生物多样性 ›› 2025, Vol. 33 ›› Issue (5): 24472. DOI: 10.17520/biods.2024472 cstr: 32101.14.biods.2024472
所属专题: 昆蒙框架目标12下的中国城市生物多样性研究专辑
周昊1,2(), 王茗毅1,3, 张楚格1,4,5, 肖治术1,2,*(
)(
), 欧阳芳1,*(
)(
)
收稿日期:
2024-10-28
接受日期:
2025-02-18
出版日期:
2025-05-20
发布日期:
2025-06-23
通讯作者:
肖治术,欧阳芳
基金资助:
Hao Zhou1,2(), Mingyi Wang1,3, Chuge Zhang1,4,5, Zhishu Xiao1,2,*(
)(
), Fang Ouyang1,*(
)(
)
Received:
2024-10-28
Accepted:
2025-02-18
Online:
2025-05-20
Published:
2025-06-23
Contact:
Zhishu Xiao, Fang Ouyang
Supported by:
摘要:
随着全球气候变化和人类活动的加剧, 生态系统正面临前所未有的压力, 生物多样性受到严重威胁。在此背景下, 政府和公众对如何有效遏制全球生物多样性下降的关注日益增加。近年来, 昆虫旅馆(insect hotel)作为一种创新型生物多样性保护手段, 在城市公园管理中引起了广泛关注, 并逐步得到应用和推广。昆虫旅馆的设计初衷是为城市环境中的昆虫, 特别是独栖蜂, 提供繁殖、栖息、越夏或过冬的场所, 从而有助于维护其物种多样性和种群的稳定。然而, 关于昆虫旅馆在城市昆虫多样性保护中的实际效果及其面临的挑战, 目前仍缺乏系统的研究。为深入探讨昆虫旅馆对城市独栖蜂多样性保护的效果及存在的问题, 本文首先对全球范围内昆虫旅馆的研究现状进行了梳理, 包括研究数量、地理分布、受保护物种种类以及筑巢巢管的材料类型与规格大小等方面; 进一步总结了昆虫旅馆在城市环境独栖蜂多样性保护中的积极作用(传粉、控害和科普教育)和限制因素(独栖蜂入住率低、外来入侵物种、天敌病原物危害增加等), 并提出了具体的改进方案, 旨在为推动城市生物多样性的可持续发展提供科学依据和支持。
周昊, 王茗毅, 张楚格, 肖治术, 欧阳芳 (2025) 昆虫旅馆在独栖蜂多样性保护中的现状与挑战. 生物多样性, 33, 24472. DOI: 10.17520/biods.2024472.
Hao Zhou, Mingyi Wang, Chuge Zhang, Zhishu Xiao, Fang Ouyang (2025) The status and challenges of insect hotels in the conservation of urban solitary bees and wasps diversity. Biodiversity Science, 33, 24472. DOI: 10.17520/biods.2024472.
洲 Continent | 文献数量Number of papers | 国家 Country | 文献数量Number of papers |
---|---|---|---|
欧洲 Europe | 141 | 德国 Germany | 36 |
西班牙 Spain | 14 | ||
捷克共和国 The Czech Republic | 9 | ||
法国 France | 8 | ||
意大利 Italy | 7 | ||
荷兰 The Netherlands | 7 | ||
比利时 Belgium | 6 | ||
波兰 Poland | 6 | ||
俄罗斯 Russia | 6 | ||
瑞典 Sweden | 6 | ||
瑞士 Switzerland | 6 | ||
立陶宛 Lithuania | 5 | ||
英国 Britain | 5 | ||
匈牙利 Hungary | 4 | ||
奥地利 Austria | 3 | ||
土耳其 Türkiye | 3 | ||
乌克兰 Ukraine | 3 | ||
罗马尼亚 Romania | 2 | ||
克罗地亚 Croatia | 1 | ||
爱沙尼亚 Estonia | 1 | ||
爱尔兰 Ireland | 1 | ||
塞尔维亚 Serbia | 1 | ||
斯洛伐克 Slovakia | 1 | ||
南美洲 South America | 135 | 巴西 Brazil | 116 |
阿根廷 Argentina | 18 | ||
哥伦比亚 Colombia | 1 | ||
北美洲 North America | 63 | 美国 America | 42 |
加拿大 Canada | 14 | ||
哥斯达黎加 Costa Rica | 3 | ||
墨西哥 Mexico | 2 | ||
巴拿马 Panama | 2 | ||
亚洲 Asia | 51 | 中国 China | 20 |
印度 India | 12 | ||
日本 Japan | 8 | ||
巴基斯坦 Pakistan | 4 | ||
韩国 Korea | 2 | ||
越南 Vietnam | 2 | ||
伊朗 Iran | 1 | ||
沙特阿拉伯 Saudi Arabia | 1 | ||
新加坡 Singapore | 1 | ||
大洋洲 Oceania | 12 | 澳大利亚 Australia | 12 |
非洲 Africa | 3 | 南非 South Africa | 2 |
摩洛哥 Morocco | 1 |
表1 各国有关昆虫旅馆研究的数量
Table 1 Number of research on insect hotel in different country
洲 Continent | 文献数量Number of papers | 国家 Country | 文献数量Number of papers |
---|---|---|---|
欧洲 Europe | 141 | 德国 Germany | 36 |
西班牙 Spain | 14 | ||
捷克共和国 The Czech Republic | 9 | ||
法国 France | 8 | ||
意大利 Italy | 7 | ||
荷兰 The Netherlands | 7 | ||
比利时 Belgium | 6 | ||
波兰 Poland | 6 | ||
俄罗斯 Russia | 6 | ||
瑞典 Sweden | 6 | ||
瑞士 Switzerland | 6 | ||
立陶宛 Lithuania | 5 | ||
英国 Britain | 5 | ||
匈牙利 Hungary | 4 | ||
奥地利 Austria | 3 | ||
土耳其 Türkiye | 3 | ||
乌克兰 Ukraine | 3 | ||
罗马尼亚 Romania | 2 | ||
克罗地亚 Croatia | 1 | ||
爱沙尼亚 Estonia | 1 | ||
爱尔兰 Ireland | 1 | ||
塞尔维亚 Serbia | 1 | ||
斯洛伐克 Slovakia | 1 | ||
南美洲 South America | 135 | 巴西 Brazil | 116 |
阿根廷 Argentina | 18 | ||
哥伦比亚 Colombia | 1 | ||
北美洲 North America | 63 | 美国 America | 42 |
加拿大 Canada | 14 | ||
哥斯达黎加 Costa Rica | 3 | ||
墨西哥 Mexico | 2 | ||
巴拿马 Panama | 2 | ||
亚洲 Asia | 51 | 中国 China | 20 |
印度 India | 12 | ||
日本 Japan | 8 | ||
巴基斯坦 Pakistan | 4 | ||
韩国 Korea | 2 | ||
越南 Vietnam | 2 | ||
伊朗 Iran | 1 | ||
沙特阿拉伯 Saudi Arabia | 1 | ||
新加坡 Singapore | 1 | ||
大洋洲 Oceania | 12 | 澳大利亚 Australia | 12 |
非洲 Africa | 3 | 南非 South Africa | 2 |
摩洛哥 Morocco | 1 |
图4 基于2010-2024年文献调研昆虫旅馆筑巢物种发表文献数量最多的前10个属及其所用巢管孔径(A)及长度(B)
Fig. 4 The top 10 genera of nesting species in insect hotels most frequently studied in 2010 to 2024 literature, and their trap nest diameter (A) and length (B)
[1] | Bänsch S, Tscharntke T, Gabriel D, Westphal C (2021) Crop pollination services: Complementary resource use by social vs solitary bees facing crops with contrasting flower supply. Journal of Applied Ecology, 58, 476-485. |
[2] | Barthélémy C (2012) Nest trapping, a simple method for gathering information on life histories of solitary bees and wasps. Bionomics of 21 species of solitary aculeate in Hong Kong. Hong Kong Entomological Bulletin, 4, 3-37. |
[3] | Brock RE, Cini A, Sumner S (2021) Ecosystem services provided by aculeate wasps. Biological Reviews, 96, 1645-1675. |
[4] | Buys S (2012) Nesting habits, alternative nesting strategies and female territoriality of the cockroach-hunting solitary wasp Penepodium luteipenne (Hymenoptera: Sphecidae). Journal of Hymenoptera Research, 24, 27-41. |
[5] | Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima CS, Gaigher R, Habel JC, Hallmann CA, Hill MJ, Hochkirch A, Kwak ML, Mammola S, Ari Noriega J, Orfinger AB, Pedraza F, Pryke JS, Roque FO, Settele J, Simaika JP, Stork NE, Suhling F, Vorster C, Samways MJ (2020) Scientists’ warning to humanity on insect extinctions. Biological Conservation, 242, 108426. |
[6] | Césard N, Mouret H, Vaissiere B (2014) Des hôtels à abeilles urbains et citoyens. Insectes Sociaux, 175, 7-11. |
[7] | Chowdhury S, Zalucki MP, Hanson JO, Tiatragul S, Green D, Watson JEM, Fuller RA (2023) Three-quarters of insect species are insufficiently represented by protected areas. One Earth, 6, 139-146. |
[8] | Colla SR (2022) The potential consequences of ‘bee washing’ on wild bee health and conservation. International Journal for Parasitology: Parasites and Wildlife, 18, 30-32. |
[9] | Collins CM, Audusseau H, Hassall C, Keyghobadi N, Sinu PA, Saunders ME (2024) Insect ecology and conservation in urban areas: An overview of knowledge and needs. Insect Conservation and Diversity, 17, 169-181. |
[10] | Dainese M, Riedinger V, Holzschuh A, Kleijn D, Scheper J, Steffan-Dewenter I (2018) Managing trap-nesting bees as crop pollinators: Spatiotemporal effects of floral resources and antagonists. Journal of Applied Ecology, 55, 195-204. |
[11] | Danforth BN, Minckley RL, Neff JL (2019) The Solitary Bees:Biology, Evolution, Conservation. Princeton University Press, Princeton, New Jersey. |
[12] | Díaz SS, Carisio L, Manino A, Biella P, Porporato M (2021) Nesting, sex ratio and natural enemies of the giant resin bee in relation to native species in Europe. Insects, 12, 545. |
[13] | Dicks LV, Showler DA, Sutherland WJ (2010) Bee Conservation:Evidence for the Effects of Interventions. Pelagic Publishing, London, England. |
[14] | Fortel L, Henry M, Guilbaud L, Mouret H, Vaissière BE (2016) Use of human-made nesting structures by wild bees in an urban environment. Journal of Insect Conservation, 20, 239-253. |
[15] | Gaston KJ, Smith RM, Thompson K, Warren PH (2005) Urban domestic gardens (II): Experimental tests of methods for increasing biodiversity. Biodiversity & Conservation, 14, 395-413. |
[16] | Geslin B, Aizen MA, Garcia N, Pereira AJ, Vaissière BE, Garibaldi LA (2017) The impact of honey bee colony quality on crop yield and farmers’ profit in apples and pears. Agriculture, Ecosystems & Environment, 248, 153-161. |
[17] | Geslin B, Gachet S, Deschamps-Cottin M, Flacher F, Ignace B, Knoploch C, Meineri É, Robles C, Ropars L, Schurr L, Le Féon V (2020) Bee hotels host a high abundance of exotic bees in an urban context. Acta Oecologica, 105, 103556. |
[18] | Gilpin AM, Brettell LE, Cook JM, Power SA (2022) The use of trap-nests to support crop pollinators in agricultural areas. Ecological Research, 37, 768-779. |
[19] | Grissell E (2010) Bees, Wasps, and Ants:The Indispensable Role of Hymenoptera in Gardens. Timber Press, Portland, Oregon. |
[20] | Hamroud L, Lhomme P, Christmann S, Sentil A, Michez D, Rasmont P (2023) Conserving wild bees for crop pollination: Efficiency of bee hotels in Moroccan cherry orchards (Prunus avium). Journal of Apicultural Research, 62, 1123-1131. |
[21] | Hane EN, Korfmacher KF (2022) Insect “Bee&Bees” and pollinator penthouses: Teaching students about pollinators and their services in an urban environment. Urban Ecosystems, 25, 1057-1064. |
[22] | Harris BA, Poole EM, Braman SK, Pennisi SV (2021) Consumer-ready insect hotels: An assessment of arthropod visitation and nesting success. Journal of Entomological Science, 56, 141-155. |
[23] | Hodge S, Bottero I, Dean R, Maher S, Stout J (2022) Stem-nesting Hymenoptera in Irish farmland: Empirical evaluation of artificial trap nests as tools for fundamental research and pollinator conservation. Journal of Pollination Ecology, 32, 110-123. |
[24] | Junqueira CN, Hogendoorn K, Augusto SC (2012) The use of trap-nests to manage carpenter bees (Hymenoptera: Apidae: Xylocopini), pollinators of passion fruit (Passifloraceae: Passiflora edulis f. flavicarpa). Annals of the Entomological Society of America, 105, 884-889. |
[25] | Kamke R, Zillikens A, Heinle S, Steiner J (2008) Natural enemies and life cycle of the orchid bee Eufriesea smaragdina (Hymenoptera: Apidae) reared from trap nests. Journal of the Kansas Entomological Society, 81, 101-109. |
[26] |
Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecology Letters, 10, 299-314.
PMID |
[27] |
Kurczewski FE, Coville RE, Schal C (2010) Observations on the nesting and prey of the solitary wasp, Tachysphex inconspicuus, with a review of nesting behavior in the T. obscuripennis species group. Journal of Insect Science, 10, 183.
DOI PMID |
[28] |
Leandro C, Jay-Robert P (2019) Perceptions and representations of animal diversity: Where did the insects go? Biological Conservation, 237, 400-408.
DOI |
[29] | Lu YL, Bullock JM (2021) Biodiversity conservation in a changing environment beyond 2020. Science Advances, 7, eabl8162. |
[30] | MacIvor JS, Packer L (2015) ‘Bee hotels’ as tools for native pollinator conservation: A premature verdict. PLoS ONE, 10, e0122126. |
[31] | MacIvor JS (2016) Wild bees in cultivated city gardens. In: Sowing Seeds in the City: Ecosystem and Municipal Services (eds Brown S, McIvor K, Hodges Snyder E), pp.207-227. Springer, Dordrecht. |
[32] | MacIvor JS (2017) Cavity-nest boxes for solitary bees: A century of design and research. Apidologie, 48, 311-327. |
[33] | Matos MCB, Santos Silva S, Teodoro AV (2016) Seasonal population abundance of the assembly of solitary wasps and bees (Hymenoptera) according to land-use in Maranhão State, Brazil. Revista Brasileira de Entomologia, 60, 171-176. |
[34] | McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biological Conservation, 129, 372-382. |
[35] | Miyano S, Yamaguchi T (2001) Ants reduce nest building activities of tube-nesting wasps and bees (Hymenoptera). Entomological Science, 4, 243-246. |
[36] | Oliveira RC, Menezes C, Soares AEE, Fonseca VLI (2013) Trap-nests for stingless bees (Hymenoptera, Meliponini). Apidologie, 44, 29-37. |
[37] | Ouyang F, Zhao ZH, Ge F (2013) Insect ecological services. Chinese Journal of Applied Entomology, 50, 305-310. (in Chinese with English abstract) |
[欧阳芳, 赵紫华, 戈峰 (2013) 昆虫的生态服务功能. 应用昆虫学报, 50, 305-310.] | |
[38] | Pereira-Peixoto MH, Pufal G, Martins CF, Klein AM (2014) Spillover of trap-nesting bees and wasps in an urban-rural interface. Journal of Insect Conservation, 18, 815-826. |
[39] | Rahimi E, Barghjelveh S, Dong PL (2021) How effective are artificial nests in attracting bees? A review. Journal of Ecology and Environment, 45, 1-11. |
[40] | Rezende MQ, Venzon M, Perez AL, Cardoso IM, Janssen A (2014) Extrafloral nectaries of associated trees can enhance natural pest control. Agriculture, Ecosystems & Environment, 188, 198-203. |
[41] | Rollin O, Bretagnolle V, Decourtye A, Aptel J, Michel N, Vaissière BE, Henry M (2013) Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agriculture, Ecosystems and Environment, 179, 78-86. |
[42] | Rozen JG Jr, Eickwort GC (1997) The entomological evidence. Journal of Forensic Sciences, 42, 394-397. |
[43] | Rudd H, Vala J, Schaefer V (2002) Importance of backyard habitat in a comprehensive biodiversity conservation strategy: A connectivity analysis of urban green spaces. Restoration Ecology, 10, 368-375. |
[44] | Simaika JP, Samways MJ (2018) Insect conservation psychology. Journal of Insect Conservation, 22, 635-642. |
[45] |
Soanes K, Sievers M, Chee YE, Williams NSG, Bhardwaj M, Marshall AJ, Parris KM (2019) Correcting common misconceptions to inspire conservation action in urban environments. Conservation Biology, 33, 300-306.
DOI PMID |
[46] | Staab M, Pufal G, Tscharntke T, Klein AM (2018) Trap nests for bees and wasps to analyse trophic interactions in changing environments—A systematic overview and user guide. Methods in Ecology and Evolution, 9, 2226-2239. |
[47] | Steffan-Dewenter I, Leschke K (2003) Effects of habitat management on vegetation and above-ground nesting bees and wasps of orchard meadows in Central Europe. Biodiversity and Conservation, 12, 1953-1968. |
[48] | Stephen WP, Osgood Charles E, (1965) Influence of tunnel size and nesting medium on sex ratios in a leaf-cutter bee, Megachile rotundata. Journal of Economic Entomology, 58, 965-968. |
[49] |
Stork NE (2018) How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology, 63, 31-45.
DOI PMID |
[50] | Tscharntke T, Gathmann A, Steffan-Dewenter I (1998) Bioindication using trap-nesting bees and wasps and their natural enemies: Community structure and interactions. Journal of Applied Ecology, 35, 708-719. |
[51] | Vicens N, Bosch J (2000) Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environmental Entomology, 29, 413-420. |
[52] |
von Königslöw V, Klein AM, Staab M, Pufal G (2019) Benchmarking nesting aids for cavity-nesting bees and wasps. Biodiversity and Conservation, 28, 3831-3849.
DOI |
[53] | Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences, USA, 118, e2023989118. |
[54] | Wang ZZ, Liu YQ, Shi M, Huang JH, Chen XX (2019) Parasitoid wasps as effective biological control agents. Journal of Integrative Agriculture, 18, 705-715. |
[55] | Wcislo WT (1996) Parasitism rates in relation to nest site in bees and wasps (Hymenoptera: Apoidea). Journal of Insect Behavior, 9, 643-656. |
[56] | Williams IH (1972) Trap-nesting solitary bees for students of biology. Bee World, 53, 123-135. |
[57] | Xu WH, Xiao Y, Zhang JJ, Yang W, Zhang L, Hull V, Wang Z, Zheng H, Liu JG, Polasky S, Jiang L, Xiao Y, Shi XW, Rao EM, Lu F, Wang XK, Daily GC, Ouyang ZY (2017) Strengthening protected areas for biodiversity and ecosystem services in China. Proceedings of the National Academy of Sciences, USA, 114, 1601-1606. |
[1] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[2] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果[J]. 生物多样性, 2025, 33(5): 24531-. |
[3] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升[J]. 生物多样性, 2025, 33(5): 24524-. |
[4] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[5] | 赵维洋, 王伟, 马冰然. 其他有效的区域保护措施(OECMs)研究进展与展望[J]. 生物多样性, 2025, 33(3): 24525-. |
[6] | 周志华, 金效华, 罗颖, 李迪强, 岳建兵, 刘芳, 何拓, 李希, 董晖, 罗鹏. 中国林草部门落实《昆明-蒙特利尔全球生物多样性框架》的机制、成效分析及建议[J]. 生物多样性, 2025, 33(3): 24487-. |
[7] | 刘立, 臧明月, 马月, 万雅琼, 胡飞龙, 卢晓强, 刘燕. 央地协同推动国家生物多样性战略和行动计划执行的措施、进展与展望[J]. 生物多样性, 2025, 33(3): 24532-. |
[8] | 宋阳, 柳军, 何少林, 徐薇, 程琛, 刘博, 余绩庆. 我国能源企业生物多样性保护主流化管理路径[J]. 生物多样性, 2025, 33(1): 24345-. |
[9] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[10] | 李雪原, 孙智闲, 王凤震, 席蕊, 方雨田, 郝浚源, 盛冬, 孙书雅, 赵亚辉. 城市发展对鱼类功能多样性的影响: 以超大城市北京为例[J]. 生物多样性, 2024, 32(8): 24150-. |
[11] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[12] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[13] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[14] | 陈越, 毛子昆, 王绪高. 基于生态独特性的β多样性研究进展与未来展望[J]. 生物多样性, 2024, 32(12): 24199-. |
[15] | 张梓欣, 张承云, 郝泽周, 何凯莹, 黄泳桥, 肖治术. 陆地生物声学数据采集设备的进展及展望[J]. 生物多样性, 2024, 32(10): 24265-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn