生物多样性 ›› 2022, Vol. 30 ›› Issue (1): 21323. DOI: 10.17520/biods.2021323 cstr: 32101.14.biods.2021323
王瑞武1,*(), 李敏岚1,2, 韩嘉旭1, 王超1,*(
)
收稿日期:
2021-08-17
接受日期:
2021-10-21
出版日期:
2022-01-20
发布日期:
2022-01-29
通讯作者:
王瑞武,王超
作者简介:
* 共同通讯作者. E-mail: chaowang@nwpu.edu.cn;wangrw@nwpu.edu.cn基金资助:
Ruiwu Wang1,*(), Minlan Li1,2, Jiaxu Han1, Chao Wang1,*(
)
Received:
2021-08-17
Accepted:
2021-10-21
Online:
2022-01-20
Published:
2022-01-29
Contact:
Ruiwu Wang,Chao Wang
摘要:
自然选择理论认为生物个体或者种群在进化的过程中, 其基因或者性状、行为策略的选择一定是能够提高其适合度或者达到某个可期的“目标”。然而, 随着某个突变基因或者性状特征、行为策略在种群中扩散, 其期望收益将随着其在种群中分布的密度变化或环境改变而发生改变, 这就是适合度景观的悖论, 即静态的、固定可期望的收益可能因此而不存在。基于动态而非静态适合度景观的概念, 我们提出路径依赖的自然选择概念。路径依赖的自然选择过程中, 一个突变的基因或表型在某种环境下随机产生, 但是该基因或表型在某些特定环境下会产生正反馈。尤其是在正反馈与随机漂变的共同作用下, 多条路径的演化就可能发生, 并且其路径的形成将同时受到其种群进化历史过程和空间特征分布等因素的强烈影响。而在不同路径下, 由于观测维度、角度和尺度的不同, 适合度意义将因此而存在不同。在此意义下, 自然选择更可能选择路径频率而不是适合度大小。基于上述概念, 我们借鉴现代物理学中复函数的方法, 来描述多重动力对物种形成或者生物特征、种群进化等路径依赖的演化过程, 以期为同域物种、隐存种形成以及生物多样性演化提供解释机制。
王瑞武, 李敏岚, 韩嘉旭, 王超 (2022) 适合度的相对性与路径依赖的自然选择. 生物多样性, 30, 21323. DOI: 10.17520/biods.2021323.
Ruiwu Wang, Minlan Li, Jiaxu Han, Chao Wang (2022) Fitness relativity and path-dependent selection. Biodiversity Science, 30, 21323. DOI: 10.17520/biods.2021323.
图1 适合度演化的经典理论。适合度景观保持静态, 物种性状向适合度大的地方演化。
Fig. 1 Fitness landscape in classical theory, in which the fitness of each trait keeps constant, and the traits with locally maximum fitness become the evolutionary aim.
图2 适合度演化的非平衡态理论。这时适合度景观是动态的。在A点时, 右侧性状适合度比较大, 物种向适合度较大的B性状演化。但演化到B点时, 适合度景观发生变化, 适合度并没有如预期增长。
Fig. 2 Fitness landscape in the nonequilibrium theory, in which the fitness of each phenotype might vary greatly. For example, when trait A evolves to trait B who has higher fitness, the individual’s fitness with trait A will not increase as expected. This is because the fitness of each trait might vary with the change of population structure and environment.
图3 表型A从表型值x0出发演化到表型值xn的其中两条路径。从x0到xn的转移概率是两个表型值之间所有可能经历的类似路径的概率求和。
Fig. 3 Two paths as the example of all of the paths that the trait A evolves from x0 to xn. The probability evolving from x0 to xn, is the sum of all of the paths’ probabilities.
图4 物种分布示意图。沿路径依赖的自然选择下形成的物种根据其所在路径的概率不同, 在某个时刻形成物种分布的山峰图, 连绵的山脉和独立的山头分别体现了物种的连续性和分立性。
Fig. 4 Conceptual diagram of species distribution. In path-dependent speciation, the shape of species peaks at a specific time will depend on the probability of its evolutionary path. The continuous mountains and the independent peaks represent the continuity and separation of species, respectively.
[1] | Ashraf N, Camerer CF, Loewenstein G (2005) Adam Smith, behavioral economist. Journal of Economic Perspectives, 19, 131-145. |
[2] |
Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature, 533, 452-454.
DOI URL |
[3] |
Bamshad MJ, Shendure JA, Valle D, Hamosh A, Lupski JR, Gibbs RA, Boerwinkle E, Lifton RP, Gerstein M, Gunel M, Mane S, Nickerson DA, Genomics CFM (2012) The Centers for Mendelian Genomics: A new large-scale initiative to identify the genes underlying rare Mendelian conditions. American Journal of Medical Genetics Part A, 158A, 1523-1525.
DOI URL |
[4] |
Bertola V, Cafaro E (2008) A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow. International Journal of Heat and Mass Transfer, 51, 1907-1912.
DOI URL |
[5] | Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Sciences, USA, 105, 7899-7906. |
[6] |
Bollinger RR, Barbas AS, Bush EL, Lin SS, Parker W (2007) Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. Journal of Theoretical Biology, 249, 826-831.
PMID |
[7] | Bronstein JL (2001) The costs of mutualism. American Zoologist, 41, 825-839. |
[8] |
Cavasinni V, Iacopini E, Polacco E, Stefanini G (1986) Galileo’s experiment on free-falling bodies using modern optical techniques. Physics Letters A, 116, 157-161.
DOI URL |
[9] |
Dada JO, Mendes P (2011) Multi-scale modelling and simulation in systems biology. Integrative Biology, 3, 86-96.
DOI URL |
[10] | Darwin CR(1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London. |
[11] | Dawkins R (1976) The Extended Selfish Gene. Oxford University Press, New York. |
[12] |
Donelan SC, Hellmann JK, Bell AM, Luttbeg B, Orrock JL, Sheriff MJ, Sih A (2020) Transgenerational plasticity in human-altered environments. Trends in Ecology & Evolution, 35, 115-124.
DOI URL |
[13] |
Drapeau MD, Albert S, Kucharski R, Prusko C, Maleszka R (2006) Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Research, 16, 1385-1394.
PMID |
[14] |
Egolf DA, Melnikov IV, Pesch W, Ecke RE (2000) Mechanisms of extensive spatiotemporal chaos in Rayleigh-Bénard convection. Nature, 404, 733-736.
DOI URL |
[15] |
Ehlman SM, Trimmer PC, Sih A (2019) Prey responses to exotic predators: Effects of old risks and new cues. The American Naturalist, 193, 575-587.
DOI PMID |
[16] | Eldredge N, Gould SJ (1972) Punctuated equilibria:An alternative to phyletic gradualism. In: Models in Paleobiology (ed.ed. Schöpf TJM), pp. 82-115, Freeman Cooper & Company, San Francisco. |
[17] | Ewens WJ (2004) Mathematical Population Genetics I: Theoretical Introduction. Springer, New York. |
[18] |
Fisher RA (1936) Has Mendel’s work been rediscovered? Annals of Science, 1, 115-137.
DOI URL |
[19] | Gallavotti G (2012) Nonequilibrium thermodynamics. Physics, 82, 438-462. |
[20] |
Gavrilets S, Hastings A (1996) Founder effect speciation: A Theoretical Reassessment. The American Naturalist, 147, 466-491.
DOI URL |
[21] | Gould SJ (1989) Wonderful Life: The Burgess Shale and the Nature of History. W. W. Norton & Company, New York. |
[22] | Gould SJ (2002) The Structure of Evolutionary Theory. Harvard University Press, Cambridge. |
[23] |
Gould SJ, Eldredge N (1977) Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology, 3, 115-151.
DOI URL |
[24] |
Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: Exploring the paths between conflict and cooperation. Trends in Ecology & Evolution, 14, 49-53.
DOI URL |
[25] | Herre EA, West SA (1997) Conflict of interest in a mutualism: Documenting the elusive fig wasp-seed trade-off. Proceedings of the Royal Society of London B, 264, 1501-1507. |
[26] |
Hong DY (2016) Biodiversity pursuits need a scientific and operative species concept. Biodiversity Science, 24, 979- 999. (in Chinese with English abstract)
DOI URL |
[ 洪德元 (2016) 生物多样性事业需要科学、可操作的物种概念. 生物多样性, 24, 979-999.]
DOI |
|
[27] |
Houston AI, McNamara JM (1988) Fighting for food: A dynamic version of the Hawk-Dove game. Evolutionary Ecology, 2, 51-64.
DOI URL |
[28] |
Huang ZY, Robinson GE (1996) Regulation of honey bee division of labor by colony age demography. Behavioral Ecology and Sociobiology, 39, 147-158.
DOI URL |
[29] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[30] | Huxley JS (1942) Evolution, the Modern Synthesis. Allen & Unwim, London. |
[31] | Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge. |
[32] | Kirkwood TB, Bangham CR (1994) Cycles, chaos, and evolution in virus cultures: A model of defective interfering particles. Proceedings of the National Academy of Sciences, USA, 91, 8685-8689. |
[33] |
Li ML, Wang C, Wang RW (2021) Path-dependent speciation in the process of evolution. Biodiversity Science, 29, 409-418. (in Chinese with English abstract)
DOI URL |
[ 李敏岚, 王超, 王瑞武 (2021) 路径依赖下的物种形成机制. 生物多样性, 29, 409-418.]
DOI |
|
[34] |
Lin H (2015) Thermodynamic entropy fluxes reflect ecosystem characteristics and succession. Ecological Modelling, 298, 75-86.
DOI URL |
[35] |
Ludovisi A (2006) Use of thermodynamic indices as ecological indicators of the development state of lake ecosystems: Specific dissipation. Ecological Indicators, 6, 30-42.
DOI URL |
[36] | Mahoney J (2000) Path dependence in historical sociology. Theory & Society, 29, 507-548. |
[37] | Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L (2010) Identification of a pheromone regulating caste differentiation in termites. Proceedings of the National Academy of Sciences, USA, 107, 12963-12968. |
[38] | Mendel G, Bateson W (1925) Experiments in plant-hybridisation. British Medical Journal, 2, 694. |
[39] |
Moreno-Fernández D, Hernández L, Sánchez-González M, Cañellas I, Montes F (2016) Space-time modeling of changes in the abundance and distribution of tree species. Forest Ecology and Management, 372, 206-216.
DOI URL |
[40] |
Newman CM, Cohen JE, Kipnis C (1985) Neo-Darwinian evolution implies punctuated equilibria. Nature, 315, 400-401.
DOI URL |
[41] | Newton I (2006) The Mathematical Principles of Natural Philosophy (ed. Wang KD). Beijing Publishing Group, Beijing. (in Chinese) |
[ Newton I (2006) 自然哲学之数学原理(王克迪译). 北京出版社, 北京.] | |
[42] | Nowak MA (2006) Evolutionary Dynamics:Exploring the Equations of Life. Harvard University Press, Cambridge. |
[43] |
Nowak MA, Sigmund K (2004) Evolutionary dynamics of biological games. Science, 303, 793-799.
DOI URL |
[44] | Prum RO (2017) The evolution of beauty: How Darwin’s forgotten theory of mate choice shapes the animal world-and us. Doubleday, New York. |
[45] |
Queller DC (1992) A general model for kin selection. Evolution, 46, 376-380.
DOI PMID |
[46] |
Rehage JS, Sih A (2004) Dispersal behavior, boldness, and the link to invasiveness: A comparison of four Gambusia species. Biological Invasions, 6, 379-391.
DOI URL |
[47] |
Sih A, Ferrari MCO, Harris DJ (2011) Evolution and behavioural responses to human-induced rapid environmental change. Evolutionary Applications, 4, 367-387.
DOI URL |
[48] | Smith A (1776) An Inquiry into the Nature and Causes of the Wealth of Nations, Vol. 1. W. Strahan and T. Cadell, London. |
[49] |
Thomas GWC, Hahn MW (2014) The human mutation rate is increasing, even as it slows. Molecular Biology and Evolution, 31, 253-257.
DOI PMID |
[50] |
Traulsen A, Iwasa Y, Nowak MA (2007) The fastest evolutionary trajectory. Journal of Theoretical Biology, 249, 617-623.
DOI PMID |
[51] |
Walker BH (1992) Biodiversity and ecological redundancy. Conservation Biology, 6, 18-23.
DOI URL |
[52] | Wang RW (2021) The End of Rationality and Selfness. China Commerce and Trade Press, Beijing. (in Chinese) |
[ 王瑞武 (2021) 理性与自私的终结. 中国商务出版社, 北京.] | |
[53] |
Wang RW, Shi L, Ai SM, Zheng Q (2008) Trade-off between reciprocal mutualists: Local resource availability-oriented interaction in fig/fig wasp mutualism. Journal of Animal Ecology, 77, 616-623.
DOI PMID |
[54] |
Wang RW, Sun BF, Yang Y (2015) Discriminative host sanction together with relatedness promote the cooperation in fig/fig wasp mutualism. The Journal of Animal Ecology, 84, 1133-1139.
DOI URL |
[55] |
Wang RW, Sun BF, Zheng Q (2010) Diffusive coevolution and mutualism maintenance mechanisms in a fig-fig wasp system. Ecology, 91, 1308-1316.
DOI URL |
[56] |
Wang RW, Sun BF, Zheng Q, Shi L, Zhu LX (2011) Asymmetric interaction and indeterminate fitness correlation between cooperative partners in the fig-fig wasp mutualism. Journal of the Royal Society Interface, 8, 1487-1496.
DOI URL |
[57] |
Wang XF, He ZW, Shi SH, Wu CI (2020) Genes and speciation: Is it time to abandon the biological species concept? National Science Review, 7, 1387-1397.
DOI URL |
[1] | 干靓 刘巷序 鲁雪茗 岳星. 全球生物多样性热点地区大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[2] | 曾子轩 杨锐 黄越 陈路遥. 清华大学校园鸟类多样性特征与环境关联[J]. 生物多样性, 2025, 33(5): 24373-. |
[3] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[4] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[5] | 袁琳, 王思琦, 侯静轩. 大都市地区的自然留野:趋势与展望[J]. 生物多样性, 2025, 33(5): 24481-. |
[6] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[7] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果分析[J]. 生物多样性, 2025, 33(5): 24531-. |
[8] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升研究[J]. 生物多样性, 2025, 33(5): 24524-. |
[9] | 谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏. 草地植物多样性无人机调查的物种智能识别模型构建[J]. 生物多样性, 2025, 33(4): 24236-. |
[10] | 王顺雨, 李杨, 吕晓琴, 李欣, 范权秀, 王晓月. 熊蜂盗蜜的花色偏好及对长距忍冬繁殖适合度的影响[J]. 生物多样性, 2025, 33(4): 24554-. |
[11] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[12] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性–生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[13] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[14] | 农荞伊, 曹军, 程文达, 彭艳琼. 不同方法对蜜蜂总科昆虫资源与多样性监测效果的比较[J]. 生物多样性, 2025, 33(4): 25057-. |
[15] | 郭雨桐, 李素萃, 王智, 解焱, 杨雪, 周广金, 尤春赫, 朱萨宁, 高吉喜. 全国自然保护地对国家重点保护野生物种的覆盖度及其分布状况[J]. 生物多样性, 2025, 33(3): 24423-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn