生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22205. DOI: 10.17520/biods.2022205
所属专题: 土壤生物与土壤健康
吴文佳1,2,3, 袁也1,2,4, 张静1,2,3, 周丽霞1,2,3, 王俊1,2, 任海1,2, 刘占锋1,2,3,*()
收稿日期:
2022-04-20
接受日期:
2022-06-01
出版日期:
2022-12-20
发布日期:
2022-06-23
通讯作者:
*E-mail: liuzf@scbg.ac.cn
基金资助:
Wenjia Wu1,2,3, Ye Yuan1,2,4, Jing Zhang1,2,3, Lixia Zhou1,2,3, Jun Wang1,2, Hai Ren1,2, Zhanfeng Liu1,2,3,*()
Received:
2022-04-20
Accepted:
2022-06-01
Online:
2022-12-20
Published:
2022-06-23
Contact:
*E-mail: liuzf@scbg.ac.cn
摘要:
森林演替会通过改变植物群落组成和土壤环境影响土壤生物群落, 反过来, 土壤生物群落的变化也会对生态系统的演替产生反馈作用, 但迄今南亚热带森林演替过程中土壤生物群落的变化特征尚不清晰。本研究以广东省鼎湖山的南亚热带森林演替序列(马尾松(Pinus massoniana)林-针阔叶混交林-季风常绿阔叶林)为对象, 研究了森林演替过程中土壤线虫多样性和群落结构的动态变化及其影响因素。通过采集不同演替阶段的土壤样品, 分析和比对了不同演替阶段土壤线虫的多度、多样性、群落组成、土壤线虫生态指数以及土壤理化性质的差异。结果表明: (1)在南亚热带森林演替过程中, 针阔叶混交林和季风常绿阔叶林土壤线虫的α多样性显著高于马尾松林, 但土壤线虫总数和各营养类群多度及其相对丰度并无显著变化; (2)针阔叶混交林中土壤线虫富集指数显著高于马尾松林, 表明其土壤养分状况要好于马尾松林, 而季风常绿阔叶林土壤线虫结构指数较高, 表明其受干扰程度较低; (3)针阔叶混交林的土壤含水量和土壤理化性质(除土壤总磷含量)已达到季风常绿阔叶林的水平, 但两者的土壤pH值均显著低于马尾松林, 而土壤pH值和土壤含水量是影响土壤线虫群落动态变化的主要因素。综上所述, 南亚热带森林中土壤线虫多度、多样性和群落结构对森林演替的响应略有不同, 演替过程中土壤环境因素的趋同是导致针阔叶混交林和季风常绿阔叶林中土壤线虫多样性和群落特征相似的主要原因。
吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋 (2022) 南亚热带森林演替过程中土壤线虫群落结构变化. 生物多样性, 30, 22205. DOI: 10.17520/biods.2022205.
Wenjia Wu, Ye Yuan, Jing Zhang, Lixia Zhou, Jun Wang, Hai Ren, Zhanfeng Liu (2022) Dynamics of soil nematode community during the succession of forests in southern subtropical China. Biodiversity Science, 30, 22205. DOI: 10.17520/biods.2022205.
马尾松林 Pinus massoniana forest | 针阔叶混交林 Mixed pine and broadleaf forest | 常绿阔叶林 Monsoon evergreen broadleaf forest | |
---|---|---|---|
土壤理化性质 Soil physiochemical properties | |||
土壤pH Soil pH | 3.99 ± 0.02a | 3.84 ± 0.01c | 3.89 ± 0.01b |
土壤含水量 Soil moisture content (%) | 9.57 ± 0.60b | 17.16 ± 0.92a | 19.35 ± 1.13a |
土壤有机碳含量 Soil organic carbon content (g/kg) | 9.24 ± 0.99b | 23.72 ± 2.35a | 23.28 ± 2.94a |
土壤总氮含量 Soil nitrogen content (mg/g) | 0.75 ± 0.07b | 1.50 ± 0.08a | 1.54 ± 0.15a |
土壤总磷含量 Soil phosphorus content (mg/g) | 0.14 ± 0.01bc | 0.16 ± 0.01b | 0.20 ± 0.01a |
土壤C/N比 Soil C/N ratio | 12.48 ± 1.21a | 15.63 ± 1.08a | 14.92 ± 0.44a |
土壤C/P比 Soil C/P ratio | 66.73 ± 6.99b | 144.29 ± 11.24a | 115.58 ± 11.69a |
土壤N/P比 Soil N/P ratio | 5.33 ± 0.26b | 9.24 ± 0.41a | 7.69 ± 0.60a |
土壤微生物 Soil microbes | |||
细菌磷脂脂肪酸含量 Bacterial phospholipid fatty acid (PLFAs) concentration (nmol/g) | 1.81 ± 0.18b | 3.01 ± 0.19a | 2.79 ± 0.13a |
真菌磷脂脂肪酸含量 Fungal PLFAs concentration (nmol/g) | 0.06 ± 0.00b | 0.09 ± 0.01a | 0.07 ± 0.00ab |
丛枝菌根真菌磷脂脂肪酸含量 Arbuscular mycorrhizal fungi (AMF) PLFAs concentration (nmol/g) | 0.04 ± 0.01b | 0.1 ± 0.01a | 0.09 ± 0.01a |
放线菌磷脂脂肪酸含量 Actinomycetes PLFAs concentration (nmol/g) | 0.50 ± 0.07b | 0.84 ± 0.05a | 0.81 ± 0.04a |
总微生物磷脂脂肪酸含量 Total microbial PLFAs concentration (nmol/g) | 2.41 ± 0.25b | 4.04 ± 0.26a | 3.76 ± 0.18a |
真菌/细菌比 Fungi/Bacteria ratio | 0.03 ± 0.00a | 0.03 ± 0.00ab | 0.02 ± 0.00b |
革兰氏阳性菌/革兰氏阴性菌比 Gram-positive/Gram-negative bacteria ratio | 2.04 ± 0.05b | 2.05 ± 0.11ab | 2.45 ± 0.03a |
细菌相对丰度 Relative abundance of bacteria (%) | 75.14 ± 0.43a | 74.48 ± 0.23a | 74.52 ± 0.29a |
真菌相对丰度 Relative abundance of fungi (%) | 2.59 ± 0.22a | 2.31 ± 0.07a | 1.83 ± 0.09b |
丛枝菌根真菌相对丰度 Relative abundance of AMF (%) | 1.72 ± 0.08b | 2.41 ± 0.12a | 2.31 ± 0.11a |
放线菌相对丰度 Relative abundance of actinomycetes (%) | 20.55 ± 0.65a | 20.79 ± 0.22a | 21.34 ± 0.26a |
表1 鼎湖山不同演替阶段森林土壤理化性质和微生物群落特征(平均值 ± 标准误)
Table 1 Soil properties and microbial community characteristics in the different forest successional stages at Dinghu Mountain (mean ± SE)
马尾松林 Pinus massoniana forest | 针阔叶混交林 Mixed pine and broadleaf forest | 常绿阔叶林 Monsoon evergreen broadleaf forest | |
---|---|---|---|
土壤理化性质 Soil physiochemical properties | |||
土壤pH Soil pH | 3.99 ± 0.02a | 3.84 ± 0.01c | 3.89 ± 0.01b |
土壤含水量 Soil moisture content (%) | 9.57 ± 0.60b | 17.16 ± 0.92a | 19.35 ± 1.13a |
土壤有机碳含量 Soil organic carbon content (g/kg) | 9.24 ± 0.99b | 23.72 ± 2.35a | 23.28 ± 2.94a |
土壤总氮含量 Soil nitrogen content (mg/g) | 0.75 ± 0.07b | 1.50 ± 0.08a | 1.54 ± 0.15a |
土壤总磷含量 Soil phosphorus content (mg/g) | 0.14 ± 0.01bc | 0.16 ± 0.01b | 0.20 ± 0.01a |
土壤C/N比 Soil C/N ratio | 12.48 ± 1.21a | 15.63 ± 1.08a | 14.92 ± 0.44a |
土壤C/P比 Soil C/P ratio | 66.73 ± 6.99b | 144.29 ± 11.24a | 115.58 ± 11.69a |
土壤N/P比 Soil N/P ratio | 5.33 ± 0.26b | 9.24 ± 0.41a | 7.69 ± 0.60a |
土壤微生物 Soil microbes | |||
细菌磷脂脂肪酸含量 Bacterial phospholipid fatty acid (PLFAs) concentration (nmol/g) | 1.81 ± 0.18b | 3.01 ± 0.19a | 2.79 ± 0.13a |
真菌磷脂脂肪酸含量 Fungal PLFAs concentration (nmol/g) | 0.06 ± 0.00b | 0.09 ± 0.01a | 0.07 ± 0.00ab |
丛枝菌根真菌磷脂脂肪酸含量 Arbuscular mycorrhizal fungi (AMF) PLFAs concentration (nmol/g) | 0.04 ± 0.01b | 0.1 ± 0.01a | 0.09 ± 0.01a |
放线菌磷脂脂肪酸含量 Actinomycetes PLFAs concentration (nmol/g) | 0.50 ± 0.07b | 0.84 ± 0.05a | 0.81 ± 0.04a |
总微生物磷脂脂肪酸含量 Total microbial PLFAs concentration (nmol/g) | 2.41 ± 0.25b | 4.04 ± 0.26a | 3.76 ± 0.18a |
真菌/细菌比 Fungi/Bacteria ratio | 0.03 ± 0.00a | 0.03 ± 0.00ab | 0.02 ± 0.00b |
革兰氏阳性菌/革兰氏阴性菌比 Gram-positive/Gram-negative bacteria ratio | 2.04 ± 0.05b | 2.05 ± 0.11ab | 2.45 ± 0.03a |
细菌相对丰度 Relative abundance of bacteria (%) | 75.14 ± 0.43a | 74.48 ± 0.23a | 74.52 ± 0.29a |
真菌相对丰度 Relative abundance of fungi (%) | 2.59 ± 0.22a | 2.31 ± 0.07a | 1.83 ± 0.09b |
丛枝菌根真菌相对丰度 Relative abundance of AMF (%) | 1.72 ± 0.08b | 2.41 ± 0.12a | 2.31 ± 0.11a |
放线菌相对丰度 Relative abundance of actinomycetes (%) | 20.55 ± 0.65a | 20.79 ± 0.22a | 21.34 ± 0.26a |
图1 鼎湖山不同演替阶段森林中土壤线虫群落特征及生态指标(平均值 ± 标准误)。不同小写字母代表不同演替阶段样地间差异显著。PF: 马尾松林; MF: 针阔叶混交林; MEBF: 季风常绿阔叶林。
Fig. 1 Characteristics and ecological indices of soil nematode community in different forest successional stages at Dinghu Mountain (mean ± SE). Different letters indicate significant differences among plots of different successional stages. PF, Pinus massoniana forest; MF, Mixed pine and broadleaf forest; MEBF, Monsoon evergreen broadleaf forest.
图2 鼎湖山不同演替阶段森林中土壤线虫群落物种组成结构的主坐标分析(PCoA)分析结果
Fig. 2 Results of principal co-ordinates analysis (PCoA) of species composition of soil nematode community in different forest successional stages at Dinghu Mountain. PF, Pinus massoniana forest; MF, Mixed pine and broadleaf forest; MEBF, Monsoon evergreen broadleaf forest.
图3 土壤线虫各营养类群多度和生态指标间相关关系的Pearson检验及其与土壤理化性质和土壤微生物相关关系的Mantel检验。* P < 0.05; ** P < 0.01; *** P < 0.001。
Fig. 3 Pearson correlation analysis of the abundance of different trophic groups and ecological indexes of soil nematode, and Mantel test of soil properties, soil microbes and soil nematode. * P < 0.05; ** P < 0.01; *** P < 0.001.
图4 土壤线虫属与土壤理化性质和土壤微生物生物量间关系的冗余分析(RDA)。Acro: 拟丽突属; Aphe1: 滑刃属; Aphe2: 真滑刃属; Epi: 表矛线属; Eud: 真矛属; File: 丝尾线虫属; Helic: 螺旋属; Heter: 胞囊属; Mesoc: 中环线虫属; Mesod: 中矛属; Mesor: 中杆属; Mono: 单齿属; Parat: 针属; Prot: 原杆属; Pseu: 假丽突属; Rhab: 杆咽属; Roty: 肾状线虫属; Tylen1: 垫咽属; Tylen2: 垫刃属; Tric: 毛刺属; Xiphi: 剑线虫属。
Fig. 4 Redundancy analysis (RDA) of nematode genera in relations to soil properties and microbial biomass. Acro, Acrobeloides; Aphe1, Aphelenchoides; Aphe2, Aphelenchus; Epi, Epidorylaimus; Eud, Eudorylaimus; File, Filenchus; Helic, Helicotylenchus; Heter, Heterodera; Mesoc, Mesocriconema; Mesod, Mesodorylaimus; Mesor, Mesorhabditis; Mono, Mononchus; Parat, Paratylenchus; Prot, Protorhabditis; Pseu, Pseudacrobeles; Rhab, Rhabdolaimus; Roty, Rotylenchulus; Tylen1, Tylencholaimus; Tylen2, Tylenchus; Tric, Trichodorus; Xiphi: Xiphinema. SMC, Soil moisture content.
图5 南亚热带森林演替过程中土壤线虫多样性和群落动态变化概念图
Fig. 5 Conceptual map of diversity and structure dynamics of soil nematode community during the succession of southern subtropical forest. PF, Pinus massoniana forest; MF, Mixed pine and broadleaf forest; MEBF, Monsoon evergreen broadleaf forest.
[1] |
Bligh EG, Dyer WJ (1959) A rapid method of total lipids extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
DOI URL |
[2] |
Bongers T (1990) The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
DOI PMID |
[3] |
Bongers T, Bongers M (1998) Functional diversity of nematodes. Applied Soil Ecology, 10, 239-251.
DOI URL |
[4] |
Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14, 224-228.
DOI URL |
[5] | Cesarz S, Ruess L, Jacob M, Jacob A, Schaefer M, Scheu S (2013) Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biology & Biochemistry, 52, 36-45. |
[6] |
Eisenhauer N, Reich PB, Scheu S (2012) Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic and Applied Ecology, 13, 571-578.
DOI URL |
[7] |
Ferris H, Bongers T, de Goede RGM(2001) A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29.
DOI URL |
[8] |
Ferris H, Matute MM (2003) Structural and functional succession in the nematode fauna of a soil food web. Applied Soil Ecology, 29, 93-110.
DOI URL |
[9] |
Hannula S, Morriën E, de Hollander M, van der Putten WH, van Veen JA, de Boer W(2017) Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. The ISME Journal, 11, 2294-2304.
DOI URL |
[10] | Hooper DJ, Hallmann J, Subbotin SA (2005) Method for extraction, processing and detection of plant and soil nematodes. In: Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 2nd edn (eds Luc M, Sikora RA, Bridge J), pp. 53-86. CABI Publishing, Wallingford, UK. |
[11] |
Hu C, Qi Y (2010) Effect of compost and chemical fertilizer on soil nematode community in a Chinese maize field. European Journal of Soil Biology, 46, 230-236.
DOI URL |
[12] | Huang ZL, Kong GH, Wei P, Wang JH, Huang YJ, Zhang YC (1996) A study on the soil seed banks at the different succession stages of south subtropical forests. Journal of Tropical and Subtropical Botany, 4(4), 42-49. (in Chinese with English abstract) |
[ 黄忠良, 孔国辉, 魏平, 王俊浩, 黄玉佳, 张佑昌 (1996) 南亚热带森林不同演替阶段土壤种子库的初步研究. 热带亚热带植物学报, 4(4), 42-49.] | |
[13] |
Kardol P, Bezemer TM, van der Putten WH(2006) Temporal variation in plant-soil feedback controls succession. Ecology Letters, 9, 1080-1088.
DOI PMID |
[14] |
Kardol P, Newton JS, Bezemer TM, Maraun M, van der Putten WH(2009) Contrasting diversity patterns of soil mites and nematodes in secondary succession. Acta Oecologica, 35, 603-609.
DOI URL |
[15] |
Lei Y, Zhou J, Xiao HF, Duan BL, Wu YH, Korpelainen H, Li CY (2015) Soil nematode assemblages as bioindicators of primary succession along a 120-year-old chronosequence on the Hailuogou Glacier forefield, SW China. Soil Biology & Biochemistry, 88, 362-371.
DOI URL |
[16] | Li ZP, Wei ZF, Yang XD (2016) Seasonal variations of soil nematode community at different secondary succession stages of evergreen broad-leaved forests in Ailao Mountain. Chinese Journal of Ecology, 35, 3023-3031. (in Chinese with English abstract) |
[ 李志鹏, 韦祖粉, 杨效东 (2016) 哀牢山常绿阔叶林不同演替阶段土壤线虫群落的季节变化特征. 生态学杂志, 35, 3023-3031.] | |
[17] | Liu GS (1996) Soil Physical-chemical Analysis and Profile Description. China Standards Press, Beijing. (in Chinese) |
[ 刘光崧 (1996) 土壤理化分析与剖面描述. 中国标准出版社, 北京.] | |
[18] |
Morriёn E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud ML, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen HB, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten W(2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349.
DOI PMID |
[19] |
Ouyang S, Xiang WH, Wang XP, Zeng YL, Lei PF, Deng XW, Peng CH (2016) Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China. Forest Ecology and Management, 372, 291-302.
DOI URL |
[20] | Peng SL (1996) Restoration ecology theories and their application in low-subtropics. Journal of Tropical and Subtropical Botany, 4(3), 36-44. (in Chinese with English abstract) |
[ 彭少麟 (1996) 南亚热带退化生态系统恢复和重建的生态学理论和应用. 热带亚热带植物学报, 4(3), 36-44.] | |
[21] |
Sun ZY, Ren H, Schaefer V, Lu HF, Wang J, Li LJ, Liu N (2013) Quantifying ecological memory during forest succession: A case study from lower subtropical forest ecosystems in South China. Ecological Indicators, 34, 192-203.
DOI URL |
[22] | Tong FC, Xiao YH, Wang QL (2009) Effects of succession process of secondary forestry on characteristics of soil nematode communities in Changbai Mountain. Journal of South China Agricultural University, 30(3), 63-68. (in Chinese with English abstract) |
[ 佟富春, 肖以华, 王庆礼 (2009) 长白山次生林演替过程中土壤线虫群落结构特点. 华南农业大学学报, 30(3), 63-68.] | |
[23] |
van den Hoogen J, Geisen S, Routh D, Ferris H, Traunsurger W, Wardle DA, de Goede RGM, Adams BJ, Ahmad W, Andriuzzi WS, Bardgett RD, Bonkowski M, Campos-Herrera R, Cares JE, Caruso T, de Brito Caixeta L, Chen XY, Costa SR, Creamer R, da Cunha Castro JM, Dam M, Djigal D, Escuer M, Griffiths BS, Gutiérrez C, Hohberg K, Kalinkina D, Kardol P, Kergunteuil A, Korthals G, Krashevska V, Kudrin AA, Li Q, Liang WJ, Magilton M, Marais M, Martín JAR, Matveeva E, Mayad EH, Mulder C, Mullin P, Neilson R, Nguyen TAD, Nielsen UN, Okada H, Rius JEP, Pan K, Peneva V, Pellissier L, da Silva JCP, Pitteloud C, Powers TO, Powers K, Quist CW, Rasmann S, Moreno SS, Scheu S, Setälä H, Sushchuk A, Tiunov AV, Trap J, van der Putten W, Vestergård M, Villenave C, Waeyenberge L, Wall DH, Wilschut R, Wright DG, Yang JI, Crowther TW(2019) Soil nematode abundance and functional group composition at a global scale. Nature, 572, 194-198.
DOI URL |
[24] |
Wang J, Lu HF, Lin YB, Campbell DE, Cai HY, Ren H (2021) Dynamics of community structure and bio-thermodynamic health of soil organisms following subtropical forest succession. Journal of Environmental Management, 280, 111647.
DOI URL |
[25] | Wang YM, Guan PT, Chen JW, Li ZX, Yang R, Wang P (2021) A comparison of soil nematode community structure and environmental factors along fen-bush-forest succession in a peatland, northeastern China. Global Ecology and Conservation, 28, e01679. |
[26] |
Wilschut RA, Geisen S (2021) Nematodes as drivers of plant performance in natural systems. Trends in Plant Science, 26, 237-247.
DOI PMID |
[27] |
Wu WJ, Kuang LH, Li Y, He LF, Mou ZJ, Wang FM, Zhang J, Wang J, Li ZA, Lambers H, Sardans J, Peñuelas J, Geisen S, Liu ZF (2021) Faster recovery of soil biodiversity in native species mixture than in Eucalyptus monoculture after 60 years afforestation in tropical degraded coastal terraces. Global Change Biology, 27, 5329-5340.
DOI URL |
[28] | Xia YJ, Zhang J, Zou S, Tang XL, Li F (2018) Dynamics of structural diversity and carbon storage along a successional gradient in south subtropical forest. Ecology and Environmental Sciences, 27, 424-431. (in Chinese with English abstract) |
[ 夏艳菊, 张静, 邹顺, 唐旭利, 李凤 (2018) 南亚热带森林群落演替过程中结构多样性与碳储量的变化. 生态环境学报, 27, 424-431.] | |
[29] | Ye WH, Cao HL, Huang ZL, Lian JY, Wang ZG, Li L, Wei SG, Wang ZM (2008) Community structure of a 20 hm2 lower subtropical evergreen broadleaved forest plot in Dinghushan, China. Journal of Plant Ecology (Chinese Version), 32, 274-286. (in Chinese with English abstract) |
[ 叶万辉, 曹洪麟, 黄忠良, 练琚愉, 王志高, 李林, 魏识广, 王章明 (2008) 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究. 植物生态学报, 32, 274-286.]
DOI |
|
[30] |
Yeates GW (2003) Nematodes as soil indicators: Functional and biodiversity aspects. Biology and Fertility of Soils, 37, 199-210.
DOI URL |
[31] |
Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS (1993) Feeding-habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[32] |
Zhang J, Zheng MH, Zhang YJ, Wang J, Shen H, Lin YB, Tang XL, Hui DF, Lambers H, Sardans J, Peñuelas J, Liu ZF (2021) Soil phosphorus availability affects diazotroph communities during vegetation succession in lowland subtropical forests. Applied Soil Ecology, 166, 104009.
DOI URL |
[33] |
Zhang XK, Guan PT, Wang YL, Li Q, Zhang SX, Zhang ZY, Bezemer TM, Liang WJ (2015) Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biology & Biochemistry, 80, 118-126.
DOI URL |
[34] | Zheng TT, Liang C, Xie HT, Zhao JS, Yan ER, Zhou XH, Bao XL (2019) Rhizosphere effects on soil microbial community structure and enzyme activity in a successional subtropical forest. FEMS Microbiology Ecology, 95, fiz043. |
[35] | Zhong SY, Zhang J, Tong L, Gao YF, Xia YJ, Tang XL (2016) Relationship between nitrogen and phosphorus availability and mycorrhizal infection rates of dominate tree species in southern subtropical forests. Ecology and Environmental Sciences, 25, 1929-1936. (in Chinese with English abstract) |
[ 钟思远, 张静, 童林, 高一飞, 夏艳菊, 唐旭利 (2016) 南亚热带森林优势树种氮、磷可利用性与菌根侵染率的关系. 生态环境学报, 25, 1929-1936.] | |
[36] | Zhou GY, Zhou CY, Liu SG, Tang XL, Ouyang XJ, Zhang DQ, Liu SZ, Liu JX, Yan JH, Wen DZ, Xu GL, Zhou CY, Luo Y, Guan LL, Liu Y (2005) Belowground carbon budget balance and accumulation rate in the restoration sequences of southern subtropical evergreen broadleaf forests. Science in China D: Earth Sciences, 35, 502-510. (in Chinese) |
[ 周国逸, 周存宇, Liu SG, 唐旭利, 欧阳学军, 张德强, 刘世忠, 刘菊秀, 闫俊华, 温达志, 徐国良, 周传艳, 罗艳, 官丽莉, 刘艳 (2005) 季风南亚热带常绿阔叶林恢复演替系列地下部分碳平衡及累积速率. 中国科学D辑: 地球科学, 35, 502-510.] |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[5] | 宋芬, 周芸芸, 黄太福, 杨存存, 于桂清, 田书荣, 向左甫. 基于红外相机技术的林麝行为PAE编码与多样性[J]. 生物多样性, 2024, 32(6): 24042-. |
[6] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[7] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[8] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[9] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[10] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[11] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[12] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[13] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[14] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[15] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn