生物多样性 ›› 2023, Vol. 31 ›› Issue (2): 22310. DOI: 10.17520/biods.2022310
所属专题: 昆虫多样性与生态功能
林木青1,2, 张应明3, 欧阳芳1, 束祖飞3, 朱朝东1,2,4, 肖治术1,2,*()
收稿日期:
2022-06-08
接受日期:
2022-11-21
出版日期:
2023-02-20
发布日期:
2022-12-31
通讯作者:
*肖治术, E-mail: xiaozs@ioz.ac.cn
基金资助:
Muqing Lin1,2, Yingming Zhang3, Fang Ouyang1, Zufei Shu3, Chaodong Zhu1,2,4, Zhishu Xiao1,2,*()
Received:
2022-06-08
Accepted:
2022-11-21
Online:
2023-02-20
Published:
2022-12-31
Contact:
*Zhishu Xiao, E-mail: xiaozs@ioz.ac.cn
摘要:
为更好地指导自然保护区的功能分区, 对自然保护地全境及周边区域的生物多样性本底资源进行科学调查和评估是必要的。独栖性胡蜂是农林业害虫的重要天敌, 同时也是重要的环境生物指示类群。本研究以独栖性胡蜂为指示生物, 于2018-2020年在广东车八岭国家级自然保护区全境及周边区域使用人工巢管技术和公里网格方案(共计100个调查网格, 网格大小为1 km × 1 km)对南岭典型亚热带常绿阔叶林中胡蜂科昆虫多样性、分布及其影响因素进行研究, 同时评估了其物种多样性的空间分布与保护区功能分区之间的关系。本研究共获得4,156根胡蜂类昆虫筑巢巢管和9,973个孵育室, 并鉴定出9种胡蜂科物种, 分布于89个网格, 绘制了其物种丰富度和多度的分布图。结果显示, 海拔、距居民点的最近距离和增强型植被指数(enhanced vegetation index, EVI)是影响胡蜂物种丰富度、多度及分布的关键环境因子; 胡蜂科昆虫的物种丰富度、筑巢量和孵育室数量均随海拔升高而显著减少, 且越靠近居民点, 胡蜂科昆虫的种类和数量越多, 但胡蜂群落的α多样性指标与EVI的关系呈先增加后减少的模式。胡蜂科昆虫群落的总体β多样性为0.21, 周转组分为0.05, 嵌套组分为0.16, 显示物种嵌套是该区域胡蜂昆虫群落组成的主要分布模式。距离冗余分析结果表明, 海拔是影响胡蜂昆虫物种周转的显著性因素, 而嵌套组分则不受本文所涉及环境因子的显著影响。保护区外的相对筑巢量和孵育室数量显著高于保护区内各功能区, 但其他α多样性指标则在4个区域间(核心区、缓冲区、实验区和保护区外)均无显著性差异。这表明胡蜂科昆虫在保护区内各功能分区和周边区域之间具有较高的物种相似性, 无明显分布边界。基于研究区域全境网格调查, 本研究首次绘制了车八岭保护区独栖性胡蜂昆虫多样性分布图, 明确了南岭典型亚热带常绿阔叶林胡蜂类昆虫多样性分布及其与保护区功能分区的关系, 建议管理者加强保护区及其周边区域包括昆虫在内的各类野生动物的监测和保护。
林木青, 张应明, 欧阳芳, 束祖飞, 朱朝东, 肖治术 (2023) 广东车八岭国家级自然保护区独栖性胡蜂多样性空间分布特征及其对环境因子的响应. 生物多样性, 31, 22310. DOI: 10.17520/biods.2022310.
Muqing Lin, Yingming Zhang, Fang Ouyang, Zufei Shu, Chaodong Zhu, Zhishu Xiao (2023) Spatial distribution of species diversity of solitary wasps (Vespidae) and its responses to environmental factors in the Chebaling National Nature Reserve, Guangdong Province. Biodiversity Science, 31, 22310. DOI: 10.17520/biods.2022310.
图1 广东车八岭国家级自然保护区独栖蜂昆虫的巢管调查示意图。(a)保护区全境(实验区、缓冲区和核心区)和周边区域(保护区外)设置了100个公里网格(1 km × 1 km), 300个巢管布设位点(黑色实心点); (b)单个巢箱, 包含1对PVC管; (c)雌蜂产卵结束后, 被封口的巢管; (d)被剖开的巢管, 用于观察胡蜂类昆虫的生物学, 直至其成虫羽化或死亡; (e)黄缘蜾蠃。
Fig. 1 Schematic illustration about trap-nests used for the collection of solitary wasps in the Chebaling National Nature Reserve, Guangdong Province. (a) Distribution of trap-nests. The whole reserve (including experimental zone, buffer zone, and core zone) and surrounding areas (outside zone) with 100 kilometer-grids (each grid, 1 km × 1 km) and 300 trap-nesting sites (black solid points). (b) A typical trap-nest with a pair of PVC pipes. (c) Trap-nests with a closed end after the oviposition is finished. (d) An dissected trap-nest for direct observation of wasp biology until wasp emergence or death. (e) Anterhynchium flavomarginatum.
图2 广东车八岭国家级自然保护区全境胡蜂科昆虫的物种丰富度(a)和物种多度(回收巢管量) (b)的分布
Fig. 2 Spatial distribution of species richness (a) and species abundance (number of nests) (b) of Vespidae wasps in the Chebaling National Nature Reserve, Guangdong Province
物种 Species | 巢材 Nesting materials | 网格占有率 Grid occupancy (%) | 累计巢管数 Cumulative number of nests | 累计孵育室数 Cumulative number of brood cells | 保护区功能分区 Functional zone | |||
---|---|---|---|---|---|---|---|---|
保护区外 Outside | 实验区 Experimental zone | 缓冲区 Buffer zone | 核心区 Core zone | |||||
黄缘蜾蠃 Anterhynchium flavomarginatum | 黄泥 Mud | 86 | 3,733 | 9,269 | √ | √ | √ | √ |
福建埃蜾蠃 Epsilon fujianensis | 树脂 Resin | 58 | 346 | 515 | √ | √ | √ | √ |
日本元蜾蠃 Discoelius japonicus | 黄泥 + 碎叶 Mud + Broken leaf | 10 | 21 | 56 | √ | √ | √ | √ |
棘秀蜾蠃 Pareumenes quadrispinosus | 黄泥 + 树脂 Mud + Resin | 12 | 31 | 64 | √ | √ | √ | √ |
旁喙蜾蠃 Pararrhynchium septemfasciatus | 黄泥 Mud | 3 | 5 | 7 | √ | √ | √ | - |
丽胸蜾蠃 Orancistrocerus drewseni | 黄泥 Mud | 2 | 3 | 8 | √ | - | - | - |
虚长腹胡蜂 Zethus dolosus | 黄泥 + 碎叶 Mud + Broken leaf | 5 | 12 | 39 | √ | √ | √ | - |
旁沟蜾蠃 Parancistrocerus lamnulus | 黄泥 Mud | 1 | 2 | 3 | √ | √ | - | - |
同蜾蠃 Symmorphus ambotretus | 黄泥 Mud | 1 | 3 | 12 | √ | - | - | - |
总计 Total | 89 | 4,156 | 9,973 | 9 | 7 | 6 | 4 |
表1 广东车八岭国家级自然保护区全境胡蜂类昆虫的巢管调查总结(2018-2020年)
Table 1 Summary of Vespidae wasps based on trap-nests in the Chebaling National Nature Reserve, Guangdong Province (2018-2020)
物种 Species | 巢材 Nesting materials | 网格占有率 Grid occupancy (%) | 累计巢管数 Cumulative number of nests | 累计孵育室数 Cumulative number of brood cells | 保护区功能分区 Functional zone | |||
---|---|---|---|---|---|---|---|---|
保护区外 Outside | 实验区 Experimental zone | 缓冲区 Buffer zone | 核心区 Core zone | |||||
黄缘蜾蠃 Anterhynchium flavomarginatum | 黄泥 Mud | 86 | 3,733 | 9,269 | √ | √ | √ | √ |
福建埃蜾蠃 Epsilon fujianensis | 树脂 Resin | 58 | 346 | 515 | √ | √ | √ | √ |
日本元蜾蠃 Discoelius japonicus | 黄泥 + 碎叶 Mud + Broken leaf | 10 | 21 | 56 | √ | √ | √ | √ |
棘秀蜾蠃 Pareumenes quadrispinosus | 黄泥 + 树脂 Mud + Resin | 12 | 31 | 64 | √ | √ | √ | √ |
旁喙蜾蠃 Pararrhynchium septemfasciatus | 黄泥 Mud | 3 | 5 | 7 | √ | √ | √ | - |
丽胸蜾蠃 Orancistrocerus drewseni | 黄泥 Mud | 2 | 3 | 8 | √ | - | - | - |
虚长腹胡蜂 Zethus dolosus | 黄泥 + 碎叶 Mud + Broken leaf | 5 | 12 | 39 | √ | √ | √ | - |
旁沟蜾蠃 Parancistrocerus lamnulus | 黄泥 Mud | 1 | 2 | 3 | √ | √ | - | - |
同蜾蠃 Symmorphus ambotretus | 黄泥 Mud | 1 | 3 | 12 | √ | - | - | - |
总计 Total | 89 | 4,156 | 9,973 | 9 | 7 | 6 | 4 |
图3 海拔、距居民点的最近距离和增强型植被指数对胡蜂科昆虫多样性的影响
Fig. 3 Effects of elevation, distance to the nearest settlement and enhanced vegetation index (EVI) on the diversity of Vespidae wasps
图4 环境变量解释胡蜂科昆虫的物种周转(a)和嵌套(b)矩阵的距离冗余分析。ele: 海拔高度; slo: 坡度; dist: 距居民点的最近距离; canopy: 郁闭度; evi: 增强型植被指数。
Fig. 4 Distance-based redundancy analyses of the matrix of species turnover (a) and nestedness (b) for Vespidae wasps explained by the environmental variables. ele, Elevation; slo, Slope; dist, Distance to the nearest settlement; canopy, Canopy density; evi, Enhanced vegetation index.
分区 Zone | 网格数 No. of grids | 累计物种数 Cumulative number of species | 平均物种数 Average number of species | 平均相对 巢管量 Average relative number of nests | 平均相对孵 育室数量 Average relative number of brood cells | Shannon 多样性 Shannon diversity | Simpson 多样性 Simpson diversity | Pielou 均匀度 Pielou evenness |
---|---|---|---|---|---|---|---|---|
保护区外 Outside | 20 | 9 | 2.00 ± 1.26a | 4.42 ± 2.44a | 10.26 ± 5.48a | 1.29 ± 0.24a | 1.18 ± 0.37a | 0.33 ± 0.24a |
实验区 Experimental zone | 30 | 7 | 1.68 ± 1.08a | 1.20 ± 1.28b | 2.95 ± 3.21b | 1.36 ± 0.46a | 1.25 ± 0.42a | 0.44 ± 0.26a |
缓冲区 Buffer zone | 28 | 6 | 1.74 ± 1.06a | 1.07 ± 1.37b | 2.53 ± 3.28b | 1.42 ± 0.34a | 1.30 ± 0.32a | 0.49 ± 0.27a |
核心区 Core zone | 22 | 4 | 1.82 ± 0.73a | 1.73 ± 1.63b | 4.28 ± 4.08b | 1.35 ± 0.36a | 1.36 ± 0.32a | 0.54 ± 0.28a |
总计 Total | 100 | 9 | 1.78 ± 1.03 | 1.79 ± 1.98 | 4.28 ± 4.66 | 1.36 ± 0.41 | 1.25 ± 0.36 | 0.45 ± 0.27 |
表2 广东车八岭国家级自然保护区4个分区胡蜂多样性多重比较(2018-2020年)
Table 2 Multiple comparisons of Vespidae wasps diversity based on trap-nests among the four zones in the Chebaling National Nature Reserve, Guangdong Province (2018-2020)
分区 Zone | 网格数 No. of grids | 累计物种数 Cumulative number of species | 平均物种数 Average number of species | 平均相对 巢管量 Average relative number of nests | 平均相对孵 育室数量 Average relative number of brood cells | Shannon 多样性 Shannon diversity | Simpson 多样性 Simpson diversity | Pielou 均匀度 Pielou evenness |
---|---|---|---|---|---|---|---|---|
保护区外 Outside | 20 | 9 | 2.00 ± 1.26a | 4.42 ± 2.44a | 10.26 ± 5.48a | 1.29 ± 0.24a | 1.18 ± 0.37a | 0.33 ± 0.24a |
实验区 Experimental zone | 30 | 7 | 1.68 ± 1.08a | 1.20 ± 1.28b | 2.95 ± 3.21b | 1.36 ± 0.46a | 1.25 ± 0.42a | 0.44 ± 0.26a |
缓冲区 Buffer zone | 28 | 6 | 1.74 ± 1.06a | 1.07 ± 1.37b | 2.53 ± 3.28b | 1.42 ± 0.34a | 1.30 ± 0.32a | 0.49 ± 0.27a |
核心区 Core zone | 22 | 4 | 1.82 ± 0.73a | 1.73 ± 1.63b | 4.28 ± 4.08b | 1.35 ± 0.36a | 1.36 ± 0.32a | 0.54 ± 0.28a |
总计 Total | 100 | 9 | 1.78 ± 1.03 | 1.79 ± 1.98 | 4.28 ± 4.66 | 1.36 ± 0.41 | 1.25 ± 0.36 | 0.45 ± 0.27 |
[1] |
Albrecht J, Classen A, Vollstädt MGR, Mayr A, Mollel NP, Costa DS, Dulle HI, Fischer M, Hemp A, Howell KM, Kleyer M, Nauss T, Peters MK, Tschapka M, Steffan-Dewenter I, Böhning-Gaese K, Schleuning M (2018) Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nature Communications, 9, 3177.
DOI PMID |
[2] |
Angeler DG (2013) Revealing a conservation challenge through partitioned long-term beta diversity: Increasing turnover and decreasing nestedness of boreal lake metacommunities. Diversity and Distributions, 19, 772-781.
DOI URL |
[3] |
Batra SWT (1984) Solitary bees. Scientific American, 250, 120-127.
DOI URL |
[4] |
Bergamin RS, Bastazini VAG, Vélez-Martin E, Debastiani V, Zanini KJ, Loyola R, Müller SC (2017) Linking beta diversity patterns to protected areas: Lessons from the Brazilian Atlantic Rainforest. Biodiversity and Conservation, 26, 1557-1568.
DOI URL |
[5] |
Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science, 339, 1611-1615.
DOI PMID |
[6] |
Hsieh TC, Ma KH, Chao A (2016) iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451-1456.
DOI URL |
[7] | Huyan JQ, Xiao J, Yu BW, Xu WH (2014) Research progress in function zoning of nature reserves in China. Acta Ecologica Sinica, 34, 6391-6396. (in Chinese with English abstract) |
[呼延佼奇, 肖静, 于博威, 徐卫华 (2014) 我国自然保护区功能分区研究进展. 生态学报, 34, 6391-6396.] | |
[8] |
James A, Pitchford JW, Plank MJ (2012) Disentangling nestedness from models of ecological complexity. Nature, 487, 227-230.
DOI |
[9] |
Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecology Letters, 10, 299-314.
PMID |
[10] | Krombein KV (1967) Trap-nesting Wasps and Bees: Life Histories, Nests, and Associates. Smithsonian Press, Washington. |
[11] | Li LP, He SY, Jiang YM, Wang T, Zhao HH, Cui WH, Zheng YM, Hai Y, Wan HW (2019) Species range size patterns and their significance on biodiversity conservation. Scientia Sinica (Vitae), 49, 929-937. (in Chinese with English abstract) |
[李利平, 何思源, 蒋样明, 王拓, 赵辉辉, 崔伟宏, 郑姚闽, 海鹰, 万华伟 (2019) 物种分布区特征及其对生物多样性保育的意义. 中国科学: 生命科学, 49, 929-937.] | |
[12] | Lin MQ, Liu YF, Wu CF, Shu ZF, Zhu CD, Xiao ZS (2022) Oviposition behavior of the solitary wasp Anterhynchium flavomarginatum (Hymenoptera: Eumeninae) in relation to parasitism pressure. Acta Entomologica Sinica, 65, 1185-1195. (in Chinese with English abstract) |
[林木青, 刘益帆, 吴琛帆, 束祖飞, 朱朝东, 肖治术 (2022) 独栖蜂黄缘蜾蠃的产卵行为及其与寄生胁迫的关系. 昆虫学报, 65, 1185-1195.] | |
[13] |
Liu FZ, Feng CT, Zhou Y, Zhang LB, Du JH, Huang WJ, Luo JW, Wang W (2022) Effectiveness of functional zones in national nature reserves for the protection of forest ecosystems in China. Journal of Environmental Management, 308, 114593.
DOI URL |
[14] |
Martínez-Núñez C, Manzaneda AJ, Lendínez S, Pérez AJ, Ruiz-Valenzuela L, Rey PJ (2019) Interacting effects of landscape and management on plant-solitary bee networks in olive orchards. Functional Ecology, 33, 2316-2326.
DOI URL |
[15] |
Martinson HM, Fagan WF (2014) Trophic disruption: A meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecology Letters, 17, 1178-1189.
DOI PMID |
[16] |
Matos MCB, Santos Silva S, Teodoro AV (2016) Seasonal population abundance of the assembly of solitary wasps and bees (Hymenoptera) according to land-use in Maranhão State, Brazil. Revista Brasileira De Entomologia, 60, 171-176.
DOI URL |
[17] |
Mayr AV, Peters MK, Eardley CD, Renner ME, Röder J, Steffan-Dewenter I (2020) Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera. Journal of Biogeography, 47, 854-865.
DOI URL |
[18] |
Morris RJ, Sinclair FH, Burwell CJ (2015) Food web structure changes with elevation but not rainforest stratum. Ecography, 38, 792-802.
DOI URL |
[19] |
Nagendra H (2001) Using remote sensing to assess biodiversity. International Journal of Remote Sensing, 22, 2377-2400.
DOI URL |
[20] |
Outhwaite CL, McCann P, Newbold T (2022) Agriculture and climate change are reshaping insect biodiversity worldwide. Nature, 605, 97-102.
DOI |
[21] |
Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW, Frederiksen SB, Gebert F, Haas M, Helbig-Bonitz M, Hemp C, Kindeketa WJ, Mwangomo E, Ngereza C, Otte I, Röder J, Rutten G, Schellenberger Costa D, Tardanico J, Zancolli G, Deckert J, Eardley CD, Peters RS, Rödel MO, Schleuning M, Ssymank A, Kakengi V, Zhang J, Böhning-Gaese K, Brandl R, Kalko EKV, Kleyer M, Nauss T, Tschapka M, Fischer M, Steffan-Dewenter I (2016) Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 7, 13736.
DOI PMID |
[22] | Plowman NS, Hood ASC, Moses J, Redmond C, Novotny V, Klimes P, Fayle TM (2017) Network reorganization and breakdown of an ant-plant protection mutualism with elevation. Proceedings of the Royal Society B: Biological Sciences, 284, 20162564. |
[23] |
Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos, 120, 1625-1638.
DOI URL |
[24] |
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345-353.
DOI URL |
[25] | R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[26] |
Rezende MQ, Venzon M, Perez AL, Cardoso IM, Janssen A (2014) Extrafloral nectaries of associated trees can enhance natural pest control. Agriculture, Ecosystems & Environment, 188, 198-203.
DOI URL |
[27] |
Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8-27.
DOI URL |
[28] |
Senapathi D, Goddard MA, Kunin WE, Baldock KCR (2017) Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Functional Ecology, 31, 26-37.
DOI URL |
[29] | Staab M, Bruelheide H, Durka W, Michalski S, Purschke O, Zhu CD, Klein AM (2016) Tree phylogenetic diversity promotes host-parasitoid interactions. Proceedings of the Royal Society B: Biological Sciences, 283, 20160275. |
[30] |
Staab M, Pufal G, Tscharntke T, Klein AM (2018) Trap nests for bees and wasps to analyse trophic interactions in changing environments—A systematic overview and user guide. Methods in Ecology and Evolution, 9, 2226-2239.
DOI URL |
[31] |
Tscharntke T, Gathmann A, Steffan-Dewenter I (1998) Bioindication using trap-nesting bees and wasps and their natural enemies: Community structure and interactions. Journal of Applied Ecology, 35, 708-719.
DOI URL |
[32] |
Tuanmu MN, Jetz W (2015) A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24, 1329-1339.
DOI URL |
[33] | Watson JEM, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature, 515, 67-73. |
[34] | Xiao ZS (2019) Inventory and Assessment of Wildlife and Its Habitat in Protected Areas—An Example from Chebaling National Nature Reserve, Guangdong, China. China Forestry Publishing House, Beijing. (in Chinese) |
[肖治术 (2019) 自然保护地野生动物及栖息地的调查与评估研究——广东车八岭国家级自然保护区案例分析. 中国林业出版社, 北京.] | |
[35] | Xu WH, Luo C, Ouyang ZY, Zhang L (2010) Designing regional nature reserves group: The case study of Qinling Mountain Range, China. Acta Ecologica Sinica, 30, 1648-1654. (in Chinese with English abstract) |
[徐卫华, 罗翀, 欧阳志云, 张路 (2010) 区域自然保护区群规划——以秦岭山系为例. 生态学报, 30, 1648-1654.] | |
[36] | Xu YQ (1993) A comprehensive report on investigation in Chebaling National Nature Reserve. In: Collected Papers for Investigation in Chebaling National Nature Reserve (ed. Editorial Committee of Collected Papers for Investigation in Chebaling National Nature Reserve), pp. 1-7. Guangdong Science and Technology Press, Guangzhou. (in Chinese with English abstract) |
[徐燕千 (1993) 车八岭国家级自然保护区调查研究综合报告. 见: 车八岭国家级自然保护区调查研究论文集(车八岭国家级自然保护区调查研究论文集编委会编), 1-7页. 广东科技出版社, 广州.] | |
[37] | Zhai WD, Ma NX (2000) Guiding ideology and basic principles of nature reserve management zoning. China Environmental Science, 20, 337-340. (in Chinese with English abstract) |
[翟惟东, 马乃喜 (2000) 自然保护区功能区划的指导思想和基本原则. 中国环境科学, 20, 337-340.] | |
[38] |
Zhang K, Lin SL, Ji YQ, Yang CX, Wang XY, Yang CY, Wang HS, Jiang HS, Harrison RD, Yu DW (2016) Plant diversity accurately predicts insect diversity in two tropical landscapes. Molecular Ecology, 25, 4407-4419.
DOI PMID |
[1] | 舒为杰, 何花, 曾罗, 谷志容, 谭敦炎, 杨晓琛. 雌雄异株物种一把伞南星雌雄株空间分布及性别二态性[J]. 生物多样性, 2024, 32(6): 24084-. |
[2] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[3] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[4] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[5] | 张瑶, 孙君瑶, 李伟. 雅鲁藏布江流域不同海拔梯度下消落区植被NDVI的时空变化趋势及驱动因素[J]. 生物多样性, 2024, 32(5): 23432-. |
[6] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[7] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[8] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[9] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[10] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[11] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[12] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[13] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[14] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[15] | 崔国发. 关于自然保护地整合优化工作中几个关键问题的讨论与建议[J]. 生物多样性, 2023, 31(9): 22447-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn