生物多样性 ›› 2023, Vol. 31 ›› Issue (8): 23027. DOI: 10.17520/biods.2023027
张雅丽1,2, 张丙昌1,2,*(), 赵康3, 李凯凯1,2, 刘燕晋1,2
收稿日期:
2023-02-03
接受日期:
2023-06-13
出版日期:
2023-08-20
发布日期:
2023-07-17
通讯作者:
*E-mail: zhangbch@sxnu.edu.cn
基金资助:
Yali Zhang1,2, Bingchang Zhang1,2,*(), Kang Zhao3, Kaikai Li1,2, Yanjin Liu1,2
Received:
2023-02-03
Accepted:
2023-06-13
Online:
2023-08-20
Published:
2023-07-17
Contact:
*E-mail: zhangbch@sxnu.edu.cn
摘要:
生物结皮在干旱半干旱区具有极为重要的生态功能, 细菌是生物结皮中的重要微生物类群, 在生物结皮形成、养分循环与调控过程中发挥着关键作用。然而, 对于毛乌素沙地生物结皮演替过程中细菌群落多样性和关键环境因子的认识尚不清楚。因此, 本文通过qPCR和高通量测序方法调查了毛乌素沙地裸地、藻结皮、地衣结皮和藓结皮之间的细菌丰度和群落多样性, 并探究了生物结皮中细菌群落及其与关键环境因子之间的关系。结果表明, 随着生物结皮的演替, 细菌16S rRNA基因丰度呈显著上升趋势, 细菌Chao 1、Shannon指数和系统发育多样性呈先降低后增加的模式。生物结皮不同阶段的细菌门、目和属的相对丰度均存在显著差异, 在裸地阶段优势细菌类群是拟杆菌门的噬几丁质菌目、放线菌门的红色杆菌目和变形菌门的根瘤菌目; 藻结皮和地衣结皮中均以蓝藻门的颤藻目占绝对优势; 藓结皮的细菌以拟杆菌门的噬几丁质菌目和变形菌门的根瘤菌目占优势。全磷、全氮、pH和总有机碳是影响土壤细菌群落的关键环境因子。综上所述, 生物结皮的演替通过改变土壤理化特性, 为细菌群落提供了不同生态位, 其中, 土壤养分和pH等环境因子对毛乌素沙地生物结皮细菌物种筛选和群落塑造发挥着重要作用。
张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋 (2023) 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子. 生物多样性, 31, 23027. DOI: 10.17520/biods.2023027.
Yali Zhang, Bingchang Zhang, Kang Zhao, Kaikai Li, Yanjin Liu (2023) Variation of bacterial communities and their driving factors in different types of biological soil crusts in Mu Us sandy land. Biodiversity Science, 31, 23027. DOI: 10.17520/biods.2023027.
图2 生物结皮不同演替阶段的细菌丰度变化。不同小写字母表示生物结皮不同阶段间的差异显著(P < 0.05), 数据为平均值 ± 标准误。BS: 裸地; AC: 藻结皮; LC: 地衣结皮; MC: 藓结皮。
Fig. 2 Changes in bacterial abundance at different successional stages of biological soil crusts. Different lowercase letters indicate significant differences (P < 0.05), data are shown as mean ± SE. BS, Bare soil; AC, Algal crusts; LC, Lichen crusts; MC, Moss crusts.
图3 细菌α多样性在生物结皮不同演替阶段的变化。不同小写字母表示生物结皮不同演替阶段间差异显著(P < 0.05), 数据为平均值 ± 标准误。BS: 裸地; AC: 藻结皮; LC: 地衣结皮; MC: 藓结皮。PD: 系统发育多样性。
Fig. 3 Changes in bacterial α diversity at different successional stages of biological soil crusts. Different lowercase letters indicate significant differences (P < 0.05), data are shown as mean ± SE. BS, Bare soil; AC, Algal crusts; LC, Lichen crusts; MC, Moss crusts. PD, Phylogenetic diversity.
图4 生物结皮不同演替阶段细菌门的相对丰度。BS: 裸地; AC: 藻结皮; LC: 地衣结皮; MC: 藓结皮。
Fig. 4 Relative abundance of bacterial phylum level at different successional stages of biological soil crusts. BS, Bare soil; AC, Algal crusts; LC, Lichen crusts; MC, Moss crusts.
图5 在生物结皮不同演替阶段的细菌目相对丰度。BS: 裸地; AC: 藻结皮; LC: 地衣结皮; MC: 藓结皮。
Fig. 5 Relative abundance of bacterial order level at different successional stages of biological soil crusts. BS, Bare soil; AC, Algal crusts; LC, Lichen crusts; MC, Moss crusts.
属 Genus | 裸地 Bare soils (%) | 藻结皮 Algal crusts (%) | 地衣结皮 Lichen crusts (%) | 藓结皮 Moss crusts (%) |
---|---|---|---|---|
微鞘藻属 Microcoleus | 5.490 ± 1.619c | 43.700 ± 4.937a | 22.510 ± 2.503b | 4.960 ± 1.047c |
土壤杆菌属 Segetibacter | 5.630 ± 0.942b | 3.800 ± 1.162b | 3.470 ± 0.469b | 9.040 ± 1.016a |
Flavisolibacter | 4.600 ± 0.439a | 2.770 ± 0.287b | 2.870 ± 0.417b | 5.310 ± 0.526a |
红色杆菌属 Rubrobacter | 9.630 ± 1.271a | 2.080 ± 0.277b | 1.370 ± 0.174b | 1.840 ± 0.255b |
RB41 (Arenimicrobium, Pyrinomonadaceae) | 3.470 ± 0.513b | 0.360 ± 0.109c | 1.980 ± 0.872bc | 7.090 ± 1.454a |
微枝形杆菌属 Microvirga | 3.660 ± 0.548a | 1.890 ± 0.331b | 2.630 ± 0.237ab | 2.860 ± 0.312ab |
Rubellimicrobium | 3.320 ± 0.464ab | 3.550 ± 0.281ab | 2.550 ± 0.294b | 1.610 ± 0.244c |
Blastocatella | 2.640 ± 0.456a | 1.900 ± 0.190a | 1.990 ± 0.551a | 2.860 ± 0.449a |
鞘氨醇单胞菌属 Sphingomonas | 2.880 ± 0.350a | 1.130 ± 0.251b | 0.990 ± 0.171b | 1.750 ± 0.355b |
发毛针藻属 Crinalium | 2.760 ± 1.113a | 3.650 ± 1.132a | 0.220 ± 0.140b | 0.030 ± 0.024b |
Abditibacterium | 2.000 ± 0.380a | 1.470 ± 0.216a | 1.300 ± 0.175a | 1.470 ± 0.186a |
WD2101 (unclassified, Tepidisphaerales) | 1.600 ± 0.293b | 0.280 ± 0.079c | 1.360 ± 0.281b | 2.660 ± 0.264a |
Mastigocladopsis | 0 | 0.360 ± 0.151bc | 3.820 ± 0.898a | 1.840 ± 0.597b |
Ferruginibacter | 0.470 ± 0.088b | 0.430 ± 0.100b | 0.900 ± 0.126b | 2.400 ± 0.294a |
Candidatus | 0.730 ± 0.202b | 0.180 ± 0.126b | 0.700 ± 0.296b | 1.530 ± 0.280a |
Friedmanniella | 1.040 ± 0.285a | 0.770 ± 0.307a | 0.380 ± 0.106a | 0.470 ± 0.078a |
Symplocastrum | 0 | 0.700 ± 0.250b | 1.740 ± 0.641a | 0.270 ± 0.088b |
Wilmottia | 0 | 0.640 ± 0.235ab | 1.320 ± 0.518a | 0.310 ± 0.137b |
Puia | 0.150 ± 0.055c | 0.080 ± 0.035c | 0.620 ± 0.132b | 1.250 ± 0.231a |
Bryobacter | 0.670 ± 0.107a | 0.200 ± 0.062b | 0.280 ± 0.106b | 0.950 ± 0.189a |
表1 在生物结皮不同演替阶段的细菌属相对丰度
Table 1 Relative abundance of bacterial genus level at different successional stages of biological soil crusts
属 Genus | 裸地 Bare soils (%) | 藻结皮 Algal crusts (%) | 地衣结皮 Lichen crusts (%) | 藓结皮 Moss crusts (%) |
---|---|---|---|---|
微鞘藻属 Microcoleus | 5.490 ± 1.619c | 43.700 ± 4.937a | 22.510 ± 2.503b | 4.960 ± 1.047c |
土壤杆菌属 Segetibacter | 5.630 ± 0.942b | 3.800 ± 1.162b | 3.470 ± 0.469b | 9.040 ± 1.016a |
Flavisolibacter | 4.600 ± 0.439a | 2.770 ± 0.287b | 2.870 ± 0.417b | 5.310 ± 0.526a |
红色杆菌属 Rubrobacter | 9.630 ± 1.271a | 2.080 ± 0.277b | 1.370 ± 0.174b | 1.840 ± 0.255b |
RB41 (Arenimicrobium, Pyrinomonadaceae) | 3.470 ± 0.513b | 0.360 ± 0.109c | 1.980 ± 0.872bc | 7.090 ± 1.454a |
微枝形杆菌属 Microvirga | 3.660 ± 0.548a | 1.890 ± 0.331b | 2.630 ± 0.237ab | 2.860 ± 0.312ab |
Rubellimicrobium | 3.320 ± 0.464ab | 3.550 ± 0.281ab | 2.550 ± 0.294b | 1.610 ± 0.244c |
Blastocatella | 2.640 ± 0.456a | 1.900 ± 0.190a | 1.990 ± 0.551a | 2.860 ± 0.449a |
鞘氨醇单胞菌属 Sphingomonas | 2.880 ± 0.350a | 1.130 ± 0.251b | 0.990 ± 0.171b | 1.750 ± 0.355b |
发毛针藻属 Crinalium | 2.760 ± 1.113a | 3.650 ± 1.132a | 0.220 ± 0.140b | 0.030 ± 0.024b |
Abditibacterium | 2.000 ± 0.380a | 1.470 ± 0.216a | 1.300 ± 0.175a | 1.470 ± 0.186a |
WD2101 (unclassified, Tepidisphaerales) | 1.600 ± 0.293b | 0.280 ± 0.079c | 1.360 ± 0.281b | 2.660 ± 0.264a |
Mastigocladopsis | 0 | 0.360 ± 0.151bc | 3.820 ± 0.898a | 1.840 ± 0.597b |
Ferruginibacter | 0.470 ± 0.088b | 0.430 ± 0.100b | 0.900 ± 0.126b | 2.400 ± 0.294a |
Candidatus | 0.730 ± 0.202b | 0.180 ± 0.126b | 0.700 ± 0.296b | 1.530 ± 0.280a |
Friedmanniella | 1.040 ± 0.285a | 0.770 ± 0.307a | 0.380 ± 0.106a | 0.470 ± 0.078a |
Symplocastrum | 0 | 0.700 ± 0.250b | 1.740 ± 0.641a | 0.270 ± 0.088b |
Wilmottia | 0 | 0.640 ± 0.235ab | 1.320 ± 0.518a | 0.310 ± 0.137b |
Puia | 0.150 ± 0.055c | 0.080 ± 0.035c | 0.620 ± 0.132b | 1.250 ± 0.231a |
Bryobacter | 0.670 ± 0.107a | 0.200 ± 0.062b | 0.280 ± 0.106b | 0.950 ± 0.189a |
生物结皮类型 Types of biological soil crusts | 总有机碳 TOC (g/kg) | 全氮 TN (g/kg) | 硝态氮 NO3--N (mg/kg) | 铵态氮 NH4+-N (mg/kg) | 全磷 TP (g/kg) | 有效磷 AP (mg/kg) | pH |
---|---|---|---|---|---|---|---|
裸地 Bare soil | 1.120 ± 0.060d | 0.050 ± 0.010d | 0.007 ± 0.001b | 0.008 ± 0.001a | 0.100 ± 0.010c | 2.500 ± 0.230c | 7.140 ± 0.130ab |
藻结皮 Algal crusts | 4.660 ± 0.660c | 0.190 ± 0.020c | 0.008 ± 0.001ab | 0.012 ± 0.001a | 0.360 ± 0.030b | 4.170 ± 0.310ab | 7.210 ± 0.070ab |
地衣结皮 Lichen crusts | 10.810 ± 1.110b | 0.280 ± 0.030b | 0.010 ± 0.002a | 0.009 ± 0.002a | 0.470 ± 0.300a | 3.470 ± 0.260b | 7.260 ± 0.090a |
藓结皮 Moss crusts | 15.610 ± 1.740a | 0.430 ± 0.030a | 0.009 ± 0.001ab | 0.008 ± 0.001a | 0.440 ± 0.270a | 4.680 ± 0.380a | 6.950 ± 0.080b |
表2 生物结皮不同演替阶段的土壤理化特性。TOC: 总有机碳; TN: 全氮; TP: 全磷; AP: 有效磷。
Table 2 Soil physical and chemical properties at different successional stages of biological soil crusts. TOC, Total organic carbon; TN, Total nitrogen; TP, Total phosphorous; AP, Available phosphorous.
生物结皮类型 Types of biological soil crusts | 总有机碳 TOC (g/kg) | 全氮 TN (g/kg) | 硝态氮 NO3--N (mg/kg) | 铵态氮 NH4+-N (mg/kg) | 全磷 TP (g/kg) | 有效磷 AP (mg/kg) | pH |
---|---|---|---|---|---|---|---|
裸地 Bare soil | 1.120 ± 0.060d | 0.050 ± 0.010d | 0.007 ± 0.001b | 0.008 ± 0.001a | 0.100 ± 0.010c | 2.500 ± 0.230c | 7.140 ± 0.130ab |
藻结皮 Algal crusts | 4.660 ± 0.660c | 0.190 ± 0.020c | 0.008 ± 0.001ab | 0.012 ± 0.001a | 0.360 ± 0.030b | 4.170 ± 0.310ab | 7.210 ± 0.070ab |
地衣结皮 Lichen crusts | 10.810 ± 1.110b | 0.280 ± 0.030b | 0.010 ± 0.002a | 0.009 ± 0.002a | 0.470 ± 0.300a | 3.470 ± 0.260b | 7.260 ± 0.090a |
藓结皮 Moss crusts | 15.610 ± 1.740a | 0.430 ± 0.030a | 0.009 ± 0.001ab | 0.008 ± 0.001a | 0.440 ± 0.270a | 4.680 ± 0.380a | 6.950 ± 0.080b |
图6 细菌群落结构与环境因子冗余分析(a)及细菌关键目与环境因子相关性热图(b)。BS: 裸地; AC: 藻结皮; LC: 地衣结皮; MC: 藓结皮。TOC: 总有机碳; NH4+-N: 铵态氮; NO3--N: 硝态氮; TN: 全氮; TP: 全磷; AP: 有效磷。* P < 0.05; ** P < 0.01; *** < 0.001。
Fig. 6 Redundancy analysis (RDA) on bacterial community structure and environmental factors (a), and a correlation heatmap of bacterial key orders and environmental factors (b). BS, Bare soil; AC, Algal crusts; LC, Lichen crusts; MC, Moss crusts. TOC, Total organic carbon; NH4+-N, Ammonium nitrogen; NO3--N, Nitrate nitrogen; TN, Total nitrogen; TP, Total phosphorous; AP, Available phosphorous. * P < 0.05; ** P < 0.01; *** P < 0.001.
[1] |
Bai J, Xu DM, Xie DM, Wang MS, Li ZQ, Guo XS (2020) Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresource Technology, 315, 123881.
DOI URL |
[2] |
Belnap J (2003) The world at your feet: Desert biological soil crusts. Frontiers in Ecology and the Environment, 1, 181-189.
DOI URL |
[3] | Belnap J, Lange OL (2003) Biological Soil Crusts: Structure, Function, and Management, 2nd edn, pp. 3-30. Springer, Berlin. |
[4] | Belnap J, Weber B, Büdel B (2016) Biological soil crusts as an organizing principle in drylands. In: Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber B, Büdel B, Belnap J), pp. 3-13. Springer, Cham. |
[5] |
Bowker MA, Belnap J, Miller ME (2006) Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangeland Ecology & Management, 59, 519-529.
DOI URL |
[6] |
Chen YL, Tu PF, Yang YB, Xue XH, Feng ZH, Dan CX, Cheng FX, Yang YF, Deng LS (2022) Diversity of rice rhizosphere microorganisms under different fertilization modes of slow-release fertilizer. Scientific Reports, 12, 2694.
DOI PMID |
[7] |
Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent- González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science, 359, 320-325.
DOI PMID |
[8] |
Edgar RC (2013) UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996-998.
DOI PMID |
[9] |
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194-2200.
DOI PMID |
[10] |
Eichorst SA, Kuske CR, Schmidt TM (2011) Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Applied Environment Microbiology, 77, 586-596.
DOI URL |
[11] | Gao LQ, Zhao YG, Qin NQ, Zhang GX (2013) Effects of biological soil crust on soil erodibility in Hilly Loess Plateau Region of Northwest China. Chinese Journal of Applied Ecology, 24, 105-112. (in Chinese with English abstract) |
[ 高丽倩, 赵允格, 秦宁强, 张国秀 (2013) 黄土丘陵区生物结皮对土壤可蚀性的影响. 应用生态学报, 24, 105-112.] | |
[12] | Gao LQ, Zhao YG, Xu MX, Sun H, Yang QY (2018) The effects of biological soil crust succession on soil ecological stoichiometry characteristics. Acta Ecologica Sinica, 38, 678-688. (in Chinese with English abstract) |
[ 高丽倩, 赵允格, 许明祥, 孙会, 杨巧云 (2018) 生物土壤结皮演替对土壤生态化学计量特征的影响. 生态学报, 38, 678-688.] | |
[13] |
Hou YR, Jia R, Li B, Zhu J (2022) Apex predators enhance environmental adaptation but reduce community stability of bacterioplankton in crustacean aquaculture ponds. International Journal of Molecular Sciences, 23, 10785.
DOI URL |
[14] | Hu CX, Liu YD (2003) Primary succession of algal community structure in desert soil. Journal of Integrative Plant Biology, 45, 917-924. |
[15] |
Jin XY, Zhang XC, Jin D, Chen Y, Li JY (2020) Diversity and seasonal dynamics of bacteria among different biological soil crusts in the southeast Tengger Desert. Biodiversity Science, 28, 718-726. (in Chinese with English abstract)
DOI |
[ 靳新影, 张肖冲, 金多, 陈韵, 李靖宇 (2020) 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征. 生物多样性, 28, 718-726.]
DOI |
|
[16] |
Krucon T, Dziewit L, Drewniak L (2021) Insight into ecology, metabolic potential, and the taxonomic composition of bacterial communities in the periodic water pond on King George Island (Antarctica). Frontiers in Microbiology, 12, 708607.
DOI URL |
[17] |
Lan SB, Wu L, Zhang DL, Hu CX (2013) Assessing level of development and successional stages in biological soil crusts with biological indicators. Microbial Ecology, 66, 394-403.
DOI PMID |
[18] | Li XR, Zhang YM, Zhao YG (2009) A study of biological soil crusts: Recent development trend and prospect. Advances in Earth Science, 24, 11-24. (in Chinese with English abstract) |
[ 李新荣, 张元明, 赵允格 (2009) 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.]
DOI |
|
[19] | Liu C, Cui YM, Li XZ, Yao MJ (2021) Microeco: An R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97, fiaa255. |
[20] |
Liu YB, Zhao LN, Wang ZR, Liu LC, Zhang P, Sun JY, Wang BY, Song G, Li XR (2018) Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the Tengger Desert. Soil Biology and Biochemistry, 126, 40-48.
DOI URL |
[21] | Liu YD, Hu CX, Zhang WJ (2013) Environmental Biology of Desert Cyanobacteria and Sand Fixation of Biological Soil Crusts. Science Press, Beijing. (in Chinese) |
[ 刘永定, 胡春香, 张文军 (2013) 荒漠蓝藻环境生物学与生物土壤结皮固沙. 科学出版社, 北京.] | |
[22] |
Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1997) The RDP (Ribosomal Database Project). Nucleic Acids Research, 25, 109-110.
PMID |
[23] | Maier S, Muggia L, Kuske CR, Grube M (2016) Bacteria and non-lichenized fungi within biological soil crusts. In: Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber B, Büdel B, Belnap J), pp. 81-100 Springer, Cham. |
[24] |
Miao L, Feng W, Zhang YQ, Bai YX, Sun YF, She WW, Mao HN, Lai ZR, Qin SG (2020) Chemoheterotrophic diazotrophs contribute to nitrogen incorporation in a semi-arid desert. Biology and Fertility of Soils, 56, 1165-1176.
DOI |
[25] |
Moreira-Grez B, Tam K, Cross AT, Yong JWH, Kumaresan D, Nevill P, Farrell M, Whiteley AS (2019) The bacterial microbiome associated with arid biocrusts and the biogeochemical influence of biocrusts upon the underlying soil. Frontiers in Microbiology, 10, 2143.
DOI PMID |
[26] |
Muñoz-Martín MÁ, Becerra-Absalón I, Perona E, Fernández-Valbuena L, Garcia-Pichel F, Mateo P (2019) Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. New Phytologist, 221, 123-141.
DOI PMID |
[27] |
Su YG, Chen YW, Padilla FM, Zhang YM, Huang G (2020) The influence of biocrusts on the spatial pattern of soil bacterial communities: A case study at landscape and slope scales. Soil Biology and Biochemistry, 142, 107721.
DOI URL |
[28] | Tan KH (2005) Soil Sampling, Preparation, and Analysis, 2nd edn. The Chemical Rubber Company, Boca Raton. |
[29] |
Tian C, Xi J, Ju MC, Li YH, Guo Q, Yao L, Wang C, Lin YB, Li Q, Williams WJ, Bu CF (2021) Biocrust microbiomes influence ecosystem structure and function in the Mu Us Sandland, Northwest China. Ecological Informatics, 66, 101441.
DOI URL |
[30] | Weber B, Büdel B, Belnap J (2016) Biological Soil Crusts: An Organizing Principle in Drylands, pp. 3-13. Springer, Cham. |
[31] | Wu YS, Ha S, Li SQ, Liu HQ (2010) Distribution patterns of microorganisms in biological crusts on sand dunes of southern Mu Us sandy land. Chinese Journal of Ecology, 29, 1624-1628. (in Chinese with English abstract) |
[ 吴永胜, 哈斯, 李双权, 刘怀泉 (2010) 毛乌素沙地南缘沙丘生物结皮中微生物分布特征. 生态学杂志, 29, 1624-1628.] | |
[32] | Xiao B, Veste M (2017) Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the Loess Plateau of China. Applied Soil Ecology, 117/118, 165-177. |
[33] | Xiao B, Zhao YG, Shao MA (2008) Artificial cultivation of biological soil crust and its effects on soil and water conservation in water-wind erosion crisscross region of Loess Plateau, China. Acta Agrestia Sinica, 16, 28-33. (in Chinese with English abstract) |
[ 肖波, 赵允格, 邵明安 (2008) 黄土高原侵蚀区生物结皮的人工培育及其水土保持效应. 草地学报, 16, 28-33.]
DOI |
|
[34] | Xu L, Zhang BC, Wang ET, Zhu BJ, Yao MJ, Li CN, Li XZ (2021) Soil total organic carbon/total nitrogen ratio as a key driver deterministically shapes diazotrophic community assemblages during the succession of biological soil crusts. Soil Ecology Letters, 3, 328-341. |
[35] | Xu L, Zhu BJ, Li CN, Yao MJ, Zhang BC, Li XZ (2019) Development of biological soil crust prompts convergent succession of prokaryotic communities. Catena, 187, 104360. |
[36] | Yang QY, Zhao YG, Bao TL, Ding Q, Liu GL (2019) Soil ecological stoichiometry characteristics under different types of biological soil crusts in the hilly Loess Plateau region, China. Chinese Journal of Applied Ecology, 30, 2699-2706. (in Chinese with English abstract) |
[ 杨巧云, 赵允格, 包天莉, 丁倩, 刘广亮 (2019) 黄土丘陵区不同类型生物结皮下的土壤生态化学计量特征. 应用生态学报, 30, 2699-2706.]
DOI |
|
[37] |
Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Applied and Environmental Microbiology, 70, 973-983.
DOI PMID |
[38] |
Zhang BC, Kong WD, Wu N, Zhang YM (2016) Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China. Journal of Basic Microbiology, 56, 670-679.
DOI PMID |
[39] | Zhang BC, Wu ZF, Li B (2021) Progress and prospect of biological soil crusts in Loess Plateau. Acta Pedologica Sinica, 58, 1123-1131. (in Chinese with English abstract) |
[ 张丙昌, 武志芳, 李彬 (2021) 黄土高原生物土壤结皮研究进展与展望. 土壤学报, 58, 1123-1131.] | |
[40] |
Zhang BC, Zhang YM, Zhao JC, Wu N, Chen RY, Zhang J (2009) Microalgal species variation at different successional stages in biological soil crusts of the Gurbantunggut Desert, Northwestern China. Biology and Fertility of Soils, 45, 539-547.
DOI URL |
[41] |
Zhang BC, Zhang YQ, Li XZ, Zhang YM (2018) Successional changes of fungal communities along the biocrust development stages. Biology and Fertility of Soils, 54, 285-294.
DOI URL |
[42] | Zhang YM (2005) The microstructure and formation of biological soil crusts in their early developmental stage. Chinese Science Bulletin, 50, 117-121. |
[43] |
Zhao K, Zhang BC, Li JN, Li B, Wu ZF (2021) The autotrophic community across developmental stages of biocrusts in the Gurbantunggut Desert. Geoderma, 388, 114927.
DOI URL |
[44] |
Zhou H, Gao Y, Jia XH, Wang MM, Ding JJ, Cheng L, Bao F, Wu B (2020) Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China. Soil Biology and Biochemistry, 144, 107782.
DOI URL |
[1] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[2] | 陈瑶琪, 郭晶晶, 蔡国俊, 葛依立, 廖宇, 董正, 符辉. 近七十年(1954-2021)长江中下游湖泊沉水植物群落多样性演变特征[J]. 生物多样性, 2024, 32(3): 23319-. |
[3] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[4] | 段晓敏, 李佳佳, 李靖宇, 李艳楠, 袁存霞, 王英娜, 刘建利. 腾格里沙漠东南缘藓结皮植物-土壤连续体不同粒径土壤微生物群落多样性[J]. 生物多样性, 2023, 31(9): 23131-. |
[5] | 李发扬, 李滢钰, 蒋文妮, 刘曙光, 霍超, 孙巧奇, 邹红菲. 火后恢复时间影响大兴安岭寒温带森林内部与边缘鸟类多样性[J]. 生物多样性, 2023, 31(7): 22665-. |
[6] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
[7] | 肖媛媛, 冯薇, 乔艳桂, 张宇清, 秦树高. 固沙灌木林地土壤微生物群落特征对土壤多功能性的影响[J]. 生物多样性, 2023, 31(4): 22585-. |
[8] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
[9] | 王晓凤, 饶杰生, 杨涛, 刘文聪, 田希, 陈稀, 刘其明, 徐衍潇, 张秋雨, 张洪强, 张旭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林群落木本植物多样性格局与环境解释[J]. 生物多样性, 2023, 31(11): 23217-. |
[10] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[11] | 汪婷, 周立志. 合肥市小微湿地鸟类多样性的时空格局及其影响因素[J]. 生物多样性, 2022, 30(7): 21445-. |
[12] | 薛文凯, 孟华旦尚, 王艳红, 朱攀, 德吉, 郭小芳. 纳木措可培养丝状真菌多样性及其与理化因子关系[J]. 生物多样性, 2022, 30(6): 21473-. |
[13] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[14] | 陈燕南, 梁铖, 陈军. 亚热带不同树种组成森林中土壤甲螨群落结构特征: 以江西新岗山为例[J]. 生物多样性, 2022, 30(12): 22334-. |
[15] | 吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋. 南亚热带森林演替过程中土壤线虫群落结构变化[J]. 生物多样性, 2022, 30(12): 22205-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn