helianthus deblilis ssp. cucumerifolius. Proceedings of the National Academy of Sciences, USA, 87, 593-597.
DOI URL |
[67] |
Rieseberg LH, Widmer A, Arntz AM, Burke B (2003) The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 1141-1147.
DOI URL |
[68] |
Rosenthal DM, Schwarzbach AE, Donovan LA, Raymond O, Rieseberg LH (2002) Phenotypic differentiation between three ancient hybrid taxa and their parental species. International Journal of Plant Science, 163, 387-398.
DOI URL |
[69] |
Rout ME, Chrzanowski TH (2009) The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant and Soil, 315, 163-172.
DOI URL |
[70] |
Rudgers JA, Orr S (2009) Non-native grass alters growth of native tree species via leaf and soil microbes. Journal of Ecology, 97, 247-255.
DOI URL |
[71] |
Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biological Invasions, 11, 1093-1105.
DOI URL |
[72] |
Schweitzer JA, Martinsen GD, Whitham TG (2002) Cottonwood hybrids gain fitness traits of both parents: a mechanism for their long-term persistence? American Journal of Botany, 89, 981-991.
URL PMID |
[73] |
Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecological Applications, 13, 279-286.
DOI URL |
[74] | Stebbins GL (1959) The role of hybridization in evolution. Proceedings of the American Philosophical Society, 103, 231-251. |
[75] |
Stewart NC, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics, 4, 806-817.
DOI URL PMID |
[76] | Sun JX (孙静贤), Ding KY (丁开宇), Wang BY (王兵益) (2005) The review and prospect of plant polyploid research. Journal of Wuhan Botanical Research, 23, 482-490. |
[77] |
Sun XY, Lu ZH, Sang WG (2004) Review on studies of Eupatorium adenophorum—an important invasive species in China. Journal of Forestry Research, 15, 319-322.
DOI URL |
[78] |
Takakura KI, Nishida T, Matsumoto T, Nishida S (2009) Alien dandelion reduces the seed-set of a native congener through frequency-dependent and one-sided effects. Biological Invasions, 11, 973-981.
DOI URL |
[79] |
Travis SE, Marburger JE, Windels S, Kubátova B (2010) Hybridization dynamics of invasive cattail (Typhaceae) stands in the Western Great Lakes Region of North America: a molecular analysis. Journal of Ecology, 98, 7-16.
DOI URL |
[80] |
Ungerer MC, Baird SJE, Pan J, Rieseberg LH (1998) Rapid hybrid speciation in wild sunflowers. Proceedings of the National Academy of Sciences, USA, 95, 11757-11762.
DOI URL |
[81] |
Urbanska KM, Hurka H, Landolt E, Neuffer B, Mummenhoff K (1997) Hybridization and evolution in Cardamine L. (Brassicaceae) at Urnerboden, Central Switzerland: biosystematic and molecular evidence. Plant Systematics and Evolution, 204, 233-256.
DOI URL |
[82] |
Vacher C, Weis AE, Hermann D, Kossler T, Young C, Hochberg ME (2004) Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theoretical and Applied Genetics, 109, 806-814.
DOI URL PMID |
[83] | Vila M, D'Antonio CM (1998) Hybrid vigor for clonal growth in Carpobrotus (Aizoaceae) in coastal California. Ecological Applications, 8, 1196-1205. |
[84] |
Virah-Sawmy M, Mauremootoo J, Marie D, Motala S, Seva- thian JC (2009) Rapid degradation of a Mauritian rainforest following 60 years of plant invasion. Oryx, 43, 599-607.
DOI URL |
[85] |
von Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
URL PMID |
[86] |
Wang Q (王卿), An SQ (安树青), Ma ZJ (马志军), Zhao B (赵斌), Chen JK (陈家宽), Li B (李博) (2006) Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica, 44, 559-588.
DOI URL |
[87] |
Weinig C, Brock MT, Dechaine JA, Welch SM (2007) Resolving the genetic basis of invasiveness and predicting invasions. Genetica, 129, 205-216.
URL PMID |
[88] |
Welch ME, Rieseberg LH (2002) Habitat divergence between a homoploid hybrid sunflower species, Helianthus paradoxus (Asteraceae), and its progenitors. American Journal of Botany, 89, 472-478.
DOI URL PMID |
[89] |
Whitney KD, Ahern JR, Campbell LG (2009) Hybridization-prone plant families do not generate more invasive species. Biological Invasions, 11, 1205-1215.
DOI URL |
[90] |
Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Diversity and Distributions, 14, 569-580.
DOI URL |
[91] |
Whitney KD, Randell RA, Rieseberg LH (2006) Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. The American Naturalist, 167, 794-807.
DOI URL PMID |
[92] |
Wolfe LM, Blair AC, Penna BM (2007) Does intraspecific hybridization contribute to the evolution of invasiveness? an experimental test. Biological Invasions, 9, 515-527.
DOI URL |
[93] |
Xu H, Ding H, Li MY, Qiang S, Guo JY, Han ZM, Huang ZG, Sun HY, He SP, Wu HR, Wan FH (2006) The distribution and economic losses of alien species invasion to China. Biological Invasions, 8, 1495-1500.
DOI URL |
[94] | Zayed A, Constantin SA, Packer L (2007) Successful biological invasion despite a severe genetic load. PLoS ONE, 9, 1-6. |
[1] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[2] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[3] | 马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟. 中国云豹种群分布现状与关键栖息地信息更新[J]. 生物多样性, 2022, 30(9): 22349-. |
[4] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[5] | 张琨, 邹长新, 张怡, 刘晓曼, 高吉喜. 从划定历程与属性特征正确认识生态保护红线内涵[J]. 生物多样性, 2022, 30(4): 21464-. |
[6] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[7] | 王瑞武, 李敏岚, 韩嘉旭, 王超. 适合度的相对性与路径依赖的自然选择[J]. 生物多样性, 2022, 30(1): 21323-. |
[8] | 刘勇波. 多倍体植物混合倍性种群的建立机制研究进展[J]. 生物多样性, 2021, 29(8): 1128-1133. |
[9] | 杨小凤, 李小蒙, 廖万金. 植物开花时间的遗传调控通路研究进展[J]. 生物多样性, 2021, 29(6): 825-842. |
[10] | 严靖, 闫小玲, 李惠茹, 杜诚, 马金双. 华东地区归化植物的组成特征、引入时间及时空分布[J]. 生物多样性, 2021, 29(4): 428-438. |
[11] | 范兴科, 燕霞, 冯媛媛, 冉进华, 钱朝菊, 尹晓月, 周姗姗, 房庭舟, 马小飞. 红砂基因组大小变异及物种分化[J]. 生物多样性, 2021, 29(10): 1308-1320. |
[12] | 何维明. 生物入侵的影响是否准确可知?[J]. 生物多样性, 2020, 28(2): 253-255. |
[13] | 张家真, 高春蕾, 李艳, 孙萍, 王宗灵. 江阴港口外来船舶压载舱沉积物中甲藻包囊种类及组成[J]. 生物多样性, 2020, 28(2): 144-154. |
[14] | 殷万东, 吴明可, 田宝良, 于宏伟, 王麒云, 丁建清. 生物入侵对黄河流域生态系统的影响及对策[J]. 生物多样性, 2020, 28(12): 1533-1545. |
[15] | 路宁娜, 刘振恒, 马妍, 路广梅, 孟秀祥. 展毛翠雀的花性状表型选择[J]. 生物多样性, 2019, 27(7): 772-777. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn