生物多样性 ›› 2023, Vol. 31 ›› Issue (12): 23305. DOI: 10.17520/biods.2023305
所属专题: 生物入侵
王朝雅1,2(), 李金涛1,3(), 刘畅1, 王波1(), 苗白鸽1,*()(), 彭艳琼1,*()()
收稿日期:
2023-08-30
接受日期:
2023-12-06
出版日期:
2023-12-20
发布日期:
2023-12-28
通讯作者:
E-mail: 作者简介:
第一联系人:#共同第一作者
基金资助:
Chaoya Wang1,2(), Jintao Li1,3(), Chang Liu1, Bo Wang1(), Baige Miao1,*()(), Yanqiong Peng1,*()()
Received:
2023-08-30
Accepted:
2023-12-06
Online:
2023-12-20
Published:
2023-12-28
Contact:
E-mail: About author:
First author contact:#Co-first authors
摘要:
蝴蝶是全球重要的生物资源, 对环境变化敏感, 是生物多样性监测的重要指示物种。中国科学院西双版纳热带植物园物种资源丰富, 为查明其蝴蝶群落结构和多样性的年际变化及幼虫与植物互作的关系, 本研究选取了3种代表性生境, 采用样线法开展了6年的蝴蝶多样性观测。结果显示: 样线上共观测到蝴蝶成虫15,826只, 隶属5科146属251种, 其中蛱蝶科属、种数量最多, 达56属112种, 凤蝶科最低, 仅有8属21种; 蛱蝶科群落的Shannon和Simpson多样性指数均最高, 粉蝶科群落的Shannon和Simpson多样性指数均最低, 但其优势度指数最高。共记录到优势种蝴蝶20种、稀有种100种及常见种131种。成虫月发生动态显示蝴蝶的物种和个体数量均在雨季最多, 年际间气候对蝴蝶群落的多样性影响不明显, 蝴蝶群落中物种及数量年际间变化不显著; Beta多样性显示物种重叠分布, 蝴蝶群落年际间表现稳定。此外, 蝴蝶幼虫取食植物种类表现专一, 与本地植物形成的取食网络比与外来植物形成的取食网络有更高的加权嵌套性及稳健性, 互作网络较稳定。本研究探明了中国科学院西双版纳热带植物园蝴蝶群落结构及多样性的年际变化模式, 并初步构建、展示了蝴蝶幼虫与植物互作的网络及结构特征, 研究结果可为蝴蝶多样性保护、深入研究蝴蝶与植物互作机制提供科学依据。
王朝雅, 李金涛, 刘畅, 王波, 苗白鸽, 彭艳琼 (2023) 西双版纳热带植物园蝴蝶多样性稳定的年际变化及幼虫与植物的互作网络结构. 生物多样性, 31, 23305. DOI: 10.17520/biods.2023305.
Chaoya Wang, Jintao Li, Chang Liu, Bo Wang, Baige Miao, Yanqiong Peng (2023) Interannual stability in butterfly diversity and the larvae-plant interaction network structure at Xishuangbanna Tropical Botanical Garden. Biodiversity Science, 31, 23305. DOI: 10.17520/biods.2023305.
科名 Family | 属数 No. of genera | 个体数 No. of individuals | 物种丰富度 Species richness | Shannon多样性 Shannon diversity | Simpson多样性 Simpson diversity |
---|---|---|---|---|---|
凤蝶科 Papilionidae | 8 | 791 | 21 ± 6.57 | 9.05 ± 0.27 | 6.68 ± 0.26 |
粉蝶科 Pieridae | 13 | 6,316 | 24 ± 6.01 | 4.83 ± 0.10 | 2.60 ± 0.05 |
蛱蝶科 Nymphalidae | 56 | 4,818 | 112 ± 14.28 | 34.98 ± 0.70 | 19.54 ± 0.46 |
灰蝶科 Lycaenidae | 40 | 3,464 | 53 ± 11.23 | 13.27 ± 0.26 | 7.62 ± 0.19 |
弄蝶科 Hesperiidae | 29 | 437 | 41 ± 9.68 | 21.82 ± 1.23 | 14.54 ± 1.24 |
表1 中国科学院西双版纳热带植物园内蝴蝶群落的多样性(平均值 ± 标准误)
Table 1 Diversity of butterfly communities at Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences (mean ± SE)
科名 Family | 属数 No. of genera | 个体数 No. of individuals | 物种丰富度 Species richness | Shannon多样性 Shannon diversity | Simpson多样性 Simpson diversity |
---|---|---|---|---|---|
凤蝶科 Papilionidae | 8 | 791 | 21 ± 6.57 | 9.05 ± 0.27 | 6.68 ± 0.26 |
粉蝶科 Pieridae | 13 | 6,316 | 24 ± 6.01 | 4.83 ± 0.10 | 2.60 ± 0.05 |
蛱蝶科 Nymphalidae | 56 | 4,818 | 112 ± 14.28 | 34.98 ± 0.70 | 19.54 ± 0.46 |
灰蝶科 Lycaenidae | 40 | 3,464 | 53 ± 11.23 | 13.27 ± 0.26 | 7.62 ± 0.19 |
弄蝶科 Hesperiidae | 29 | 437 | 41 ± 9.68 | 21.82 ± 1.23 | 14.54 ± 1.24 |
优势种(优势度) Dominant species (Dominance index) | 个体数 No. of individuals (%) | 优势种(优势度) Dominant species (Dominance index) | 个体数 No. of individuals (%) |
---|---|---|---|
凤蝶科 Papilionidae (0.01) | 蛱蝶科 Nymphalidae (0.26) | ||
美凤蝶 Papilio memnon | 216 (1.36) | 小眉眼蝶 Mycalesis mineus | 390 (2.46) |
粉蝶科 Pieridae (0.36) | 黄绢坎蛱蝶 Chersonesia risa | 421 (2.66) | |
东方菜粉蝶 Pieris canidia | 538 (3.40) | 矍眼蝶 Ypthima balda | 428 (2.70) |
安迪黄粉蝶 Eurema andersoni | 369 (2.33) | 稻眉眼蝶 Mycalesis gotama | 197 (1.24) |
檗黄粉蝶 Eurema blanda | 293 (1.85) | 灰蝶科 Lycaenidae (0.15) | |
宽边黄粉蝶 Eurema hecabe | 559 (3.53) | 素雅灰蝶 Jamides alecto | 198 (1.25) |
迁粉蝶 Catopsilia pomona | 3,798 (24.00) | 锡冷雅灰蝶 Jamides celeno | 391 (2.47) |
鹤顶粉蝶 Hebomoia glaucippe | 167 (1.06) | 酢浆灰蝶 Pseudozizeeria maha | 565 (3.57) |
蛱蝶科 Nymphalidae (0.26) | 毛眼灰蝶 Zizina otis | 965 (6.10) | |
钩翅眼蛱蝶 Junonia iphita | 428 (2.70) | 疑波灰蝶 Prosotas dubiosa | 167 (1.06) |
蛇眼蛱蝶 Junonia lemonias | 543 (3.43) | 长腹灰蝶 Zizula hylax | 155 (0.98) |
裴斯眉眼蝶 Mycalesis perseus | 1,738 (1.12) | 弄蝶科 Hesperiidae (0) |
表2 中国科学院西双版纳热带植物园内蝴蝶的优势种(个体数 ≥ 150只)
Table 2 The dominant species of butterflies (individual ≥ 150) at Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences
优势种(优势度) Dominant species (Dominance index) | 个体数 No. of individuals (%) | 优势种(优势度) Dominant species (Dominance index) | 个体数 No. of individuals (%) |
---|---|---|---|
凤蝶科 Papilionidae (0.01) | 蛱蝶科 Nymphalidae (0.26) | ||
美凤蝶 Papilio memnon | 216 (1.36) | 小眉眼蝶 Mycalesis mineus | 390 (2.46) |
粉蝶科 Pieridae (0.36) | 黄绢坎蛱蝶 Chersonesia risa | 421 (2.66) | |
东方菜粉蝶 Pieris canidia | 538 (3.40) | 矍眼蝶 Ypthima balda | 428 (2.70) |
安迪黄粉蝶 Eurema andersoni | 369 (2.33) | 稻眉眼蝶 Mycalesis gotama | 197 (1.24) |
檗黄粉蝶 Eurema blanda | 293 (1.85) | 灰蝶科 Lycaenidae (0.15) | |
宽边黄粉蝶 Eurema hecabe | 559 (3.53) | 素雅灰蝶 Jamides alecto | 198 (1.25) |
迁粉蝶 Catopsilia pomona | 3,798 (24.00) | 锡冷雅灰蝶 Jamides celeno | 391 (2.47) |
鹤顶粉蝶 Hebomoia glaucippe | 167 (1.06) | 酢浆灰蝶 Pseudozizeeria maha | 565 (3.57) |
蛱蝶科 Nymphalidae (0.26) | 毛眼灰蝶 Zizina otis | 965 (6.10) | |
钩翅眼蛱蝶 Junonia iphita | 428 (2.70) | 疑波灰蝶 Prosotas dubiosa | 167 (1.06) |
蛇眼蛱蝶 Junonia lemonias | 543 (3.43) | 长腹灰蝶 Zizula hylax | 155 (0.98) |
裴斯眉眼蝶 Mycalesis perseus | 1,738 (1.12) | 弄蝶科 Hesperiidae (0) |
图1 中国科学院西双版纳热带植物园内蝴蝶群落的alpha多样性(a)和beta多样性(b)
Fig. 1 Alpha and beta diversities of butterfly community at Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences
图2 中国科学院西双版纳热带植物园内蝴蝶种类和数量的年际变化
Fig. 2 Interannual variation of butterfly species and abundance at Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences
图3 中国科学院西双版纳热带植物园内蝴蝶幼虫取食本地植物(a)及外来植物(b)的网络。缩写见附录4。
Fig. 3 Interaction networks between butterfly larvae and native plants (a) / non-native plants (b) at Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. Abbreviations are provided in Appendix 4.
互作网络 Interaction networks | 连接度 Connectance | 网络特化水平 Specialization | 加权嵌套性 Weighted NODF | 模块性 Modularity | 稳健性 Robustness |
---|---|---|---|---|---|
幼虫-本地植物网络 Larvae-native plant network | 0.02 (0.03 ± 0.002) | 0.92 (0.98 ± 0.02) | 0.46 (0.27 ± 0.17) | 0.84 (0.84 ± 0.05) | 0.55 (0.53 ± 0.01) |
幼虫-外来植物网络 Larvae-non-native plant network | 0.03 (0.04 ± 0.003) | 0.99 (1.00 ± 0.001) | 0.13 (0.08 ± 0.13) | 0.92 (0.88 ± 0.03) | 0.51 (0.49 ± 0.01) |
置换检验 Permutation test | Z = -6.75, P < 0.001 | Z = -3.84, P < 0.001 | Z = 4.07, P < 0.001 | Z = -3.10, P < 0.005 | Z = 7.09, P < 0.001 |
表3 中国科学院西双版纳热带植物园内蝴蝶幼虫与本地植物和外来植物互作网络的网络参数观测值(重抽样均值 ± 标准差)
Table 3 Parameters of the interaction networks between butterfly larvae and native / non-native plants at Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. The observed values are indicated before the brackets, while the values inside the brackets are the mean ± standard deviation obtained through resampling.
互作网络 Interaction networks | 连接度 Connectance | 网络特化水平 Specialization | 加权嵌套性 Weighted NODF | 模块性 Modularity | 稳健性 Robustness |
---|---|---|---|---|---|
幼虫-本地植物网络 Larvae-native plant network | 0.02 (0.03 ± 0.002) | 0.92 (0.98 ± 0.02) | 0.46 (0.27 ± 0.17) | 0.84 (0.84 ± 0.05) | 0.55 (0.53 ± 0.01) |
幼虫-外来植物网络 Larvae-non-native plant network | 0.03 (0.04 ± 0.003) | 0.99 (1.00 ± 0.001) | 0.13 (0.08 ± 0.13) | 0.92 (0.88 ± 0.03) | 0.51 (0.49 ± 0.01) |
置换检验 Permutation test | Z = -6.75, P < 0.001 | Z = -3.84, P < 0.001 | Z = 4.07, P < 0.001 | Z = -3.10, P < 0.005 | Z = 7.09, P < 0.001 |
[1] |
Baguette M, Clobert J, Schtickzelle N (2011) Metapopulation dynamics of the bog fritillary butterfly: Experimental changes in habitat quality induced negative density- dependent dispersal. Ecography, 34, 170-176.
DOI URL |
[2] |
Barron AB (2001) The life and death of Hopkins’ host- selection principle. Journal of Insect Behavior, 14, 725-737.
DOI URL |
[3] |
Baselga A (2013) Separating the two components of abundance- based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution, 4, 552-557.
DOI URL |
[4] |
Basset Y, Barrios H, Ramirez JA, Lopez Y, Coronado J, Perez F, Arizala S, Bobadilla R, Leponce M (2017) Contrasting the distribution of butterflies and termites in plantations and tropical forests. Biodiversity and Conservation, 26, 151-176.
DOI |
[5] |
Beirão MV, Neves FS, Fernandes GW (2021) Climate and plant structure determine the spatiotemporal butterfly distribution on a tropical mountain. Biotropica, 53, 191-200.
DOI URL |
[6] |
Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science, 168, 1345-1347.
DOI PMID |
[7] |
Bonebrake TC, Ponisio LC, Boggs CL, Ehrlich PR (2010) More than just indicators: A review of tropical butterfly ecology and conservation. Biological Conservation, 143, 1831-1841.
DOI URL |
[8] | Brereton T, van Swaay C, van Strien A (2009) Developing a butterfly indicator to assess changes in Europe’s biodiversity. Avocetta, 33, 19-27. |
[9] |
Cao M, Zou XM, Warren M, Zhu H (2006) Tropical forests of Xishuangbanna, China. Biotropica, 38, 306-309.
DOI URL |
[10] | Chen MY, Li ZL, Wang AM, Liu ZQ (2012) The Diversity of Butterflies in Xishuangbanna. Yunnan Fine Arts Press, Kunming. (in Chinese) |
[陈明勇, 李正玲, 王爱梅, 刘正勤 (2012) 西双版纳蝶类多样性. 云南美术出版社, 昆明.] | |
[11] |
Chowdhury S, Hesselberg T, Böhm M, Islam MR, Aich U (2017) Butterfly diversity in a tropical urban habitat (Lepidoptera: Papilionoidea). Oriental Insects, 51, 417-430.
DOI URL |
[12] |
Comay O, Ben Yeguda O, Schwartz-Tzachor R, Benyamini D, Pe’er I, Ktalav I, Pe’er G (2021) Environmental controls on butterfly occurrence and species richness in Israel: The importance of temperature over rainfall. Ecology and Evolution, 11, 12035-12050.
DOI PMID |
[13] |
Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24.
DOI URL |
[14] |
Fang LJ, Zhang YJ, Xing XY (2020) Butterfly community structure and diversity in Qinling National Botanical Garden, China. Biodiversity Science, 28, 965-972. (in Chinese with English abstract)
DOI URL |
[房丽君, 张宇军, 邢小宇 (2020) 秦岭国家植物园蝴蝶群落结构与多样性. 生物多样性, 28, 965-972.] | |
[15] |
Feng ZR, Chen YC, Peng YQ, Li L, Wang B (2023) Ecological network analysis: From metacommunity to metanetwork. Biodiversity Science, 31, 23171. (in Chinese with English abstract)
DOI |
[冯志荣, 陈有城, 彭艳琼, 李莉, 王波 (2023) 生态网络分析: 从集合群落到集合网络. 生物多样性, 31, 23171.]
DOI |
|
[16] |
Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: Evidence against the nitrogen limitation hypothesis. Oecologia, 124, 235-241.
DOI PMID |
[17] | Ghazanfar M, Malik MF, Hussain M, Iqbal R, Younas M (2016) Butterflies and their contribution in ecosystem: A review. Journal of Entomology and Zoology Studies, 4, 115-118. |
[18] |
Grimbacher PS, Stork NE (2009) Seasonality of a diverse beetle assemblage inhabiting lowland tropical rain forest in Australia. Biotropica, 41, 328-337.
DOI URL |
[19] |
Grøtan V, Lande R, Engen S, Sæther BE, DeVries PJ (2012) Seasonal cycles of species diversity and similarity in a tropical butterfly community. Journal of Animal Ecology, 81, 714-723.
DOI PMID |
[20] |
Grubb PJ (1977) The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biological Reviews, 52, 107-145.
DOI URL |
[21] |
Hamer KC, Hill JK, Mustaffa N, Benedick S, Sherratt TN, Chey VK, Maryati M (2005) Temporal variation in abundance and diversity of butterflies in Bornean rain forests: Opposite impacts of logging recorded in different seasons. Journal of Tropical Ecology, 21, 417-425.
DOI URL |
[22] |
Hsieh TC, Ma KH, Chao A (2016) iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451-1456.
DOI URL |
[23] | Hu BB, Li HH, Liang ZP, Zhao TJ, Ren XB (2010) Diversity and fauna of butterflies in Baxian Mountain State Nature Reserves. Acta Ecologica Sinica, 30, 3226-3238. (in Chinese with English abstract) |
[胡冰冰, 李后魂, 梁之聘, 赵铁建, 任秀柏 (2010) 八仙山自然保护区蝴蝶群落多样性及区系组成. 生态学报, 30, 3226-3238.] | |
[24] | Huang RF, Li T, Liao CJ, Sun SP, Lü J (2022) Butterfly diversity in Baishilazi National Nature Reserve. Liaoning Forestry Science and Technology, (4), 27-32. (in Chinese with English abstract) |
[黄瑞芬, 李涛, 廖成家, 孙淑萍, 吕军 (2022) 白石砬子国家级自然保护区蝴蝶多样性研究. 辽宁林业科技, (4), 27-32.] | |
[25] |
Inoue T, Yaida YA, Uehara Y, Katsuhara KR, Kawai J, Takashima K, Ushimaru A, Kenta T (2021) The effects of temporal continuities of grasslands on the diversity and species composition of plants. Ecological Research, 36, 24-31.
DOI URL |
[26] |
Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science, 317, 58-62.
DOI PMID |
[27] |
Joydeb M, Rahul L, Agarwala BK (2013) Butterfly species richness and diversity in the Trishna Wildlife Sanctuary in South Asia. Journal of Insect Science, 13, 79.
DOI PMID |
[28] |
Kishimoto-Yamada K, Itioka T, Sakai S, Momose K, Nagamitsu T, Kaliang H, Meleng P, Chong L, Hamid Karim AA, Yamane S, Kato M, Reid CAM, Nakashizuka T, Inoue T (2009) Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual environmental changes in a Bornean rainforest. Bulletin of Entomological Research, 99, 217-227.
DOI PMID |
[29] |
Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA, Stork NE, Srivastava DS, Watt AD (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 391, 72-76.
DOI |
[30] | Li JT, Miao BG, Peng YQ (2023) Butterfly diversity and variation in Xishuangbanna Tropical Botanical Garden. Journal of Environmental Entomology, 45, 563-572. (in Chinese with English abstract) |
[李金涛, 苗白鸽, 彭艳琼 (2023) 西双版纳热带植物园蝴蝶的多样性及变化. 环境昆虫学报, 45, 563-572.] | |
[31] | Li ZG, Zeng HC, Ye JW, Li J, Han SC (2015) Butterfly diversity in major ecological regions in the Pearl River Delta and its indicative function to regional environment. Ecological Science, 34, 167-171. (in Chinese with English abstract) |
[李志刚, 曾焕忱, 叶静文, 李军, 韩诗畴 (2015) 珠三角重要生态区域蝶类多样性及其对区域环境的指示. 生态科学, 34, 167-171.] | |
[32] | Liu P, Ma H, Zhu QS, Chen BC, Gao J, Lin XQ (2016) Research progress of insect adaptability to their host plants. Biological Disaster Science, 39, 250-254. (in Chinese with English abstract) |
[刘蓬, 马惠, 朱其松, 陈博聪, 高洁, 林香青 (2016) 昆虫对寄主植物适应性研究进展. 生物灾害科学, 39, 250-254.] | |
[33] | Ma FZ, Xu HG, Chen MM, Tong WJ, Wang CB, Cai L (2018) Progress in construction of China Butterfly Diversity Observation Network (China BON-Butterflies). Journal of Ecology and Rural Environment, 34, 27-36. (in Chinese with English abstract) |
[马方舟, 徐海根, 陈萌萌, 童文君, 王晨彬, 蔡蕾 (2018) 全国蝴蝶多样性观测网络(China BON-Butterflies)建设进展. 生态与农村环境学报, 34, 27-36.] | |
[34] |
Manwar N, Wankhade V (2014) Seasonal variation in diversity and abundance of butterfly at Sawanga Vithoba Lake area district Amravati, Maharashtra India. Journal of Biological Sciences, 14, 485-493.
DOI URL |
[35] | Miao BG, Peng YQ, Yang DR, Kubota Y, Economo EP, Liu C (2021) Climate and land-use interactively shape butterfly diversity in tropical rainforest and savanna ecosystems of southwestern China. Insect Science, 28, 1109-1120. |
[36] |
Muto-Fujita A, Takemoto K, Kanaya S, Nakazato T, Tokimatsu T, Matsumoto N, Kono M, Chubachi Y, Ozaki K, Kotera M (2017) Data integration aids understanding of butterfly-host plant networks. Scientific Reports, 7, 43368.
DOI PMID |
[37] |
Novotny V, Basset Y (1998) Seasonality of sap-sucking insects (Auchenorrhyncha, Hemiptera) feeding on Ficus (Moraceae) in a lowland rain forest in New Guinea. Oecologia, 115, 514-522.
DOI URL |
[38] | Okamura Y, Tsuzuki N, Kuroda S, Sato A, Sawada Y, Hirai MY, Murakami M (2019) Interspecific differences in the larval performance of Pieris butterflies (Lepidoptera: Pieridae) are associated with differences in the glucosinolate profiles of host plants. Journal of Insect Science, 19, 2. |
[39] |
Oostermeijer JGB, van Swaay CAM (1998) The relationship between butterflies and environmental indicator values: A tool for conservation in a changing landscape. Biological Conservation, 86, 271-280.
DOI URL |
[40] |
Pavoine S, Baguette M, Stevens VM, Leibold MA, Turlure C, Bonsall MB (2014) Life history traits, but not phylogeny, drive compositional patterns in a butterfly metacommunity. Ecology, 95, 3304-3313.
DOI URL |
[41] |
Pozo C, Luis-Martínez A, Llorente-Bousquets J, Salas-Suárez N, Maya-Martínez A, Vargas-Fernández I, Warren AD (2008) Seasonality and phenology of the butterflies (Lepidoptera: Papilionoidea and Hesperioidea) of Mexico’s Calakmul Region. Florida Entomologist, 91, 407-422.
DOI URL |
[42] |
Rabosky DL, Hurlbert AH (2015) Species richness at continental scales is dominated by ecological limits. The American Naturalist, 185, 572-583.
DOI PMID |
[43] |
Roy DB, Rothery P, Moss D, Pollard E, Thomas JA (2001) Butterfly numbers and weather: Predicting historical trends in abundance and the future effects of climate change. Journal of Animal Ecology, 70, 201-217.
DOI URL |
[44] |
Shahabuddin G, Terborgh JW (1999) Frugivorous butterflies in Venezuelan forest fragments: Abundance, diversity and the effects of isolation. Journal of Tropical Ecology, 15, 703-722.
DOI URL |
[45] |
Slansky F Jr, Feeny P (1977) Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecological Monographs, 47, 209-228.
DOI URL |
[46] |
Smith MD, Knapp AK (2003) Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6, 509-517.
DOI URL |
[47] |
Topp EN, Loos J (2019) Local and landscape level variables influence butterfly diversity in critically endangered South African renosterveld. Journal of Insect Conservation, 23, 225-237.
DOI |
[48] |
Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends in Ecology & Evolution, 21, 208-216.
DOI URL |
[49] |
Tsang TPN, Bonebrake TC (2017) Contrasting roles of environmental and spatial processes for common and rare urban butterfly species compositions. Landscape Ecology, 32, 47-57.
DOI URL |
[50] | Valtonen A, Molleman F, Chapman CA, Carey JR, Ayres MP, Roininen H (2013) Tropical phenology: Bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere, 4, 1-28. |
[51] |
van Swaay CAM, Nowicki P, Settele J, van Strien AJ (2008) Butterfly monitoring in Europe: Methods, applications and perspectives. Biodiversity and Conservation, 17, 3455-3469.
DOI URL |
[52] |
Wang B, Ma LB, Pan B, Dong YY, Huang JF, Peng YQ (2022) Spatial variation in ant-tree bipartite networks is driven by a bottom-up process. Ecological Entomology, 47, 1011-1021.
DOI URL |
[53] |
Wang Q, Guo ZX, Li JB, Wang KB, Wu WW, Pu ET, Ma FZ, He CX (2020) Population dynamics and diversity of butterflies in Ailaoshan and Wuliangshan national nature reserves, Yunnan Province. Biodiversity Science, 28, 921-930. (in Chinese with English abstract)
DOI URL |
[王群, 郭志祥, 李进斌, 王凯博, 吴文伟, 浦恩堂, 马方舟, 何成兴 (2020) 云南哀牢山、无量山国家级自然保护区蝴蝶种群动态及多样性. 生物多样性, 28, 921-930.] | |
[54] | White EP, Hurlbert AH (2010) The combined influence of the local environment and regional enrichment on bird species richness. The American Naturalist, 175, E35-E43. |
[55] |
Williamson M, Fitter A (1996) The varying success of invaders. Ecology, 77, 1661-1666.
DOI URL |
[56] | Wu CS, Hsu YF (2017) Butterflies of China. The Straits Publishing House, Fuzhou. (in Chinese) |
武春生, 徐堉峰 (2017) 中国蝴蝶图鉴. 海峡书局, 福州.] | |
[57] | Wu Z, Liu XH, Dai Y, Wang YD, Dong Y (2022) Diversity and fauna analysis of butterfly community in Langyashan National Forest Park. Journal of Chuzhou University, 24(5), 1-8. (in Chinese) |
[吴珍, 刘心宏, 戴杨, 王亚东, 董艳 (2022) 琅琊山国家森林公园蝴蝶群落多样性与区系分析. 滁州学院学报, 24(5), 1-8.] | |
[58] |
Yi L, Dong YK, Miao BG, Peng YQ (2021) Diversity of butterfly communities in Gaoligong region of Yunnan. Biodiversity Science, 29, 950-959. (in Chinese with English abstract)
DOI |
[易浪, 董亚坤, 苗白鸽, 彭艳琼 (2021) 云南高黎贡山地区蝴蝶群落多样性. 生物多样性, 29, 950-959.]
DOI |
|
[59] | Yu TT, Chang Z, Dong ZW, Li KQ, Ma FZ, Wang W, Li XY (2022) A glimpse into the biodiversity of insects in Yunnan: An updated and annotated checklist of butterflies (Lepidoptera, Papilionoidea). Zoological Research, 43, 1009-1010. |
[60] | Zhu H, Yan LC (2012) Native Seed Plants in Xishuangbanna of Yunnan. Science Press, Beijing. (in Chinese) |
[朱华, 闫丽春 (2012) 云南西双版纳野生种子植物. 科学出版社, 北京.] |
[1] | 时永强, 栾青杉, 单秀娟, 韦超, 赵永松, 孙策策, 金显仕. 长岛南部海域浮游动物多样性周年变化[J]. 生物多样性, 2024, 32(7): 23428-. |
[2] | 崔玉进, 李婉莹, 周青青, 赵恒, 吴芳, 员瑗. 北京地区油松与大叶黄杨叶际表生真菌多样性及群落组成[J]. 生物多样性, 2024, 32(7): 23498-. |
[3] | 孙怡欣, 侯春雨, 周磊, 魏雪, 马金豪, 薛娟, 李小涵, 吴鹏飞. 青藏高原盆栽一年生和多年生豆科牧草对土壤线虫群落的影响[J]. 生物多样性, 2024, 32(7): 24040-. |
[4] | 王艳丽, 张英, 戚春林, 张昌达, 史佑海, 杜彦君, 丁琼. 海南热带雨林国家公园生物多样性热点与保护空缺区域识别: 基于大型真菌与植物视角[J]. 生物多样性, 2024, 32(7): 24081-. |
[5] | 顾燚芸, 薛嘉祈, 高金会, 谢心仪, 韦铭, 雷进宇, 闻丞. 一种基于公众科学数据的区域性鸟类多样性评价方法[J]. 生物多样性, 2024, 32(7): 24080-. |
[6] | 马骅, 李常青, 余品锋, 陈杰, 贺天耀, 王可洪. 澎溪河消落带大型土壤动物群落分布格局及其影响因素[J]. 生物多样性, 2024, 32(7): 24117-. |
[7] | 白雪, 李正飞, 刘洋, 张君倩, 张多鹏, 罗鑫, 杨佳莉, 杜丽娜, 蒋玄空, 武瑞文, 谢志才. 西江流域大型底栖无脊椎动物物种多样性及维持机制[J]. 生物多样性, 2024, 32(7): 23499-. |
[8] | 张作鹏, 要晨阳, 吴玲, 罗遵兰, 孙光, 郭宗勇, 李晓思, 林峰, 陈小勇. 怒江云南段鱼类多样性现状与威胁因子[J]. 生物多样性, 2024, 32(7): 24076-. |
[9] | 许佳, 崔小娟, 张翼飞, 吴昌, 孙远东. 南岭地区鱼类多样性及其地理分布[J]. 生物多样性, 2024, 32(7): 23482-. |
[10] | 宋芬, 周芸芸, 黄太福, 杨存存, 于桂清, 田书荣, 向左甫. 基于红外相机技术的林麝行为PAE编码与多样性[J]. 生物多样性, 2024, 32(6): 24042-. |
[11] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[12] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[13] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[14] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[15] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn