生物多样性 ›› 2025, Vol. 33 ›› Issue (5): 24444. DOI: 10.17520/biods.2024444 cstr: 32101.14.biods.2024444
所属专题: 昆蒙框架目标12下的中国城市生物多样性研究专辑
吴晓晴1(), 张美惠1, 葛苏婷1(
), 李漫淑1, 达良俊2, 宋坤1(
), 沈国春1(
), 张健3,*(
)(
)
收稿日期:
2024-10-11
接受日期:
2024-12-18
出版日期:
2025-05-20
发布日期:
2025-03-11
通讯作者:
张健
基金资助:
Xiaoqing Wu1(), Meihui Zhang1, Suting Ge1(
), Manshu Li1, Liangjun Da2, Kun Song1(
), Guochun Shen1(
), Jian Zhang3,*(
)(
)
Received:
2024-10-11
Accepted:
2024-12-18
Online:
2025-05-20
Published:
2025-03-11
Contact:
Jian Zhang
Supported by:
摘要:
近自然林营造是加速城市森林植被恢复的重要方式, 但其恢复过程中植物多样性、地上生物量的时空动态及其空间尺度效应尚不明晰。本研究以2006年在上海市闵行区使用乡土树种营造的亚热带近自然林为研究对象, 于2023年对其植物群落组成进行全面调查, 并与2007‒2023年间的5次核心样方追踪调查结果进行对比, 分析了物种多样性、地上生物量及二者关系在时空尺度上的变化规律。结果表明: (1)随着演替进行, 木本植物丰富度由2007年的11种增至2023年的18种, 植株密度先升高后下降; 地上生物量由2007年的3.51 t/ha增加至2023年的208.83 t/ha, 樟(Camphora officinarum)、小叶青冈(Quercus myrsinifolia)等常绿树种逐渐成为群落优势种; 地上生物量与物种丰富度(P < 0.01)、平均树高(P < 0.001)均呈显著正相关, 而与植株密度呈显著负相关(P < 0.01); (2)在5 m、10 m和20 m 3个空间尺度上, 地上生物量与植株密度的正相关关系都极为显著(P < 0.001); 而随着尺度增大, 地上生物量与平均树高的关系由5 m尺度的不显著转变为10 m (P < 0.05)与20 m尺度(P < 0.05)的显著负相关。综上, 在17年的亚热带森林恢复过程中, 近自然林的营造模式已展现出其加速演替进程的效力。在近自然林营造中, 应注重乡土树种的优势作用, 选择多样化的物种组合, 进而有效推动植物多样性与碳储量的协同提升。
吴晓晴, 张美惠, 葛苏婷, 李漫淑, 达良俊, 宋坤, 沈国春, 张健 (2025) 上海近自然林重建过程中木本植物物种多样性与地上生物量的时空动态: 以闵行区生态岛为例. 生物多样性, 33, 24444. DOI: 10.17520/biods.2024444.
Xiaoqing Wu, Meihui Zhang, Suting Ge, Manshu Li, Liangjun Da, Kun Song, Guochun Shen, Jian Zhang (2025) Spatiotemporal dynamics of woody plant species diversity and aboveground biomass during near-nature forest reconstruction in Shanghai: A case study from the eco-island in Minhang District. Biodiversity Science, 33, 24444. DOI: 10.17520/biods.2024444.
图1 上海市闵行区近自然林2007年与2023年的对比图。图片提供者: (a)达良俊; (b)沈国春; (c)达良俊; (d)吴晓晴。
Fig. 1 Comparisons between the near-nature forest in 2007 and 2023 in Minhang District, Shanghai. Photos provider: (a) Liangjun Da; (b) Guochun Shen; (c) Liangjun Da; (d) Xiaoqing Wu.
图2 2007-2023年上海市闵行区近自然林群落结构特征的变化
Fig. 2 Dynamics of plant community structural characteristics of near-nature forest from 2007 to 2023 in Minhang District, Shanghai. AGB, Aboveground biomass; GiniHt, Gini coefficient of tree height.
树种 Tree species | 地上生物量(地上生物量占比%) AGB (t/ha) (AGB percentage, %) | 平均树高 Mean tree height (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2007 | 2008 | 2012 | 2018 | 2023 | 2007 | 2008 | 2012 | 2018 | 2023 | |
楝 Melia azedarach | 1.22 (34.72) | 4.58 (37.45) | 16.80 (18.56) | 3.29 | 4.16 | 6.42 | ||||
朴树 Celtis sinensis | 0.92 (26.14) | 3.24 (26.48) | 11.62 (6.37) | 3.63 | 5.33 | 6.31 | ||||
珊瑚朴 Celtis julianae | 0.38 (10.87) | 1.50 (12.30) | 3.54 | 4.16 | ||||||
枫杨 Pterocarya stenoptera | 0.25 (7.14) | 1.03 (8.39) | 13.22 (14.60) | 41.44 (22.72) | 32.44 (15.53) | 3.33 | 4.53 | 8.31 | 11.62 | 11.70 |
红楠 Machilus thunbergii | 0.23 (6.46) | 0.67 (5.45) | 0.96 | 4.08 | ||||||
合欢 Albizia julibrissin | 16.61 (18.35) | 26.79 (14.69) | 10.91 (5.23) | 10.80 | 11.56 | 11.07 | ||||
樟 Camphora officinarum | 15.04 (16.62) | 39.16 (21.47) | 30.49 (14.60) | 8.20 | 7.00 | 12.04 | ||||
舟山新木姜子 Neolitsea sericea | 5.79 (6.40) | 3.31 | ||||||||
青冈 Quercus glauca | 5.06 (5.59) | 3.96 | ||||||||
女贞 Ligustrum lucidum | 12.76 (7.00) | 6.79 | ||||||||
小叶青冈 Quercus myrsinifolia | 12.36 (6.78) | 13.71 (6.57) | 4.89 | 5.14 | ||||||
麻栎 Quercus acutissima | 11.73 (6.43) | 9.10 | ||||||||
无患子 Sapindus saponaria | 45.72 (21.89) | 9.63 | ||||||||
复羽叶栾树 Koelreuteria bipinnata | 13.47 (6.45) | 12.40 | ||||||||
栾树 Koelreuteria paniculata | 11.89 (5.69) | 11.47 |
表1 2007-2023年上海市闵行区近自然林优势树种地上生物量和平均树高的时间变化
Table 1 Temporal dynamics of aboveground biomass (AGB) and their mean tree heights in near-nature forest from 2007 to 2023 in Minhang District, Shanghai
树种 Tree species | 地上生物量(地上生物量占比%) AGB (t/ha) (AGB percentage, %) | 平均树高 Mean tree height (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2007 | 2008 | 2012 | 2018 | 2023 | 2007 | 2008 | 2012 | 2018 | 2023 | |
楝 Melia azedarach | 1.22 (34.72) | 4.58 (37.45) | 16.80 (18.56) | 3.29 | 4.16 | 6.42 | ||||
朴树 Celtis sinensis | 0.92 (26.14) | 3.24 (26.48) | 11.62 (6.37) | 3.63 | 5.33 | 6.31 | ||||
珊瑚朴 Celtis julianae | 0.38 (10.87) | 1.50 (12.30) | 3.54 | 4.16 | ||||||
枫杨 Pterocarya stenoptera | 0.25 (7.14) | 1.03 (8.39) | 13.22 (14.60) | 41.44 (22.72) | 32.44 (15.53) | 3.33 | 4.53 | 8.31 | 11.62 | 11.70 |
红楠 Machilus thunbergii | 0.23 (6.46) | 0.67 (5.45) | 0.96 | 4.08 | ||||||
合欢 Albizia julibrissin | 16.61 (18.35) | 26.79 (14.69) | 10.91 (5.23) | 10.80 | 11.56 | 11.07 | ||||
樟 Camphora officinarum | 15.04 (16.62) | 39.16 (21.47) | 30.49 (14.60) | 8.20 | 7.00 | 12.04 | ||||
舟山新木姜子 Neolitsea sericea | 5.79 (6.40) | 3.31 | ||||||||
青冈 Quercus glauca | 5.06 (5.59) | 3.96 | ||||||||
女贞 Ligustrum lucidum | 12.76 (7.00) | 6.79 | ||||||||
小叶青冈 Quercus myrsinifolia | 12.36 (6.78) | 13.71 (6.57) | 4.89 | 5.14 | ||||||
麻栎 Quercus acutissima | 11.73 (6.43) | 9.10 | ||||||||
无患子 Sapindus saponaria | 45.72 (21.89) | 9.63 | ||||||||
复羽叶栾树 Koelreuteria bipinnata | 13.47 (6.45) | 12.40 | ||||||||
栾树 Koelreuteria paniculata | 11.89 (5.69) | 11.47 |
图3 上海市闵行区近自然林地上生物量与物种丰富度(a)、植株密度(b)、平均树高(c)和树高变异性(d)的关系。** P < 0.01; *** P < 0.001。
Fig. 3 Relations between aboveground biomass (AGB) and species richness (a), stem density (b), mean tree height (c), and Gini coefficient of tree height (GiniHt) (d) in near-nature forest in Minhang District, Shanghai. ** P < 0.01; *** P < 0.001.
图4 上海市闵行区近自然林物种丰富度(a, c, e)与植株密度(b, d, f)在3个尺度上的空间分布图。横纵坐标分别表示东、北方向上距离俯拍图中西南角原点的距离。
Fig. 4 Spatial distribution of species richness (a, c, e) and stem density (b, d, f) at three scales in near-nature forest in Minhang District, Shanghai. The horizontal and vertical coordinates represent the distances eastward and northward from the origin at the southwest corner in the landscape view, respectively.
图5 上海市闵行区近自然林地上生物量(a, c, e)与平均树高(b, d, f)在3个尺度上的空间分布图。横纵坐标分别表示东、北方向上距离俯拍图中西南角原点的距离。
Fig. 5 Spatial distributions of plant aboveground biomass (AGB) (a, c, e) and mean tree height (b, d, f) at three scales in near-nature forest in Minhang District, Shanghai. The horizontal and vertical coordinates represent the distances eastward and northward from the origin at the southwest corner in the landscape view, respectively.
图6 上海市闵行区近自然林地上生物量与植株密度在3个空间尺度上的相关性。*** P < 0.001。
Fig. 6 Correlations between aboveground biomass (AGB) and stem density at three spatial scale in near-nature forest in Minhang District, Shanghai. *** P < 0.001.
图7 上海市闵行区近自然林地上生物量与平均树高在3个空间尺度上的相关性。* P < 0.05。
Fig. 7 Correlations between aboveground biomass (AGB) and mean height at three spatial scales in near-nature forest in Minhang District, Shanghai. * P < 0.05
[1] |
Ammer C (2019) Diversity and forest productivity in a changing climate. New Phytologist, 221, 50-66.
DOI PMID |
[2] | Aryal DR, De Jong BHJ, Sánchez-Silva S, Haas-Ek A, Esparza-Olguin L, Ochoa-Gaona S, Ghimire R, Morales-Ruiz DE (2024) Biomass recovery along a tropical forest succession: Trends on tree diversity, wood traits and stand structure. Forest Ecology and Management, 555, 121709. |
[3] | Barrufol M, Schmid B, Bruelheide H, Chi XL, Hector A, Ma KP, Michalski S, Tang ZY, Niklaus PA (2013) Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE, 8, e81246. |
[4] | Battles JJ, Shlisky AJ, Barrett RH, Heald RC, Allen-Diaz BH (2001) The effects of forest management on plant species diversity in a Sierran conifer forest. Forest Ecology and Management, 146, 211-222. |
[5] | Bu WS, Zang RG, Ding Y (2014) Field observed relationships between biodiversity and ecosystem functioning during secondary succession in a tropical lowland rainforest. Acta Oecologica, 55, 1-7. |
[6] |
Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A (2011) The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572-592.
DOI PMID |
[7] | Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences, USA, 104, 18123-18128. |
[8] | Carrus G, Scopelliti M, Lafortezza R, Colangelo G, Ferrini F, Salbitano F, Agrimi M, Portoghesi L, Semenzato P, Sanesi G (2015) Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landscape and Urban Planning, 134, 221-228. |
[9] | Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao H, Cao M, Cárdenas D, Chang L, Chiang J, Chuyong G, Condit R, Dattaraja HS, Davies S, Duque A, Fletcher C, Gunatilleke N, Gunatilleke S, Hao Z, Harrison RD, Howe R, Hsieh C, Hubbell SP, Itoh A, Kenfack D, Kiratiprayoon S, Larson AJ, Lian JY, Lin D, Liu HF, Lutz JA, Ma K, Malhi Y, McMahon S, McShea W, Meegaskumbura M, Mohd Razman S, Morecroft MD, Nytch CJ, Oliveira A, Parker GG, Pulla S, Punchi-Manage R, Romero-Saltos H, Sang WG, Schurman J, Su SH, Sukumar R, Sun IF, Suresh HS, Tan S, Thomas D, Thomas S, Thompson J, Valencia R, Wolf A, Yap S, Ye WH, Yuan ZQ, Zimmerman JK (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 101, 1214-1224. |
[10] | Clements FE (1936) Nature and structure of the climax. Journal of Ecology, 24, 252-284. |
[11] | Da LJ, Xu DX (2003) An attempt to build a “close-to-nature forest” in Shanghai. Journal of Chinese Urban Forestry, 1(2), 17-20. (in Chinese with English abstract) |
[达良俊, 许东新 (2003) 上海城市“近自然森林”建设的尝试. 中国城市林业, 1(2), 17-20.] | |
[12] | Da LJ, Yang YC, Chen YP (2004) The diversity of plant community on Dajinshan Island, Shanghai. Journal of Chinese Urban Forestry, 2(3), 22-25. (in Chinese with English abstract) |
[达良俊, 杨永川, 陈燕萍 (2004) 上海大金山岛的自然植物群落多样性. 中国城市林业, 2(3), 22-25.] | |
[13] | Guo Q (2003) Temporal species richness-biomass relationships along successional gradients. Journal of Vegetation Science, 14, 121-128. |
[14] | Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75, 3-35. |
[15] | Justine MF, Yang W, Wu F, Tan B, Khan MN, Zhao Y (2015) Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests, 6, 3665-3682. |
[16] | Lasky JR, Uriarte M, Boukili VK, Erickson DL, Kress WJ, Chazdon RL, Vila M (2014) Relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 17, 1158-1167. |
[17] | Levin SA (1992) The problem of pattern and scale in ecology. Ecology, 73, 1943-1967. |
[18] | Li WJ, Li JH, Liu SS, Zhang RL, Qi W, Zhang RY, Knops JMH, Lu JF (2017) Magnitude of species diversity effect on aboveground plant biomass increases through successional time of abandoned farmlands on the eastern Tibetan Plateau of China. Land Degradation & Development, 28, 370-378. |
[19] | Liu BB, Lou LH, Liu GN, Zhang DB, Ye Q (2013) Growth of Cyclobalanopsis myrsinaefolia in Zhejiang, China. Journal of Zhejiang Agriculture & Forest University, 30, 517-522. (in Chinese with English abstract) |
[刘彬彬, 楼炉焕, 刘广宁, 张东北, 叶青 (2013) 浙江省小叶青冈生长过程的研究. 浙江农林大学学报, 30, 517-522.] | |
[20] | Liu J, Wang D, Yan X, Jia L, Chen N, Liu J, Zhao P, Zhou L, Cao Q (2024) Effect of nitrogen, phosphorus and potassium fertilization management on soil properties and leaf traits and yield of Sapindus mukorossi. Frontiers in Plant Science, 15, 1300683. |
[21] | Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. |
[22] | MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press, Princeton. |
[23] | Miyawaki A (1999) Creative ecology: Restoration of native forests by native trees. Plant Biotechnology, 16, 15-25. |
[24] | Ouyang S, Xiang W, Wang X, Zeng Y, Lei P, Deng X, Peng C (2016) Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China. Forest Ecology and Management, 372, 291-302. |
[25] | Pesola L, Cheng X, Sanesi G, Colangelo G, Elia M, Lafortezza R (2017) Linking above-ground biomass and biodiversity to stand development in urban forest areas: A case study in Northern Italy. Landscape and Urban Planning, 157, 90-97. |
[26] | Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G, Costa FRC, de Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernández-Méndez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manríquez G, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martínez-Ramos M, Martínez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Muñoz R, Nytch C, Pansonato MP, Parr TW, Paz H, Pérez-García EA, Rentería LY, Rodríguez-Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski B, Salgado-Negret B, Schietti J, Simões M, Sinclair FL, Souza PF, Souza FC, Stropp J ter Steege H, Swenson NG, Thonicke K, Toledo M, Uriarte M, van ter Hout P, Walker P, Zamora N, Peña-Claros M (2015) Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24, 1314-1328. |
[27] | Preston FW (1960) Time and space and the variation of species. Ecology, 41, 785-790. |
[28] |
Qi ZY (2023) Urban forest construction and vertical greening development under climate change. Landscape Architecture Frontiers, 11(1), 58-64. (in Chinese with English abstract)
DOI |
[戚智勇 (2023) 气候变化背景下的城市森林构建与立体绿化发展. 景观设计学(中英文), 11(1), 58-64.] | |
[29] | R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[30] | Song K, Guo XY, Wang ZY, Huang SS, Yan JY, Ye JH, Le Y, Yan M, Wu M, Da LJ (2020) Restoration dynamics of near-to-nature forests in Shanghai. Chinese Journal of Ecology, 39, 1075-1081. (in Chinese with English abstract) |
[宋坤, 郭雪艳, 王泽英, 黄莎莎, 严佳瑜, 叶建华, 乐莺, 严明, 吴梅, 达良俊 (2020) 上海城市近自然森林的重建动态. 生态学杂志, 39, 1075-1081.] | |
[31] |
Trogisch S, Liu X, Rutten G, Xue K, Bauhus J, Brose U, Bu W, Cesarz S, Chesters D, Connolly J, Cui X, Eisenhauer N, Guo L, Haider S, Härdtle W, Kunz M, Liu L, Ma Z, Neumann S, Sang W, Schuldt A, Tang Z, van Dam NM, von Oheimb G, Wang M, Wang S, Weinhold A, Wirth C, Wubet T, Xu X, Yang B, Zhang N, Zhu C, Ma K, Wang Y, Bruelheide H (2021) The significance of tree-tree interactions for forest ecosystem functioning. Basic and Applied Ecology, 55, 33-52.
DOI |
[32] | Wasof S, Lenoir J, Hattab T, Jamoneau A, Gallet-Moron E, Ampoorter E, Saguez R, Bennsadek L, Bertrand R, Valdès A, Verheyen K, Decocq G (2018) Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understory. Journal of Vegetation Science, 29, 521-531. |
[33] | Williams LJ, Paquette A, Cavender-Bares J, Messier C, Reich PB (2017) Spatial complementarity in tree crowns explains overyielding in species mixtures. Nature Ecology & Evolution, 1, 63. |
[34] | Xia YJ, Zhang J, Zou S, Tang XL, Li F (2018) Dynamics of structural diversity and carbon storage along a successional gradient in south subtropical forest. Ecology and Environmental Sciences, 27, 424-431. (in Chinese with English abstract) |
[夏艳菊, 张静, 邹顺, 唐旭利, 李凤 (2018) 南亚热带森林群落演替过程中结构多样性与碳储量的变化. 生态环境学报, 27, 424-431.]
DOI |
|
[35] |
Xie L, Chen H, Wei L, Chen S, Wang L, Xu B, Yi X, Wang X, Ding H, Fang Y (2023) Scale-dependent effects of species diversity on aboveground biomass and productivity in a subtropical broadleaved forest on Mt. Huangshan. Ecology and Evolution, 13, e9786.
DOI PMID |
[36] | Yao Z, Liu J, Zhao X, Long D, Wang L (2015) Spatial dynamics of aboveground carbon stock in urban green space: A case study of Xi’an, China. Journal of Arid Land, 7(1), 350-360. |
[37] | Zeng WS, Tang SZ (2012) A new general biomass allometric model. Scientia Silvae Sinicae, 48(1), 48-52. (in Chinese with English abstract) |
[曾伟生, 唐守正 (2012) 一个新的通用性相对生长生物量模型. 林业科学, 48(1), 48-52.] | |
[38] | Zhao ZH, Hui GY (2020) Advances in structural diversity of stand structure. Scientia Silvae Sinicae, 56(9), 143-152. |
[赵中华, 惠刚盈 (2020) 林分结构多样性研究进展. 林业科学, 56(9), 143-152.] |
[1] | 潘正东, 林熙戎, 薛华, 胡治颖, 郭弘艺, 张亚, 吴阿娜, 唐文乔. 上海主要内陆水体鱼类物种多样性本底及群落结构[J]. 生物多样性, 2025, 33(6): 24290-. |
[2] | 彭文, 邓泽帅, 郑文宝, 龚凌轩, 曾玉枫, 孟昊, 陈军, 杨道德. eDNA技术在两栖动物调查中的应用: 以湖南莽山国家级自然保护区为例[J]. 生物多样性, 2025, 33(6): 24552-. |
[3] | 刘咏华, 童光蓉, 余航远, 王宁宁, 任海保, 陈磊, 马克平, 米湘成. 钱江源-百山祖国家公园候选区钱江源园区冠层三维结构及光谱特征对人为干扰的响应[J]. 生物多样性, 2025, 33(4): 24174-. |
[4] | 王太, 宋福俊, 张永胜, 娄忠玉, 张艳萍, 杜岩岩. 河西走廊内陆河水系鱼类多样性及资源现状[J]. 生物多样性, 2025, 33(4): 24387-. |
[5] | 张晶晶, 黄文彬, 陈奕廷, 杨泽鹏, 柯伟业, 彭昭杰, 魏世超, 张志伟, 胡怡思, 余文华, 周文良. 广东南澎列岛海洋生态国家级自然保护区造礁石珊瑚多样性及分布特征[J]. 生物多样性, 2025, 33(4): 24424-. |
[6] | 尚华丹, 张楚晴, 王梅, 裴文娅, 李国宏, 王鸿斌. 中国杨树害虫物种多样性及其地理分布[J]. 生物多样性, 2025, 33(2): 24370-. |
[7] | 吴昱萱, 王平, 胡晓生, 丁一, 彭甜恬, 植秋滢, 巴德木其其格, 李文杰, 关潇, 李俊生. 呼伦贝尔草地退化现状评估与植被特征变化[J]. 生物多样性, 2025, 33(2): 24118-. |
[8] | 陈自宏, 张翼飞, 陈凯, 陈见影, 徐玲. 高黎贡山南段昆虫病原真菌物种多样性及影响因素[J]. 生物多样性, 2025, 33(1): 24228-. |
[9] | 谭珂, 宁瑶, 王仁芬, 王晴, 梁丹萍, 辛子兵, 温放. 中国苦苣苔科植物名录与地理分布数据集[J]. 生物多样性, 2025, 33(1): 23275-. |
[10] | 韩佳楠, 苏杨, 李霏, 刘君妍, 赵依林, 李琳, 赵建成, 梁红柱, 李敏. 河北省苔藓植物多样性[J]. 生物多样性, 2024, 32(9): 24096-. |
[11] | 李东红, 郝媛媛, 甘辉林, 张航, 刘耀猛, 他富源, 胡桂馨. 祁连山北麓中段不同类型草地蝗虫种类及分布[J]. 生物多样性, 2024, 32(9): 24119-. |
[12] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[13] | 白雪, 李正飞, 刘洋, 张君倩, 张多鹏, 罗鑫, 杨佳莉, 杜丽娜, 蒋玄空, 武瑞文, 谢志才. 西江流域大型底栖无脊椎动物物种多样性及维持机制[J]. 生物多样性, 2024, 32(7): 23499-. |
[14] | 许佳, 崔小娟, 张翼飞, 吴昌, 孙远东. 南岭地区鱼类多样性及其地理分布[J]. 生物多样性, 2024, 32(7): 23482-. |
[15] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn