生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22208. DOI: 10.17520/biods.2022208
所属专题: 土壤生物与土壤健康
肖宇珊1, 杨昌娆1, 郑国1, 武鹏峰1, 张士秀2, 崔淑艳1,*()
收稿日期:
2022-04-21
接受日期:
2022-07-14
出版日期:
2022-12-20
发布日期:
2022-08-08
通讯作者:
*E-mail: cui.shu.yan@163.com
基金资助:
Yushan Xiao1, Changrao Yang1, Guo Zheng1, Pengfeng Wu1, Shixiu Zhang2, Shuyan Cui1,*()
Received:
2022-04-21
Accepted:
2022-07-14
Online:
2022-12-20
Published:
2022-08-08
Contact:
*E-mail: cui.shu.yan@163.com
摘要:
全球气候变化背景下, 降水格局发生改变, 呈现降水总量不变, 但降水强度增加、降水频率降低的趋势, 影响了地下生态系统的结构和功能。土壤微食物网作为地下生态系统的重要组成部分, 在驱动生态系统多功能性方面起着重要作用。降水格局的变化能够通过土壤微食物网的改变对生态系统产生影响。然而, 以往研究多关注于降水量的变化对微食物网的影响, 降水格局变化对其影响的研究较少。因此, 本研究在内蒙古温带草原开展连续8年的降水添加控制试验(控制降水总量不变, 降水频率及强度改变), 包括5个降水强度处理(2 mm、5 mm、10 mm、20 mm和40 mm), 通过磷脂脂肪酸法(PLFA)确定微生物含量, 高通量测序法(16S和ITS)确定微生物多样性及群落结构, 线虫形态学鉴定确定线虫群落组成及结构。结果表明在降水总量不变降水强度改变的背景下, 高降水强度(20 mm)促进了北方温带草原真菌含量的增长, 适度降水强度(10 mm)促进了微生物的多样性。而线虫的多度随着降水强度的增加而增大, 中高降水强度下线虫多样性最高。土壤微食物网的变化进一步影响了生态系统多功能性, 主要通过提高真菌生物量、食真菌线虫多度和线虫多样性, 从而提高了生态系统多功能性。
肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳 (2022) 降水格局对北方温带草原土壤微食物网结构的影响. 生物多样性, 30, 22208. DOI: 10.17520/biods.2022208.
Yushan Xiao, Changrao Yang, Guo Zheng, Pengfeng Wu, Shixiu Zhang, Shuyan Cui (2022) Effects of precipitation regime on the structure of soil micro-food web in the grassland of northern China. Biodiversity Science, 30, 22208. DOI: 10.17520/biods.2022208.
图1 北方典型草地试验地点及其样方设计(a)和降水添加处理设计简图(b)。云上的数字代表降水频率。
Fig. 1 Collection site and experimental design in a typical northern grassland (a) and setup of precipitation intensity levels (b). The numbers on clouds represent the frequency of precipitation.
生态系统功能 Ecosystem functions | 单位 Unit | 重要性 Importance |
---|---|---|
地上生物量 Aboveground biomassg/m2 植物丰富度 Plant richness | 为食草动物提供必要的营养 Providing essential nutrients for herbivores (Binder et al, | |
地下生物量 Belowground biomass | g/m2 | 支持地下生态系统过程的关键功能 A key function to support belowground ecosystem processes (Wagg et al, |
土壤有机碳 Soil organic carbon | g/kg | 为植物提供养分、保障土壤肥力水平以及促进团聚体的形成 Providing nutrients for plants, maintaining soil fertility levels and promoting the formation of aggregates (Pan et al, |
土壤总氮 Soil total nitrogen | g/kg | |
土壤总磷 Soil total phosphorus | g/kg | |
土壤微生物量碳 Soil microbial biomass carbon | mg/kg | 反映土壤质量和微生物活动的动态 Reflecting the dynamics of soil quality and microbial activity (Powlson et al, |
土壤微生物量氮 Soil microbial biomass nitrogen | mg/kg | |
碱解氮 Available nitrogen | mg/kg | 衡量土壤供氮能力, 反映土壤氮素有效性 Measuring soil nitrogen supply capacity and reflecting soil nitrogen availability (Huhe et al, |
铵态氮 Ammoniacal nitrogen | mg/kg | |
硝态氮 Nitrate nitrogen | mg/kg |
表1 草地生态系统的功能指标及其重要性
Table 1 Grassland ecosystem functional indicators and their importance
生态系统功能 Ecosystem functions | 单位 Unit | 重要性 Importance |
---|---|---|
地上生物量 Aboveground biomassg/m2 植物丰富度 Plant richness | 为食草动物提供必要的营养 Providing essential nutrients for herbivores (Binder et al, | |
地下生物量 Belowground biomass | g/m2 | 支持地下生态系统过程的关键功能 A key function to support belowground ecosystem processes (Wagg et al, |
土壤有机碳 Soil organic carbon | g/kg | 为植物提供养分、保障土壤肥力水平以及促进团聚体的形成 Providing nutrients for plants, maintaining soil fertility levels and promoting the formation of aggregates (Pan et al, |
土壤总氮 Soil total nitrogen | g/kg | |
土壤总磷 Soil total phosphorus | g/kg | |
土壤微生物量碳 Soil microbial biomass carbon | mg/kg | 反映土壤质量和微生物活动的动态 Reflecting the dynamics of soil quality and microbial activity (Powlson et al, |
土壤微生物量氮 Soil microbial biomass nitrogen | mg/kg | |
碱解氮 Available nitrogen | mg/kg | 衡量土壤供氮能力, 反映土壤氮素有效性 Measuring soil nitrogen supply capacity and reflecting soil nitrogen availability (Huhe et al, |
铵态氮 Ammoniacal nitrogen | mg/kg | |
硝态氮 Nitrate nitrogen | mg/kg |
图2 降水强度对微生物主要功能群磷脂脂肪酸含量及多样性的影响(平均值 ± 标准误)。不同小写字母表示不同降水强度处理间差异显著(LSD tests, P < 0.05), 下同。
Fig. 2 The effects of precipitation intensity on PLFAs and microbial diversity (mean ± SE). Means with different letters indicate significant difference among different precipitation intensities (LSD tests, P < 0.05).
图3 降水强度对线虫多度及多样性的影响(平均值 ± 标准误)。图中不同小写字母表示某一营养类群在不同降水强度处理间差异显著(LSD tests, P < 0.05)。Op: 捕食/杂食线虫; Pp: 植物性线虫; Fu: 食真菌线虫; Ba: 食细菌线虫。
Fig. 3 The effects of precipitation intensity on the abundance and diversity of soil nematodes (mean ± SE). Means with different letters in (a) indicate significant difference of a certain trophic group among different precipitation intensities (LSD tests, P < 0.05). Op, Omnivores/predators; Pp, Plant parasites; Fu, Fungivores; Ba, Bacterivores.
降水强度 Precipitation intensity | |||||
---|---|---|---|---|---|
2 mm | 5 mm | 10 mm | 20 mm | 40 mm | |
生态系统多功能指数 EMF | -0.22 ± 0.21b | 0.26 ± 0.02ab | - 0.81 ± 0.48b | 0.51 ± 0.19a | 0.28 ± 0.30ab |
地上生物量 AGB | 124.67 ± 13.19b | 177.18 ± 17.49a | 162.37 ± 9.64ab | 173.16 ± 14.90a | 195.41 ± 6.89a |
地下生物量 BGB | 222.18 ± 14.57b | 356.76 ± 28.33a | 173.24 ± 33.99b | 279.45 ± 35.81ab | 229.40 ± 33.17b |
植物丰富度 Richness | 6.50 ± 0.07b | 7.56 ± 0.08ab | 7.58 ± 0.11ab | 8.00 ± 0.00a | 8.17 ± 0.87a |
土壤有机碳 SOC | 15.06 ± 0.40a | 15.77 ± 0.25a | 14.05 ± 0.62a | 15.62 ± 0.56a | 15.63 ± 0.71a |
土壤全氮 TN | 1.59 ± 0.05a | 1.67 ± 0.02a | 1.51 ± 0.09a | 1.64 ± 0.06a | 1.66 ± 0.06a |
土壤全磷 TP | 0.18 ± 0.01a | 0.17 ± 0.01a | 0.15 ± 0.01a | 0.17 ± 0.01a | 0.16 ± 0.01a |
土壤微生物量碳 MBC | 177.91 ± 25.26a | 161.99 ± 19.29a | 151.56 ± 0.481a | 181.46 ± 14.80a | 174.46 ± 15.39a |
土壤微生物量氮 MBN | 14.36 ± 2.93a | 11.59 ± 2.12a | 10.06 ± 1.60a | 12.82 ± 2.65a | 10.47 ± 1.55a |
碱解氮 AN | 243.88 ± 35.52a | 200.38 ± 44.57a | 134.31 ± 13.47b | 200.81 ± 22.91a | 181.56 ± 15.18a |
铵态氮 NH4+-N | 5.56 ± 0.29a | 5.55 ± 0.17a | 5.50 ± 0.20a | 6.54 ± 0.61a | 5.71 ± 0.32a |
硝态氮 NO3--N | 2.70 ± 0.65a | 3.91 ± 0.73a | 2.67 ± 0.79a | 1.54 ± 0.35a | 2.42 ± 0.52a |
表2 北方典型草地生态系统多功能性(EMF)和EMF各组成部分对降水强度的响应
Table 2 Responses of ecosystem multifunctionality (EMF) and each component of EMF to different precipitation intensities in a typical northern grassland
降水强度 Precipitation intensity | |||||
---|---|---|---|---|---|
2 mm | 5 mm | 10 mm | 20 mm | 40 mm | |
生态系统多功能指数 EMF | -0.22 ± 0.21b | 0.26 ± 0.02ab | - 0.81 ± 0.48b | 0.51 ± 0.19a | 0.28 ± 0.30ab |
地上生物量 AGB | 124.67 ± 13.19b | 177.18 ± 17.49a | 162.37 ± 9.64ab | 173.16 ± 14.90a | 195.41 ± 6.89a |
地下生物量 BGB | 222.18 ± 14.57b | 356.76 ± 28.33a | 173.24 ± 33.99b | 279.45 ± 35.81ab | 229.40 ± 33.17b |
植物丰富度 Richness | 6.50 ± 0.07b | 7.56 ± 0.08ab | 7.58 ± 0.11ab | 8.00 ± 0.00a | 8.17 ± 0.87a |
土壤有机碳 SOC | 15.06 ± 0.40a | 15.77 ± 0.25a | 14.05 ± 0.62a | 15.62 ± 0.56a | 15.63 ± 0.71a |
土壤全氮 TN | 1.59 ± 0.05a | 1.67 ± 0.02a | 1.51 ± 0.09a | 1.64 ± 0.06a | 1.66 ± 0.06a |
土壤全磷 TP | 0.18 ± 0.01a | 0.17 ± 0.01a | 0.15 ± 0.01a | 0.17 ± 0.01a | 0.16 ± 0.01a |
土壤微生物量碳 MBC | 177.91 ± 25.26a | 161.99 ± 19.29a | 151.56 ± 0.481a | 181.46 ± 14.80a | 174.46 ± 15.39a |
土壤微生物量氮 MBN | 14.36 ± 2.93a | 11.59 ± 2.12a | 10.06 ± 1.60a | 12.82 ± 2.65a | 10.47 ± 1.55a |
碱解氮 AN | 243.88 ± 35.52a | 200.38 ± 44.57a | 134.31 ± 13.47b | 200.81 ± 22.91a | 181.56 ± 15.18a |
铵态氮 NH4+-N | 5.56 ± 0.29a | 5.55 ± 0.17a | 5.50 ± 0.20a | 6.54 ± 0.61a | 5.71 ± 0.32a |
硝态氮 NO3--N | 2.70 ± 0.65a | 3.91 ± 0.73a | 2.67 ± 0.79a | 1.54 ± 0.35a | 2.42 ± 0.52a |
图5 降水格局变化下土壤微食物网与生态系统多功能性关系的结构方程模型。χ2 = 27.375, df = 21, P = 0.352, CFI = 0.910, GFI = 0.880, RMSEA = 0.054。R2表示可被该模型解释的方差, 箭头上的数字表示标准化路径系数。实线箭头表示该路径在P < 0.05水平显著, 虚线箭头表示该路径不显著。
Fig. 5 The structural equation modeling for relationships between micro-food web and ecosystem multifunctionality under precipitation regime changes. χ2 = 27.375, df = 21, P = 0.352, CFI = 0.910, GFI = 0.880, RMSEA = 0.054. R2 indicates the variance explained by the model. Numbers on arrows are standardized path coefficients. The solid line arrow indicates that the path is significant at the P < 0.05 level, dashed arrows indicate non-significant paths.
[1] |
Adhikari BN, Wall DH, Adams BJ (2009) Desiccation survival in an Antarctic nematode: Molecular analysis using expressed sequenced tags. BMC Genomics, 10, 1-18.
DOI URL |
[2] | Binder S, Isbell F, Polasky S, Catford J, Tilman D (2018) Grassland biodiversity can pay. Proceedings of the National Academy of Sciences, USA, 115, 3876-3881. |
[3] |
Bongers T (1990) The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
DOI PMID |
[4] |
Chen D, Lan ZC, Hu SJ, Bai YF (2015) Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biology and Biochemistry, 89, 99-108.
DOI URL |
[5] |
Chen N, Song CC, Xu XF, Wang XF, Cong N, Jiang PP, Zu JX, Sun L, Song YY, Zuo YJ, Liu JZ, Zhang T, Xu MJ, Jiang P, Wang ZP, Huang K (2021) Divergent impacts of atmospheric water demand on gross primary productivity in three typical ecosystems in China. Agricultural and Forest Meteorology, 307, 108527.
DOI URL |
[6] |
Cherwin K, Knapp A (2012) Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia, 169, 845-852.
DOI PMID |
[7] | Coleman DC, Crossley DA, Hendrix PF (2004) Fundamentals of Soil Ecology, 2nd edn. Academic Press, Cambridge. |
[8] | Craine JM, Nippert JB, Elmore AJ, Skibbe AM, Hutchinson SL, Brunsell NA (2012) Timing of climate variability and grassland productivity. Proceedings of the National Academy of Sciences, USA, 109, 3401-3405. |
[9] |
Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB (2012) Global change belowground: Impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology, 18, 435-447.
DOI URL |
[10] |
Engelhardt IC, Welty A, Blazewicz SJ, Bru D, Rouard N, Breuil MC, Barnard RL (2018) Depth matters: Effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. The ISME Journal, 12, 1061-1071.
DOI URL |
[11] |
Evans SE, Byrne KM, Lauenroth WK, Burke IC (2011) Defining the limit to resistance in a drought-tolerant grassland: Long-term severe drought significantly reduces the dominant species and increases ruderals. Journal of Ecology, 99, 1500-1507.
DOI URL |
[12] |
Ferris H, Bongers T, de Goede R(2001) A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29.
DOI URL |
[13] | Grace JB, Schoolmaster DR, Guntenspergen GR, Little AM, Mitchell BR, Miller KM, Schweiger EW (2012) Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere, 3, 1-44. |
[14] |
Guo Q, Hu ZM, Li XR, Li SG (2013) Effects of precipitation timing on aboveground net primary productivity in Inner Mongolia temperate steppe. Acta Ecologica Sinica, 33, 4808-4817. (in Chinese with English abstract)
DOI URL |
[ 郭群, 胡中民, 李轩然, 李胜功 (2013) 降水时间对内蒙古温带草原地上净初级生产力的影响. 生态学报, 33, 4808-4817.] | |
[15] | Guo Q, Hu ZM, Li SG, Yu GR, Sun XM, Zhang LM, Mu SL, Zhu XJ, Wang YF, Li YN, Zhao W (2015) Contrasting responses of gross primary productivity to precipitation events in a water-limited and a temperature-limited grassland ecosystem. Agricultural and Forest Meteorology, 214/215, 169-177. |
[16] |
Hao GC, Hu ZM, Guo Q, Di K, Li SG (2019) Median to strong rainfall intensity favors carbon sink in a temperate grassland ecosystem in China. Sustainability, 11, 6376.
DOI URL |
[17] | Harris RF (1981) Effect of water potential on microbial growth and activity. In: Water Potential Relations in Soil Microbiology, Vol. 9 (eds Parr JF, Gardner WR, Wilding RE), pp. 23-95. SSSA, Madison, WI. |
[18] |
Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158, 129-140.
DOI PMID |
[19] |
Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 68, 121-149.
DOI URL |
[20] |
Hovenden MJ, Newton PCD, Wills KE (2014) Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature, 511, 583-586.
DOI URL |
[21] | Huhe, Borjigin S, Buhebaoyin, Wu YP, Li MQ, Cheng YX(2016) Microbial nitrogen-cycle gene abundance in soil of cropland abandoned for different periods. PLoS ONE, 11, e0154697. |
[22] | IPCC (2013) Climate Change 2013:The Physical Science Basis, Summary for Policymakers. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[23] |
Jax K (2005) Function and “functioning” in ecology: What does it mean? Oikos, 111, 641-648.
DOI URL |
[24] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI PMID |
[25] |
Kardol P, Cregger MA, Campany CE, Classen AT (2010) Soil ecosystem functioning under climate change: Plant species and community effects. Ecology, 91, 767-781.
PMID |
[26] |
Landesman WJ, Treonis AM, Dighton J (2011) Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia, 54, 87-91.
DOI URL |
[27] |
Li JZ, Lin S, Taube F, Pan QM, Dittert K (2011) Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant and Soil, 340, 253-264.
DOI URL |
[28] |
Li Q, Liang WJ, Jiang Y (2007) Present situation and prospect of soil nematode diversity in farmland ecosystems. Biodiversity Science, 15, 134-141. (in Chinese with English abstract)
DOI |
[ 李琪, 梁文举, 姜勇 (2007) 农田土壤线虫多样性研究现状及展望. 生物多样性, 15, 134-141.]
DOI |
|
[29] | Lu RK (2000) Analysis Methods of Soil Agro-chemistry. China Agriculture Press, Beijing. (in Chinese) |
[ 鲁如坤 (2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[30] | Moore JC, de Ruiter PC(2012) Energetic Food Webs: An Analysis of Real and Model Ecosystems. Oxford University Press, Oxford. |
[31] |
Nielsen UN, Ball BA (2015) Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21, 1407-1421.
DOI PMID |
[32] |
Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011) Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Global Change Biology, 17, 1073-1082.
DOI URL |
[33] |
Pan GX, Smith P, Pan WN (2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems and Environment, 129, 344-348.
DOI URL |
[34] |
Papatheodorou EM, Papapostolou A, Monokrousos N, Jones D-W, Scullion J, Stamou GP (2020) Crust cover and prior soil moisture status affect the response of soil microbial community and function to extreme rain events in an arid area. European Journal of Soil Biology, 101, 103243.
DOI URL |
[35] |
Perkins DM, Bailey RA, Dossena M, Gamfeldt L, Reiss J, Trimmer M, Woodward G (2015) Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biology, 21, 396-406.
DOI PMID |
[36] |
Powlson DS, Prookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19, 159-164.
DOI URL |
[37] |
Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology, 90, 649-662.
PMID |
[38] |
Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer- Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias CC, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud SM, De Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20, 1414-1426.
DOI PMID |
[39] |
Ruan WB, Sang Y, Chen Q, Zhu X, Lin S, Gao YB (2012) The response of soil nematode community to nitrogen, water, and grazing history in the Inner Mongolian steppe, China. Ecosystems, 15, 1121-1133.
DOI URL |
[40] |
Shao YH, Fu SL (2007) The role of soil nematode diversity in ecosystem. Biodiversity Science, 15, 116-123. (in Chinese with English abstract)
DOI URL |
[ 邵元虎, 傅声雷 (2007) 试论土壤线虫多样性在生态系统中的作用. 生物多样性, 15, 116-123.]
DOI |
|
[41] |
Song WM, Chen SP, Wu B, Zhu YJ, Zhou YD, Li YH, Cao YL, Lu Q, Lin GH (2012) Vegetation cover and rain timing co-regulate the responses of soil CO2 efflux to rain increase in an arid desert ecosystem. Soil Biology and Biochemistry, 49, 114-123.
DOI URL |
[42] | Song M, Liu YZ, Jing SS (2015) Response of soil nematodes to climate change: A review. Acta Ecologica Sinica, 35, 6857-6867. (in Chinese with English abstract) |
[ 宋敏, 刘银占, 井水水 (2015) 土壤线虫对气候变化的响应研究进展. 生态学报, 35, 6857-6867.] | |
[43] |
Song WM, Chen SP, Zhou YD, Lin GH (2020) Rainfall amount and timing jointly regulate the responses of soil nitrogen transformation processes to rainfall increase in an arid desert ecosystem. Geoderma, 364, 114197.
DOI URL |
[44] |
Townshend JL (1963) A modification and evaluation of the apparatus for the Oostenbrink direct cottonwool filter extraction method 1. Nematologica, 9, 106-110.
DOI URL |
[45] |
Treonis AM, Wall DH, Virginia RA (2000) The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys. Functional Ecology, 14, 460-467.
DOI URL |
[46] | Wang NN, Yang X, Li SL, Sui X, Han SJ, Feng FJ (2013) Distribution patterns of soil fungal diversity driven by precipitation change in Korean pine broad-leaved forest. Journal of Applied Ecology, 24, 1985-1990. (in Chinese with English abstract) |
[ 王楠楠, 杨雪, 李世兰, 隋心, 韩士杰, 冯富娟 (2013) 降水变化驱动下红松阔叶林土壤真菌多样性的分布格局. 应用生态学报, 24, 1985-1990.] | |
[47] | Wagg C, Bender SF, Widmer F, van der Heijden MGA(2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270. |
[48] |
Wardle DA (2010) Communications and ecosystems: Linking the aboveground and belowground components. Austral Ecology, 29, 358-359.
DOI URL |
[49] | White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications (eds Innis MA, Gelfand DH, Sninsky JJ), pp. 315-322. Academic Press, New York. |
[50] |
Wu QQ, Yue K, Wang XC, Ma YD, Li Y (2020) Differential responses of litter decomposition to warming, elevated CO2, and changed precipitation regime. Plant and Soil, 455, 155-169.
DOI URL |
[51] |
Xia JY, Niu SL, Wan SQ (2009) Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556.
DOI URL |
[52] |
Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ (2011) Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 17, 452-465.
DOI URL |
[53] |
Yeates GW, Bongers T, de Goede RG, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[54] |
Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biology and Fertility of Soils, 29, 111-129.
DOI URL |
[1] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[2] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[3] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[4] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[5] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[6] | 杨预展, 余建平, 钱海源, 陈小南, 陈声文, 袁志林. 钱江源国家公园体制试点区水稻田土壤微生物群落的格局及其驱动机制[J]. 生物多样性, 2023, 31(2): 22392-. |
[7] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[8] | 刘金花, 李风, 田桃, 肖海峰. 土壤细菌和线虫对热带雨林优势植物凋落物特性和多样性的响应[J]. 生物多样性, 2023, 31(11): 23276-. |
[9] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[10] | 胡惠玲, 姚致远, 高世斌, 朱波. 紫色土线虫对长期不同施肥措施的响应[J]. 生物多样性, 2022, 30(12): 22189-. |
[11] | 刘笑彤, 田艺佳, 刘汉文, 梁翠影, 姜思维, 梁文举, 张晓珂. 下辽河平原农田土壤线虫群落组成的季节变化[J]. 生物多样性, 2022, 30(12): 22222-. |
[12] | 孙翌昕, 李英滨, 李玉辉, 李冰, 杜晓芳, 李琪. 高通量测序技术在线虫多样性研究中的应用[J]. 生物多样性, 2022, 30(12): 22266-. |
[13] | 吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋. 南亚热带森林演替过程中土壤线虫群落结构变化[J]. 生物多样性, 2022, 30(12): 22205-. |
[14] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[15] | 黄小波, 郎学东, 李帅锋, 刘万德, 苏建荣. 生态系统多功能性的指标选择与驱动因子: 研究现状与展望[J]. 生物多样性, 2021, 29(12): 1673-1686. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn