生物多样性 ›› 2024, Vol. 32 ›› Issue (5): 23432. DOI: 10.17520/biods.2023432
张瑶1,2, 孙君瑶2,3(), 李伟1,4,5,*()()
收稿日期:
2023-11-13
接受日期:
2024-02-04
出版日期:
2024-05-20
发布日期:
2024-06-03
通讯作者:
E-mail: 基金资助:
Yao Zhang1,2, Junyao Sun2,3(), Wei Li1,4,5,*()()
Received:
2023-11-13
Accepted:
2024-02-04
Online:
2024-05-20
Published:
2024-06-03
Contact:
E-mail: 摘要:
消落区植被的生长变化一定程度上会影响水资源的可用性。雅鲁藏布江是中国、印度、孟加拉等国家的主要淡水水源地, 流域内海拔落差大, 气候的空间异质性较高。消落区在淡水生态系统保护中具有重要功能, 但它易受到全球气候变化的影响, 因此开展消落区植被对气候变化的响应研究对于保护雅鲁藏布江流域生物多样性和构建生态安全屏障具有重要意义。本研究选取雅鲁藏布江流域消落区植被作为研究对象, 利用遥感技术, 选取归一化植被指数(NDVI)进行了Theil-Sen Median趋势分析和Mann-Kendall检验, 利用Hurst指数探究了长时间序列下消落区植被的时空变化趋势, 并通过广义线性模型研究了消落区植被NDVI与气温、降水、雪水当量和水位波动频率等影响因素之间的相关性。结果表明, 1990-2022年间, 雅鲁藏布江流域消落区和1-5 km缓冲区的平均NDVI呈现西北低、东南高的变化趋势。时间尺度上, 消落区植被NDVI总体呈波动上升趋势, 其中最高值(0.16)和最低值(0.06)分别出现在2002年和2022年。年均NDVI的变化结果显示, 中高海拔区域的NDVI持续增加, 而中下游区域的NDVI变化不稳定。随着海拔升高, 消落区和1-5 km缓冲区的NDVI持续减少和反持续减少的面积占比呈波动变化, 海拔1,500-3,000 m地区受影响最为明显。水位波动频率是消落区NDVI的最佳解释变量之一, 而温度则是缓冲区NDVI的主要影响因素。此外, 随着海拔升高, 雪水当量对NDVI的解释力逐渐增加。该研究对雅鲁藏布江流域的生物多样性保护和生态安全屏障的构建具有重要意义。
张瑶, 孙君瑶, 李伟 (2024) 雅鲁藏布江流域不同海拔梯度下消落区植被NDVI的时空变化趋势及驱动因素. 生物多样性, 32, 23432. DOI: 10.17520/biods.2023432.
Yao Zhang, Junyao Sun, Wei Li (2024) Temporal and spatial trends in NDVI of vegetation in water level fluctuation zone and drivers along an altitude gradient in the Yarlung Zangbo River Basin. Biodiversity Science, 32, 23432. DOI: 10.17520/biods.2023432.
图2 雅鲁藏布江流域消落区及1-5 km缓冲区范围示意图。(a) 4,500-6,000 m; (b) 3,000-4,500 m; (c) 1,500-4,500 m; (d) 0-1,500 m。
Fig. 2 Schematic diagram of water level fluctuation zone and 1-5 km buffer zones in the Yarlung Zangbo River Basin. (a) 4,500- 6,000 m; (b) 3,000-4,500 m; (c) 1,500-4,500 m; (d) 0-1,500 m.
海拔区 Altitude zone | 主要植被类型 Main vegetation type | 气候类型 Type of climate | 特点 Characteristics |
---|---|---|---|
0-1,500 m | 亚热带落叶阔叶林 Subtropical deciduous broad-leaved forest | 亚热带湿润气候 Humid subtropical climate | 干湿季分明, 多云雾 Dry and wet seasons are distinct, often with cloudy and foggy conditions |
1,500-3,000 m | 亚热带山地针叶林 Subtropical montane coniferous forests | 亚热带湿润气候 Humid subtropical climate | 干湿季分明 Dry and wet seasons are distinct |
3,000-4,500 m | 亚热带针叶林、亚热带落叶阔叶灌丛 Subtropical coniferous forest, subtropical deciduous broad-leaved shrub | 温带草原气候 Temperate steppe climate | 干湿季分明, 受积雪影响 Distinct dry and wet seasons, influenced by snow accumulation |
4,500-6,000 m | 嵩草、杂类草干旱草甸 Tarragon, miscellaneous grasses arid meadows | 温带草原气候 Temperate steppe climate | 光照充足, 辐射强度大, 干湿季节明显, 受积雪影响 Abundant sunlight, high radiation intensity, distinct dry and wet seasons, influenced by snow accumulation |
6,000-7,500 m | 嵩草、杂类草干旱草甸、高山稀疏植被 Tarragon, miscellaneous grasses arid meadows, alpine sparse vegetation | 温带草原气候 Temperate steppe climate | 长时间积雪, 广泛分布冰川、多年冻土 Prolonged snowpack, widespread glaciers, permafrost |
表1 雅鲁藏布江流域不同海拔范围植被及气候特征
Table 1 Vegetation and climate characteristics of different altitude zone in the Yarlung Zangbo River Basin
海拔区 Altitude zone | 主要植被类型 Main vegetation type | 气候类型 Type of climate | 特点 Characteristics |
---|---|---|---|
0-1,500 m | 亚热带落叶阔叶林 Subtropical deciduous broad-leaved forest | 亚热带湿润气候 Humid subtropical climate | 干湿季分明, 多云雾 Dry and wet seasons are distinct, often with cloudy and foggy conditions |
1,500-3,000 m | 亚热带山地针叶林 Subtropical montane coniferous forests | 亚热带湿润气候 Humid subtropical climate | 干湿季分明 Dry and wet seasons are distinct |
3,000-4,500 m | 亚热带针叶林、亚热带落叶阔叶灌丛 Subtropical coniferous forest, subtropical deciduous broad-leaved shrub | 温带草原气候 Temperate steppe climate | 干湿季分明, 受积雪影响 Distinct dry and wet seasons, influenced by snow accumulation |
4,500-6,000 m | 嵩草、杂类草干旱草甸 Tarragon, miscellaneous grasses arid meadows | 温带草原气候 Temperate steppe climate | 光照充足, 辐射强度大, 干湿季节明显, 受积雪影响 Abundant sunlight, high radiation intensity, distinct dry and wet seasons, influenced by snow accumulation |
6,000-7,500 m | 嵩草、杂类草干旱草甸、高山稀疏植被 Tarragon, miscellaneous grasses arid meadows, alpine sparse vegetation | 温带草原气候 Temperate steppe climate | 长时间积雪, 广泛分布冰川、多年冻土 Prolonged snowpack, widespread glaciers, permafrost |
图3 1990-2022年雅鲁藏布江流域消落区及1-5 km缓冲区归一化植被指数(NDVI)均值分布。(a) 4,500-6,000 m; (b) 3,000-4,500 m; (c) 1,500-4,500 m; (d) 0-1,500 m。
Fig. 3 Distribution of mean normalized difference vegetation index (NDVI) in the water level fluctuation zone and 1-5 km buffer zones of the Yarlung Zangbo River Basin from 1990 to 2022. (a) 4,500-6,000 m; (b) 3,000-4,500 m; (c) 1,500-4,500 m; (d) 0-1,500 m.
图4 雅鲁藏布江流域消落区及1-5 km缓冲区年均归一化植被指数(NDVI)的时间变化趋势
Fig. 4 Temporal trends of the annual mean normalized difference vegetation index (NDVI) in the water level fluctuation zone and 1-5 km buffer zones of the Yarlung Zangbo River Basin
图5 雅鲁藏布江流域消落区及1-5 km缓冲区归一化植被指数(NDVI)的年均变化趋势检验分布。(a) 4,500-6,000 m; (b) 3,000-4,500 m; (c) 1,500-4,500 m; (d) 0-1,500 m。
Fig. 5 Distribution of normalized difference vegetation index (NDVI) of annual mean change trend test in the water level fluctuation zone and 1-5 km buffer zones of the Yarlung Zangbo River Basin. (a) 4,500-6,000 m; (b) 3,000-4,500 m; (c) 1,500-4,500 m; (d) 0-1,500 m.
图6 雅鲁藏布江流域消落区及1-5 km缓冲区归一化植被指数(NDVI)变化趋势面积占比
Fig. 6 Percentage of area coverage for normalized difference vegetation index (NDVI) change trends in the water level fluctuation zone and 1-5 km buffer zones of the Yarlung Zangbo River Basin
图7 雅鲁藏布江流域消落区及1-5 km缓冲区归一化植被指数(NDVI)未来变化趋势持续性分析。(a) 4,500-6,000 m; (b) 3,000-4,500 m; (c) 1,500-4,500 m; (d) 0-1,500 m。
Fig. 7 Persistence analysis of the future trend of normalized difference vegetation index (NDVI) changes in the water level fluctuation zone and 1-5 km buffer zones of the Yarlung Zangbo River Basin. (a) 4,500-6,000 m; (b) 3,000-4,500 m; (c) 1,500-4,500 m; (d) 0-1,500 m.
图8 雅鲁藏布江流域消落区及1-5 km缓冲区归一化植被指数(NDVI)未来衰减趋势占比。图中仅展示了持续减少与反持续减少趋势面积占比, 而6,000-7,500 m缓冲区1-3 km不存在持续减少与反持续减少区域。
Fig. 8 Percentage of degradation trend in normalized difference vegetation index (NDVI) changes in the water level fluctuation zone and 1-5 km buffer zones of the Yarlung Zangbo River Basin. The figure only displays the percentage of area exhibiting a decreasing or anti-decreasing trend. There are no areas exhibiting decreasing or anti-decreasing trends within the 1-3 km buffer zones of 6,000-7,500 m.
图9 温度(T)、降水(P)、雪水当量(S)、水位波动频率(W)对归一化植被指数(NDVI)的相对重要性。(a) 4,500-6,000 m; (b) 3,000-4,500 m; (c) 1,500-4,500 m; (d) 0-1,500 m。
Fig. 9 Relative importance of temperature (T), precipitation (P), snow water equivalent (S), and frequency of water level fluctuation (W) on normalized difference vegetation index (NDVI). (a) 4,500-6,000 m; (b) 3,000-4,500 m; (c) 1,500-4,500 m; (d) 0-1,500 m.
图10 温度、降水、雪水当量、水位波动频率对归一化植被指数(NDVI)的相对重要性。(f)中消落区和缓冲区1-3 km没有数据, 因为海拔6,500-7,000 m消落区和1-3 km缓冲区的NDVI因数据量少未能成功构建广义线性模型。
Fig. 10 Relative importance of temperature, precipitation, snow water equivalent, and frequency of water level fluctuation related to normalized difference vegetation index (NDVI). Due to the small amount of NDVI data within an altitude range of 6,500-7,000 m, no generalized linear model was successfully constructed for NDVI in the water level fluctuation zone and 1-3 km buffer zones within an altitude range of 6,500 to 7,000 m.
[1] | An Y, Gao Y, Tong SZ (2018) Emergence and growth performance of Bolboschoenus planiculmis varied in response to water level and soil planting depth: Implications for wetland restoration using tuber transplantation. Aquatic Botany, 148, 10-14. |
[2] | Ban CG, Xu ZX, Zuo DP, Liu XW, Zhang R, Wang J (2021) Vertical influence of temperature and precipitation on snow cover variability in the Yarlung Zangbo River Basin, China. International Journal of Climatology, 41, 1148-1161. |
[3] | Boothroyd RJ, Nones M, Guerrero M (2021) Deriving planform morphology and vegetation coverage from remote sensing to support river management applications. Frontiers in Environmental Science, 9, 657354. |
[4] |
Brogna D, Dufrêne M, Michez A, Latli A, Jacobs S, Vincke C, Dendoncker N (2018) Forest cover correlates with good biological water quality. Insights from a regional study (Wallonia, Belgium). Journal of Environmental Management, 211, 9-21.
DOI PMID |
[5] | Cadol D, Wine ML (2017) Geomorphology as a first order control on the connectivity of riparian ecohydrology. Geomorphology, 277, 154-170. |
[6] | Cui LZ, Pang B, Zhao G, Ban CG, Ren M, Peng DZ, Zuo DP, Zhu ZF (2022) Assessing the sensitivity of vegetation cover to climate change in the Yarlung Zangbo River Basin using machine learning algorithms. Remote Sensing, 14, 1556. |
[7] | Dixon SJ, Sear DA, Odoni NA, Sykes T, Lane SN (2016) The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surface Processes and Landforms, 41, 997-1008. |
[8] | Doody TM, Lewis M, Benyon RG, Byrne G (2014) A method to map riparian exotic vegetation (Salix spp.) area to inform water resource management. Hydrological Processes, 28, 3809-3823. |
[9] |
Dufour S, Rodríguez-González PM, Laslier M (2019) Tracing the scientific trajectory of riparian vegetation studies: Main topics, approaches and needs in a globally changing world. Science of the Total Environment, 653, 1168-1185.
DOI |
[10] | Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981-2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sensing of Environment, 121, 144-158. |
[11] | Fesenmyer KA, Dauwalter DC, Evans C, Allai T (2018) Livestock management, beaver, and climate influences on riparian vegetation in a semi-arid landscape. PLoS ONE, 13, e0208928. |
[12] | Fu JJ, Wang W, Hunter PD, Li W, Sun JY (2023) Trends in normalized difference vegetation index time series in differently regulated cascade reservoirs in Wujiang catchment, China. Ecological Indicators, 146, 109831. |
[13] | Georganos S, Abdi AM, Tenenbaum DE, Kalogirou S (2017) Examining the NDVI-rainfall relationship in the semi-arid Sahel using geographically weighted regression. Journal of Arid Environments, 146, 64-74. |
[14] | Gröemping U (2006) Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software 17, 1-27. |
[15] | Guo B, Han F, Jiang L (2018) An improved dimidiated pixel model for vegetation fraction in the Yarlung Zangbo River Basin of Qinghai-Tibet Plateau. Journal of the Indian Society of Remote Sensing, 46, 219-231. |
[16] | Hefley HM (1937) Ecological studies on the Canadian River floodplain in Cleveland County, Oklahoma. Ecological Monographs, 7, 345-402. |
[17] |
Hefting MM, Bobbink R, de Caluwe H (2003) Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality, 32, 1194-1203.
PMID |
[18] | Huntington J, McGwire K, Morton C, Snyder K, Peterson S, Erickson T, Niswonger R, Carroll R, Smith G, Allen R (2016) Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive. Remote Sensing of Environment, 185, 186-197. |
[19] | Huylenbroeck L, Laslier M, Dufour S, Georges B, Lejeune P, Michez A (2020) Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. Journal of Environmental Management, 267, 110652. |
[20] | Johnson TE, Butcher JB, Parker A, Weaver CP (2012) Investigating the sensitivity of U.S. streamflow and water quality to climate change: U.S. EPA Global Change Research Program’s 20 Watersheds Project. Journal of Water Resources Planning and Management, 138, 453-464. |
[21] | Laslier M, Hubert-Moy L, Corpetti T, Dufour S (2019) Monitoring the colonization of alluvial deposits using multitemporal UAV RGB-imagery. Applied Vegetation Science, 22, 561-572. |
[22] | Leyer I (2005) Predicting plant species’ responses to river regulation: The role of water level fluctuations. Journal of Applied Ecology, 42, 239-250. |
[23] | Li CH, Su FG, Yang DQ, Tong K, Meng FC, Kan BY (2018) Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001-2014. International Journal of Climatology, 38, 708-728. |
[24] | Li PJ, Zuo DP, Xu ZX, Gao XX (2022) Land use/cover and landscape patterns based on terrain in the Yarlung Tsangpo River Basin, China. Mountain Research, 40, 136-150. ( in Chinese with English abstract) |
[李佩君, 左德鹏, 徐宗学, 高晓曦 (2022) 基于地形梯度的雅鲁藏布江流域土地利用及景观格局分析. 山地学报, 40, 136-150.] | |
[25] | Liu Q, Liang LQ, Yuan XM, Yan SR, Li M, Li SZ, Wang X, Li CH (2021) Regulation of vegetation and evapotranspiration by water level fluctuation in shallow lakes. Water, 13, 2651. |
[26] |
Liu XW, Peng DZ, Xu ZX (2018) Variability of NDVI with elevation and precipitation in Yarlung Zangbo River Basin. Plateau Meteorology, 37, 349-357. (in Chinese with English abstract)
DOI |
[刘晓婉, 彭定志, 徐宗学 (2018) 雅鲁藏布江流域NDVI对高程与降水的相依性研究. 高原气象, 37, 349-357.]
DOI |
|
[27] | Liu YL, Lu HW, Tian PP, Qiu LH (2022) Evaluating the effects of dams and meteorological variables on riparian vegetation NDVI in the Tibetan Plateau. Science of the Total Environment, 831, 154933. |
[28] | Lupon A, Sabater F, Bernal S (2017) The influence of Mediterranean riparian forests on stream nitrogen dynamics: A review from a catchment perspective. Limnetica, 36, 507-523. |
[29] | Magee TK, Kentula ME (2005) Response of wetland plant species to hydrologic conditions. Wetlands Ecology and Management, 13, 163-181. |
[30] | Marcus WA, Fonstad MA (2008) Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surface Processes and Landforms, 33, 4-24. |
[31] | Michez A, Piégay H, Lejeune P, Claessens H (2017) Multi-temporal monitoring of a regional riparian buffer network (> 12,000 km) with LiDAR and photogrammetric point clouds. Journal of Environmental Management, 202, 424-436. |
[32] | Morgan BE, Chipman JW, Bolger DT, Dietrich JT (2020) Spatiotemporal analysis of vegetation cover change in a large ephemeral river: Multi-sensor fusion of unmanned aerial vehicle (UAV) and landsat imagery. Remote Sensing, 13, 51. |
[33] | Nagler PL, Doody TM, Glenn EP, Jarchow CJ, Barreto-Muñoz A, Didan K (2016) Wide-area estimates of evapotranspiration by red gum (Eucalyptus camaldulensis) and associated vegetation in the Murray-Darling River Basin, Australia. Hydrological Processes, 30, 1376-1387. |
[34] |
Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecological Applications, 3, 209-212.
DOI PMID |
[35] | Naiman RJ, Décamps H (1997) The ecology of interfaces: Riparian zones. Annual Review of Ecology and Systematics, 28, 621-658. |
[36] | New T, Xie ZQ (2008) Impacts of large dams on riparian vegetation: Applying global experience to the case of China’s Three Gorges Dam. Biodiversity and Conservation, 17, 3149-3163. |
[37] | Pace G, Gutiérrez-Cánovas C, Henriques R, Carvalho-Santos C, Cássio F, Pascoal C (2022) Remote sensing indicators to assess riparian vegetation and river ecosystem health. Ecological Indicators, 144, 109519. |
[38] | Palmquist EC, Ralston BE, Merritt DM, Shafroth PB (2018) Landscape-scale processes influence riparian plant composition along a regulated river. Journal of Arid Environments, 148, 54-64. |
[39] | Pekel JF, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418-422. |
[40] | Riis T, Hawes I (2002) Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquatic Botany, 74, 133-148. |
[41] | Rusnák M, Goga T, Michaleje L, Michalková MŠ, Máčka Z, Bertalan L, Kidová A (2022) Remote sensing of riparian ecosystems. Remote Sensing, 14, 2645. |
[42] |
Salerno L, Vezza P, Perona P, Camporeale C (2023) Eco-morphodynamic carbon pumping by the largest rivers in the Neotropics. Scientific Reports, 13, 5591.
DOI PMID |
[43] | Sánchez Granero MA, Trinidad Segovia JE, García Pérez J (2008) Some comments on Hurst exponent and the long memory processes on capital markets. Physica A: Statistical Mechanics and Its Applications, 387, 5543-5551. |
[44] | Salo JA, Theobald DM, Brown TC (2016) Evaluation of methods for delineating riparian zones in a semi-arid montane watershed. Journal of the American Water Resources Association, 52, 632-647. |
[45] | Sang YF, Singh VP, Gong T, Xu K, Sun F, Liu C, Liu W, Chen R (2016) Precipitation variability and response to changing climatic condition in the Yarlung Tsangpo River basin, China. Journal of Geophysical Research: Atmospheres, 121, 8820-8831. |
[46] | Scorpio V, Rosskopf CM (2016) Channel adjustments in a Mediterranean river over the last 150 years in the context of anthropic and natural controls. Geomorphology, 275, 90-104. |
[47] | Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379-1389. |
[48] | Singer MB, Stella JC, Dufour S, Piégay H, Wilson RJS, Johnstone L (2013) Contrasting water-uptake and growth responses to drought in co-occurring riparian tree species. Ecohydrology, 6, 402-412. |
[49] | Stella JC, Bendix J (2019) Multiple stressors in riparian ecosystems. In: Multiple Stressors in River Ecosystems (eds Sabater S, Elosegi A, Ludwig R), pp.81-110. Elsevier, Amsterdam. |
[50] | Sun WC, Wang YY, Fu YH, Xue BL, Wang GQ, Yu JS, Zuo DP, Xu ZX (2019) Spatial heterogeneity of changes in vegetation growth and their driving forces based on satellite observations of the Yarlung Zangbo River Basin in the Tibetan Plateau. Journal of Hydrology, 574, 324-332. |
[51] | Tabacchi E, Correll DL, Hauer R, Pinay G, Planty-Tabacchi A, Wissmar RC (1998) Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology, 40, 497-516. |
[52] | Tealdi S, Camporeale C, Ridolfi L (2011) Modeling the impact of river damming on riparian vegetation. Journal of Hydrology, 396, 302-312. |
[53] | Tošić I (2004) Spatial and temporal variability of winter and summer precipitation over Serbia and Montenegro. Theoretical and Applied Climatology, 77, 47-56. |
[54] | van der Valk AG (1994) Effects of prolonged flooding on the distribution and biomass of emergent species along a freshwater wetland coenocline. Vegetatio, 110, 185-196. |
[55] | Vesipa R, Camporeale C, Ridolfi L (2017) Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models. Advances in Water Resources, 110, 29-50. |
[56] | Wallace CSA, Villarreal ML, van Riper C III (2013) Influence of monsoon-related riparian phenology on yellow-billed cuckoo habitat selection in Arizona. Journal of Biogeography, 40, 2094-2107. |
[57] | Wang SY, Zhang B, Yang QC, Chen GS, Yang BJ, Lu LL, Shen M, Peng YY (2017) Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China. Agricultural and Forest Meteorology, 232, 235-246. |
[58] | Wei GL, Yang ZF, Cui BS, Li B, Chen H, Bai JH, Dong S (2009) Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resources Management, 23, 1763-1780. |
[59] | Xu XR, Tian YS, Sun QC, Jin F, Zhang SH (2023) Study on spatiotemporal characteristics of snow cover depth in Yarlung Zangbo River Basin in 1979-2021. Journal of Hydroelectric Engineering, 42(9), 58-69. (in Chinese with English abstract) |
[徐小蓉, 田园诗, 孙其诚, 金峰, 张尚弘 (2023) 1979-2021年雅鲁藏布江流域雪深时空特征研究. 水力发电学报, 42(9), 58-69.] | |
[60] | Yang K, Ye BS, Zhou DG, Wu BY, Foken T, Qin J, Zhou ZY (2011) Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109, 517-534. |
[61] | Zaimes GN, Schultz RC, Isenhart TM (2004) Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along Bear Creek in central Iowa. Journal of Soil and Water Conservation, 59, 19-27. |
[62] | Zaimes GN, Gounaridis D, Symenonakis E (2019) Assessing the impact of dams on riparian and deltaic vegetation using remotely-sensed vegetation indices and random forests modelling. Ecological Indicators, 103, 630-641. |
[63] | Zhao Y, Han SY, Zheng J, Xue HY, Li ZH, Meng Y, Li XG, Yang XD, Li ZH, Cai SH, Yang GJ (2023) ChinaWheatYield30m: A 30 m annual winter wheat yield dataset from 2016 to 2021 in China. Earth System Science Data, 15, 4047-4063. |
[1] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[2] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[3] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[4] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[5] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[6] | 林木青, 张应明, 欧阳芳, 束祖飞, 朱朝东, 肖治术. 广东车八岭国家级自然保护区独栖性胡蜂多样性空间分布特征及其对环境因子的响应[J]. 生物多样性, 2023, 31(2): 22310-. |
[7] | 侯东敏, 辉洪, 张栋儒, 肖能文, 饶定齐. 云岭山脉云南地区两栖爬行类动物多样性[J]. 生物多样性, 2023, 31(2): 22316-. |
[8] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
[9] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[10] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[11] | 黄永江, 苏涛, 朱海, 贾林波, 胡瑾瑾, 纪运恒, 周浙昆. 横断山南段上新世的植被多样性与分布格局[J]. 生物多样性, 2022, 30(11): 22295-. |
[12] | 易浪, 董亚坤, 苗白鸽, 彭艳琼. 云南高黎贡山地区蝴蝶群落多样性[J]. 生物多样性, 2021, 29(7): 950-959. |
[13] | 王爱霞, 马婧婧, 龚会蝶, 范国安, 王茂, 赵红梅, 程军回. 北疆一年生早春短命植物物种丰富度分布格局及其影响因素[J]. 生物多样性, 2021, 29(6): 735-745. |
[14] | 陈梦悦, 吴雨恒, 廖承清, 马方舟, 王星. 八大公山国家级自然保护区不同生境蝶类群落特征与月动态[J]. 生物多样性, 2020, 28(8): 950-957. |
[15] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn