生物多样性 ›› 2023, Vol. 31 ›› Issue (2): 22259. DOI: 10.17520/biods.2022259
姚仁秀1,2, 陈燕1,2, 吕晓琴2,3, 王江湖2,3, 杨付军1, 王晓月1,3,*()
收稿日期:
2022-05-11
接受日期:
2022-09-22
出版日期:
2023-02-20
发布日期:
2022-11-11
通讯作者:
*王晓月, E-mail: wang.xiaoyue1989@163.com
基金资助:
Renxiu Yao1,2, Yan Chen1,2, Xiaoqin Lü2,3, Jianghu Wang2,3, Fujun Yang1, Xiaoyue Wang1,3,*()
Received:
2022-05-11
Accepted:
2022-09-22
Online:
2023-02-20
Published:
2022-11-11
Contact:
*Xiaoyue Wang, E-mail: wang.xiaoyue1989@163.com
摘要:
植物-环境间的长期相互作用驱动着植物表型及次生代谢物的变异。随着海拔梯度的变化, 环境中的非生物因子会发生变化, 但它们如何影响植物的表型以及次生代谢物的组成和含量, 以及植物不同组织器官的次生代谢物是否存在差异, 目前有关这方面的研究还较少。本文选取3个不同海拔中的柳条杜鹃(Rhododendron virgatum)和大白杜鹃(R. decorum) (大理苍山居群)及红棕杜鹃(R. rubiginosum) (老君山居群)为研究对象, 测定不同海拔的环境因子(温度、相对湿度和相对光照强度), 测量和分析了不同海拔植物的表型性状, 花蜜体积、糖浓度及花蜜中糖成分(HPLC分析方法), 以及植株的茎、叶、花瓣、花粉、花蜜中次生代谢物组成及含量(UPLC-Qtof分析法)。结果表明: 随着海拔升高, 温度、相对湿度和相对光照强度降低, 杜鹃的植株高度、花冠大小和花药体积显著减小, 而枝条直径、雌蕊和雄蕊长度显著增大。3种杜鹃在海拔C的花蜜体积和糖浓度均显著高于海拔A和海拔B, 海拔C中花蜜的蔗糖成分也显著增多。杜鹃属植物主要含黄酮类、甾体类、苯丙素类、萜类和生物碱类等次生代谢物, 随着海拔的变化, 这5类次生代谢物质的相对含量没有显著变异, 但是它们两两之间存在显著的相关性。杜鹃属植物不同组织中次生代谢物的含量有明显差异, 整体来说, 花粉和花蜜中次生代谢物的种类和含量要显著低于其他组织。主成分分析结果显示, 海拔A和海拔B中杜鹃的表型和化学特征比较相似, 海拔C杜鹃的黄酮类物质组成和含量与海拔A和海拔B具有显著差异。本研究表明, 随着海拔及其环境因子的变化, 杜鹃属植物的表型特征和化学性状都存在一定程度的适应性变异, 但表型特征的变异程度远大于次生代谢物的组成和相对含量。相对于植物内在的次生代谢物, 环境因子的差异更容易影响植物的表型特征。
姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月 (2023) 海拔及环境因子影响杜鹃属植物的表型特征和化学性状. 生物多样性, 31, 22259. DOI: 10.17520/biods.2022259.
Renxiu Yao, Yan Chen, Xiaoqin Lü, Jianghu Wang, Fujun Yang, Xiaoyue Wang (2023) Altitude-related environmental factors shape the phenotypic characteristics and chemical profile of Rhododendron. Biodiversity Science, 31, 22259. DOI: 10.17520/biods.2022259.
图1 柳条杜鹃(A)、大白杜鹃(B)和红棕杜鹃(C)的花序以及杜鹃的花部特征测量(D, 以大白杜鹃为例)。a: 花冠长; b: 花冠宽; c: 花筒开口直径; d: 花筒深; e: 花筒直径; f: 雌蕊长; g: 最高雄蕊长; h: 最低雄蕊长。
Fig. 1 The inflorescence of Rhododendron virgatum (A), R. decorum (B), and R. rubiginosum (C) and measurement of floral characteristics of Rhododendron (D, R. decorum as example). a, Corolla length; b, Corolla width; c, Tube opening diameter; d, Floral tube length; e, Tube diameter; f, Pistil length; g, The longest stamen length; h, The shortest stamen length.
居群 Population | 海拔 Elevation (m) | 相对光照强度 Relative light intensity (%) | 温度 Temperature (℃) | 相对湿度 Relative humidity (%) | |
---|---|---|---|---|---|
苍山 Cangshan Mountain | 海拔A Altitude A | 2,199.20 ± 7.96c | 0.52 ± 0.07a | 16.08 ± 0.28b | 57.17 ± 2.82b |
海拔B Altitude B | 2,511.20 ± 10.18b | 0.40 ± 0.07a | 18.92 ± 0.20a | 60.50 ± 1.93b | |
海拔C Altitude C | 2,809.00 ± 6.94a | 0.18 ± 0.04b | 12.88 ± 0.34c | 74.42 ± 2.47a | |
Wald χ2 | 2,593.848 | 14.105 | 234.227 | 28.222 | |
P | < 0.001 | 0.001 | < 0.001 | < 0.001 | |
老君山 Laojun Mountain | 海拔A Altitude A | 3,398.20 ± 9.66c | 0.34 ± 0.04a | 12.39 ± 0.84a | 66.67 ± 2.17a |
海拔B Altitude B | 3,606.20 ± 8.80b | 0.25 ± 0.05a | 13.64 ± 1.33a | 70.33 ± 5.65a | |
海拔C Altitude C | 3,796.00 ± 10.40a | 0.28 ± 0.03a | 7.73 ± 1.17b | 72.11 ± 4.19a | |
Wald χ2 | 851.739 | 3.296 | 11.876 | 0.768 | |
P | < 0.001 | 0.192 | 0.003 | 0.681 |
表1 不同海拔杜鹃居群环境因子(相对光照强度、温度和相对湿度)的比较(广义线性模型)。不同字母表明同一环境因子在不同海拔居群有显著性差异。加粗表示最大值。
Table 1 Comparison of environmental factors (relative light intensity, temperature and relative humidity) among different altitude populations (generalized linear model, GLM). Different letters indicate significant differences in environmental factors among different altitudes. Bolded numbers indicate maximum values.
居群 Population | 海拔 Elevation (m) | 相对光照强度 Relative light intensity (%) | 温度 Temperature (℃) | 相对湿度 Relative humidity (%) | |
---|---|---|---|---|---|
苍山 Cangshan Mountain | 海拔A Altitude A | 2,199.20 ± 7.96c | 0.52 ± 0.07a | 16.08 ± 0.28b | 57.17 ± 2.82b |
海拔B Altitude B | 2,511.20 ± 10.18b | 0.40 ± 0.07a | 18.92 ± 0.20a | 60.50 ± 1.93b | |
海拔C Altitude C | 2,809.00 ± 6.94a | 0.18 ± 0.04b | 12.88 ± 0.34c | 74.42 ± 2.47a | |
Wald χ2 | 2,593.848 | 14.105 | 234.227 | 28.222 | |
P | < 0.001 | 0.001 | < 0.001 | < 0.001 | |
老君山 Laojun Mountain | 海拔A Altitude A | 3,398.20 ± 9.66c | 0.34 ± 0.04a | 12.39 ± 0.84a | 66.67 ± 2.17a |
海拔B Altitude B | 3,606.20 ± 8.80b | 0.25 ± 0.05a | 13.64 ± 1.33a | 70.33 ± 5.65a | |
海拔C Altitude C | 3,796.00 ± 10.40a | 0.28 ± 0.03a | 7.73 ± 1.17b | 72.11 ± 4.19a | |
Wald χ2 | 851.739 | 3.296 | 11.876 | 0.768 | |
P | < 0.001 | 0.192 | 0.003 | 0.681 |
表2 柳条杜鹃、大白杜鹃和红棕杜鹃在腹痛还把居群营养器官和繁殖器官的比较(广义线性模型)(平均值±标准误)。不同字母表示同一杜鹃的特征在不同海拔居群间有显著性差异。加粗表示最大值。
Table 2 Comparison of vegetable and reproduction organs of Rhododendron vigatum, R. decorum, R. rubiginosum at different altitudes(generalized linear model, GLM)(mean±SE). Different letters indicate significant differences in phenotypic characteristics among different altitudes of Rhododendron plants. Bolded numbers indicate the maximum values.
图2 不同海拔杜鹃花蜜体积(Ai)、花蜜糖浓度(Aii)和花蜜糖成分含量(B)的比较(柳条杜鹃、大白杜鹃和红棕杜鹃的数值合并分析) (平均值 ± 标准误)。不同字母表示不同海拔间差异显著(P < 0.05)。
Fig. 2 Comparison of nectar volume (Ai) and nectar concentration (Aii) and nectar sugar content (B) of three species of Rhododendron at different altitudes (mean ± SE). Different letters indicate significant differences between different altitudes (P < 0.05).
图3 不同海拔杜鹃中黄酮类、甾体类、萜类、苯丙素类和生物碱类相对含量的比较(柳条杜鹃、大白杜鹃和红棕杜鹃的数值合并分析) (平均值 ± 标准误)。不同字母表示不同器官间同一类别物质具有显著性差异(P < 0.05)。
Fig. 3 Comparison of flavonoid, steroid, terpenoid, phenylpropanoid and alkaloid contents among Rhododendron at different altitudes (mean ± SE). Different letters indicate significant differences among different organs (P < 0.05).
表3 杜鹃不同海拔居群的营养器官、繁殖器官、5类含量最高的次生代谢物与海拔、环境因子(温度、相对湿度、相对光照强度)的Pearson相关性分析。表格中灰色分割线左下方的数值表示相关性(r), 右上方的数值表示显著性(P)。P < 0.05时加粗表示, 且相应的相关性r值加粗并标注为蓝色, 浅蓝色表示P < 0.05, 蓝色表示P < 0.01, 深蓝色表示P < 0.001。
Table 3 The Pearson correlation analysis among Rhododendron vegetative and reproductive organs traits, the secondary materials components, altitudes and environmental factors (temperature, relative humidity and relative light intensity). In the table, the lower left value of the gray split line indicates correlation (r), and the upper right value of the gray split line indicates significance (P). If the P < 0.05, the P value will be bold, and the corresponding r value will be bold and marked as blue, light blue indicates P < 0.05, blue indicates P < 0.01, and dark blue indicates P < 0.001.
图4 不同海拔杜鹃的10个表型特征和5种次生代谢物含量的主成分分析(PCA)
Fig. 4 Principal component analysis (PCA) of ten phenotypic characteristics and five secondary material components (flavonoid, steroid, terpenoid, phenylpropanoid and alkaloid) of Rhododendron at different altitudes
[1] |
Adhikari P, Joshi K, Singh M, Pandey A (2020) Influence of altitude on secondary metabolites, antioxidants, and antimicrobial activities of Himalayan yew (Taxus wallichiana). Plant Biosystems, 156, 187-195.
DOI URL |
[2] |
Amato B, Petit S (2017) A review of the methods for storing floral nectars in the field. Plant Biology, 19, 497-503.
DOI PMID |
[3] |
Baker HG, Baker I, Hodges SA (1998) Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica, 30, 559-586.
DOI URL |
[4] |
Bakhtiari M, Formenti L, Caggìa V, Glauser G, Rasmann S (2019) Variable effects on growth and defense traits for plant ecotypic differentiation and phenotypic plasticity along elevation gradients. Ecology and Evolution, 9, 3740-3755.
DOI |
[5] |
Borghi M, de Souza LP, Yoshida T, Fernie AR (2019) Flowers and climate change: A metabolic perspective. New Phytologist, 224, 1425-1441.
DOI PMID |
[6] | Botto JF (2015) Plasticity to simulated shade is associated with altitude in structured populations of Arabidopsis thaliana. Plant, Cell & Environment, 38, 1321-1332. |
[7] |
Brunet J, Holmquist K (2009) The influence of distinct pollinators on female and male reproductive success in the Rocky Mountain columbine. Molecular Ecology, 18, 3745-3758.
DOI PMID |
[8] | Chamberlain D, Hyam R, Argent G, Fairweather G, Walter KS (1996) The Genus Rhododendron: Its Classification and Synonymy. Royal Botanic Garden Edinburgh, Edinburgh. |
[9] | Dong XC (2006) Study on Flavonoids Metabolism and Its Defensive Mechanism in Buckwheat under UV Stress. PhD dissertation, Shangdong Agricultural University, Taian, Shangdong. (in Chinese with English abstract) |
[董新纯 (2006) UV胁迫下苦荞类黄酮代谢及其防御机制研究. 博士学位论文, 山东农业大学, 山东泰安.] | |
[10] |
Fabbro T, Körner C (2004) Altitudinal differences in flower traits and reproductive allocation. Flora, 199, 70-81.
DOI URL |
[11] | Fang RZ, Min TL (1995) The floristic study on the genus Rhododendron. Acta Botanica Yunnanica, 17, 359-379. (in Chinese with English abstract) |
[方瑞征, 闵天禄 (1995) 杜鹃属植物区系的研究. 云南植物研究, 17, 359-379.] | |
[12] |
Feng LD, Lin H, Kang MH, Ren YM, Yu X, Xu ZP, Wang S, Li T, Yang WJ, Hu QJ (2022) A chromosome-level genome assembly of an alpine plant Crucihimalaya lasiocarpa provides insights into high-altitude adaptation. DNA Research, 29, dsac004.
DOI URL |
[13] |
Gong YB, Huang SQ (2007) On methodology of foraging behavior of pollinating insects. Biodiversity Science, 15, 576-583. (in Chinese with English abstract)
DOI |
[龚燕兵, 黄双全 (2007) 传粉昆虫行为的研究方法探讨. 生物多样性, 15, 576-583.]
DOI |
|
[14] |
Goodwin RM, Cox HM, Taylor MA, Evans L, McBrydie H (2011) Number of honey bee visits required to fully pollinate white clover (Trifolium repens) seed crops in Canterbury, New Zealand. New Zealand Journal of Crop and Horticultural Science, 39, 7-19.
DOI URL |
[15] | Guo N, Gao JH, He YJ, Guo YJ (2016) Compositae plants differed in leaf cuticular waxes between high and low altitudes. Chemistry & Biodiversity, 13, 710-718. |
[16] | He YP, Fei SM, Liu JQ, Chen XM, Wang P, Jiang JM, He F (2005) A preliminary review of studies of alpine plant breeding system. Journal of Sichuan Forestry Science and Technology, 26(4), 43-49. (in Chinese with English abstract) |
[何亚平, 费世民, 刘建全, 陈秀明, 王鹏, 蒋俊明, 何飞 (2005) 高山植物繁育系统研究进展初探. 四川林业科技, 26(4), 43-49.] | |
[17] | Hu DM (2021) Study on Breeding System and Pollination Accuracy of Tirpitzia Sinensis Hemsl. PhD dissertation, Guizhou Normal University, Guiyang. (in Chinese with English abstract) |
[胡德美 (2021) 青篱柴繁育系统与传粉精确性研究. 博士学位论文, 贵州师范大学, 贵阳.] | |
[18] | Huang ZH (2015) Pollination System and Floral Evolution of Genus Rhododendron (Ericaceae). PhD dissertation, Wuhan University, Wuhan. (in Chinese with English abstract) |
[黄至欢 (2015) 杜鹃花属的传粉系统及花的演化. 博士学位论文, 武汉大学, 武汉.] | |
[19] | Huang ZH, Song YP, Huang SQ (2017) Evidence for passerine bird pollination in Rhododendron species. AoB Plants, 9, plx062. |
[20] | Kappelle M, Kennis PAF, de Vries RAJ (1995) Changes in diversity along a successional gradient in a Costa Rican upper montane Quercus forest. Biodiversity & Conservation, 4, 10-34. |
[21] |
Kergunteuil A, Descombes P, Glauser G, Pellissier L, Rasmann S (2018) Plant physical and chemical defence variation along elevation gradients: A functional trait-based approach. Oecologia, 187, 561-571.
DOI PMID |
[22] |
Körner C, Neumayer M, Menendez-Riedl SP, Smeets-Scheel A (1989) Functional morphology of mountain plants. Flora, 182, 353-383.
DOI URL |
[23] | Li CC, Qian CY, Quan WX, Tang FH, Ou J (2018) Allelopathic potential evaluation of different soil decomposition layers in wild Rhododendron irroratum forest. Acta Ecologica Sinica, 38, 4909-4916. (in Chinese with English abstract) |
[李朝婵, 钱沉鱼, 全文选, 唐凤华, 欧静 (2018) 野生露珠杜鹃林不同分解层的土壤化感潜力. 生态学报, 38, 4909-4916.] | |
[24] |
Li CC, Quan WX, Qian CY, Wu YY (2019) Distribution of chemical compounds in different soil layers of Rhododendron forest. Allelopathy Journal, 48, 191-202.
DOI URL |
[25] |
Li HD, Ren ZX, Wu ZK, Xu K, Wang H (2015) Variation in floral traits of distylous Primula poissonii (Primulaceae) along geographic gradients. Biodiversity Science, 23, 747-758. (in Chinese with English abstract)
DOI URL |
[李海东, 任宗昕, 吴之坤, 许琨, 王红 (2015) 二型花柱植物海仙花报春花部性状随地理梯度的变异. 生物多样性, 23, 747-758.]
DOI |
|
[26] | Li HP, Huang DZ, Yang MS, Qi SG (2001) Advance in the study on mechanism of tree resistance to insect. Hebei Journal of Forestry and Orchard Research, 16(1), 91-96. (in Chinese with English abstract) |
[李会平, 黄大庄, 杨敏生, 齐绍光 (2001) 林木抗虫机制研究进展. 河北林果研究, 16(1), 91-96.] | |
[27] | Liu ZJ (2000) Drought-induced in vivo synthesis of camptothecin in Camptotheca acuminata seedlings. Physiologia Plantarum, 110, 483-488. |
[28] | Martínez del Rio C, Schondube JE, McWhorter TJ, Herrera LG (2001) Intake responses in nectar feeding birds: Digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. American Zoologist, 41, 902-915. |
[29] |
Mullin M, Klutsch JG, Cale JA, Hussain A, Zhao S, Whitehouse C, Erbilgin N (2021) Primary and secondary metabolite profiles of lodgepole pine trees change with elevation, but not with latitude. Journal of Chemical Ecology, 47, 280-293.
DOI PMID |
[30] |
Nicolson SW (2002) Pollination by passerine birds: Why are the nectars so dilute? Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 131, 645-652.
DOI URL |
[31] |
Nikkeshi A, Kurimoto D, Ushimaru A (2015) Low flower-size variation in bilaterally symmetrical flowers: Support for the pollination precision hypothesis. American Journal of Botany, 102, 2032-2040.
DOI PMID |
[32] |
Ornelas JF, Mariano Ordano, Angélica Hernández JC, López L, Mendoza, Perroni Y (2002) Nectar oasis produced by Agave marmorata Roezl. (Agavaceae) lead to spatial and temporal segregation among nectarivores in the Tehuacán Valley, México. Journal of Arid Environments, 52, 37-51.
DOI URL |
[33] |
Pacheco DA, Dudley LS, Cabezas J, Cavieres LA, Arroyo MTK (2016) Plastic responses contribute to explaining altitudinal and temporal variation in potential flower longevity in high Andean Rhodolirion montanum. PLoS ONE, 11, e0166350.
DOI URL |
[34] | Palmer-Young EC, Farrell IW, Adler LS, Milano NJ, Egan PA, Junker RR, Irwin RE, Stevenson PC (2019) Chemistry of floral rewards: Intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecological Monographs, 89, e01335. |
[35] |
Petanidou T, Kallimanis AS, Lazarina M, Tscheulin T, Devalez J, Stefanaki A, Hanlidou E, Vujić A, Kaloveloni A, Sgardelis SP (2018) Climate drives plant-pollinator interactions even along small-scale climate gradients: The case of the Aegean. Plant Biology, 20, 176-183.
DOI URL |
[36] | Pi HQ, Quan QM, Gao H, Li YX, Shen WW, Yang ZS, Yang GP (2016) Pollination biology of Caragana sinica (Buchoz) Rehd. Acta Ecologica Sinica, 36, 1652-1662. (in Chinese with English abstract) |
[皮华强, 权秋梅, 高辉, 黎云祥, 沈文文, 杨子松, 杨贵平 (2016) 锦鸡儿(Caragana sinica (Buchoz) Rehd.)传粉生物学研究. 生态学报, 36, 1652-1662.] | |
[37] | Pietrini F, Iannelli MA, Massacci A (2002) Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant, Cell & Environment, 25, 1251-1259. |
[38] | Quan Q (2018) Influence of stigma colors on reproductive success of Epimedium pubescens. International Journal of Agriculture and Biology, 20, 1691-1694. |
[39] |
Singh A, Roy S (2017) High altitude population of Arabidopsis thaliana is more plastic and adaptive under common garden than controlled condition. BMC Ecology, 17, 39.
DOI URL |
[40] | Soethe N, Wilcke W, Homeier J, Lehmann J, Engels C (2008) Plant growth along the altitudinal gradient—Role of plant nutritional status, fine root activity, and soil properties. Gradients in a Tropical Mountain Ecosystem of Ecuador, 198, 259-266. |
[41] |
Song YP, Huang ZH, Huang SQ (2019) Pollen aggregation by viscin threads in Rhododendron varies with pollinator. New Phytologist, 221, 1150-1159.
DOI URL |
[42] |
Souto-Vilarós D, Vuleta A, Jovanović SM, Budečević S, Wang H, Sapir Y, Imbert E (2018) Are pollinators the agents of selection on flower colour and size in irises? Oikos, 127, 834-846.
DOI URL |
[43] |
Su QT, Du ZX, Zhou B, Liao YH, Wang CC, Xiao YA (2022) Potential distribution of Impatiens davidii and its pollinator in China. Chinese Journal of Plant Ecology, 46, 785-796. (in Chinese with English abstract)
DOI URL |
[苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安 (2022) 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析. 植物生态学报, 46, 785-796.]
DOI |
|
[44] | Su YX, Zhang X, Wang WL, Zhao YY, Wang YH, Shen SK (2017) Phenotypic diversity of Rhododendron rubiginosum populations at different altitudes. Acta Botanica Boreali-Occidentalia Sinica, 37, 356-362. (in Chinese with English abstract) |
[苏应雄, 张雪, 王文礼, 赵云勇, 王跃华, 申仕康 (2017) 红棕杜鹃不同海拔种群的表型多样性研究. 西北植物学报, 37, 356-362.] | |
[45] |
Sun SG, Huang ZH, Chen ZB, Huang SQ (2017) Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii). American Journal of Botany, 104, 468-476.
DOI URL |
[46] |
Wang XY, Tang J, Wu T, Wu D, Huang SQ (2019) Bumblebee rejection of toxic pollen facilitates pollen transfer. Current Biology, 29, 1401-1406.
DOI URL |
[47] | Wang Y, Dai XJ, Yan XF (2004) Effects of light intensity on secondary metabolite camptothecin production in leaves of Camptotheca acuminata seedlings. Acta Ecologica Sinica, 24, 1118-1122. |
[48] | Xia XM, Yang MQ, Li CL, Huang SX, Jin WT, Shen TT, Wang F, Li XH, Yoichi W, Zhang LH, Zheng YR, Wang XQ (2021) Spatiotemporal evolution of the global species diversity of Rhododendron. Molecular Biology and Evolution, 39, 1537-1719. |
[49] | Yan XF, Wang Y, Li YM (2007) Plant secondary metabolism and its response to environment. Acta Ecologica Sinica, 27, 2554-2562. (in Chinese with English abstract) |
[阎秀峰, 王洋, 李一蒙 (2007) 植物次生代谢及其与环境的关系. 生态学报, 27, 2554-2562.] | |
[50] | Yang YJ, Wang YF, Qi RL, Yang Y (2018) Discrepancy caused by various altitudes in both floral traits and reproductive allocation of Saussurea tangutica. Guihaia, 38, 159-168. (in Chinese with English abstract) |
[杨亚军, 王一峰, 祁如林, 杨洋 (2018) 唐古特雪莲花部特征及生殖分配的海拔差异. 广西植物, 38, 159-168.] | |
[51] |
Zhao ZG, Huang SQ (2013) Differentiation of floral traits associated with pollinator preference in a generalist- pollinated herb, Trollius ranunculoides (Ranunculaceae). International Journal of Plant Sciences, 174, 637-646.
DOI URL |
[52] | Zhuang P (2012) Discuss on the Rhododendron geographical distribution types and their cause of formation in China. Guihaia, 32, 150-156. (in Chinese with English abstract) |
[庄平 (2012) 中国杜鹃花属植物地理分布型及其成因的探讨. 广西植物, 32, 150-156.] |
[1] | 张瑶, 孙君瑶, 李伟. 雅鲁藏布江流域不同海拔梯度下消落区植被NDVI的时空变化趋势及驱动因素[J]. 生物多样性, 2024, 32(5): 23432-. |
[2] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[3] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[4] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[5] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[6] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[7] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[8] | 侯东敏, 辉洪, 张栋儒, 肖能文, 饶定齐. 云岭山脉云南地区两栖爬行类动物多样性[J]. 生物多样性, 2023, 31(2): 22316-. |
[9] | 林木青, 张应明, 欧阳芳, 束祖飞, 朱朝东, 肖治术. 广东车八岭国家级自然保护区独栖性胡蜂多样性空间分布特征及其对环境因子的响应[J]. 生物多样性, 2023, 31(2): 22310-. |
[10] | 王晓凤, 饶杰生, 杨涛, 刘文聪, 田希, 陈稀, 刘其明, 徐衍潇, 张秋雨, 张洪强, 张旭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林群落木本植物多样性格局与环境解释[J]. 生物多样性, 2023, 31(11): 23217-. |
[11] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[12] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[13] | 汪婷, 周立志. 合肥市小微湿地鸟类多样性的时空格局及其影响因素[J]. 生物多样性, 2022, 30(7): 21445-. |
[14] | 薛文凯, 孟华旦尚, 王艳红, 朱攀, 德吉, 郭小芳. 纳木措可培养丝状真菌多样性及其与理化因子关系[J]. 生物多样性, 2022, 30(6): 21473-. |
[15] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn