生物多样性 ›› 2022, Vol. 30 ›› Issue (10): 22504.  DOI: 10.17520/biods.2022504

• 综述 • 上一篇    下一篇

中国森林生物多样性监测网络: 二十年群落构建机制探索的回顾与展望

米湘成1#, 王绪高2#, 沈国春3#, 刘徐兵4, 宋晓阳5, 乔秀娟6, 冯刚7, 杨洁5, 毛子昆2, 徐学红1, 马克平1,*()   

  1. 1.中国科学院植物研究所植被与环境变化国家重点实验室浙江钱江源森林生物多样性国家野外科学观测研究站, 北京 100093
    2.中国科学院沈阳应用生态研究所中国科学院森林生态与管理重点实验室/辽宁省陆地生态碳中和重点实验室, 沈阳 110016
    3.华东师范大学生态与环境科学学院浙江天童森林生态系统国家野外科学观测研究站, 上海 200241
    4.中山大学生命科学学院/有害生物控制与资源利用国家重点实验室, 广州 510275
    5.中国科学院西双版纳热带植物园热带森林生态学重点实验室, 云南勐腊 666303
    6.中国科学院武汉植物园中国科学院水生植物与流域生态重点实验室, 武汉 430074
    7.内蒙古大学生态与环境学院蒙古高原生态学与资源利用教育部重点实验室, 省部共建草地生态学国家重点实验室培育基地, 呼和浩特 010021
  • 收稿日期:2022-08-31 接受日期:2022-10-27 出版日期:2022-10-20 发布日期:2022-11-08
  • 通讯作者: 马克平
  • 作者简介:* E-mail: kpma@ibcas.ac.cn
    第一联系人:# 共同第一作者
  • 基金资助:
    中国科学院战略性先导科技专项(B类)(XDB31030000);国家自然科学基金(31770478);国家自然科学基金(32271596);国家自然科学基金(31870404)

Chinese Forest Biodiversity Monitoring Network (CForBio): Twenty years of exploring community assembly mechanisms and prospects for future research

Xiangcheng Mi1#, Xugao Wang2#, Guochun Shen3#, Xubin Liu4, Xiaoyang Song5, Xiujuan Qiao6, Gang Feng7, Jie Yang5, Zikun Mao2, Xuehong Xu1, Keping Ma1,*()   

  1. 1. Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing 100093
    2. CAS Key Laboratory of Forest Ecology and Management, Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016
    3. Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241
    4. School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275
    5. CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303
    6. Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074
    7. Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021
  • Received:2022-08-31 Accepted:2022-10-27 Online:2022-10-20 Published:2022-11-08
  • Contact: Keping Ma
  • About author:First author contact:# Co-first authors

摘要:

中国森林生物多样性监测网络(CForBio)目前已经沿纬度梯度从寒温带到热带布设23个大型森林动态样地, 监测1,893种木本植物, 代表我国木本植物种类的近1/6。CForBio的主要目标之一是研究森林群落的构建机制。本文综述了近20年来CForBio在群落构建机制探索方面取得的进展, 包括生物多样性时空格局、生境过滤、生物相互作用、局域扩散和区域因素以及利用新技术取得的新认知等。CForBio研究发现: (1)生境过滤和扩散限制共同决定种-面积关系及β多样性等多样性格局, 但二者的相对作用在不同样地及不同尺度存在差异; (2)生境过滤对局域群落构建的作用广泛存在, 但很难量化其对群落构建的重要性; (3)同种负密度制约在不同气候带样地普遍存在, 负密度制约的强度主要由植物菌根类型介导, 并随植物生活史类型、功能性状及环境变化而变化; (4)扩散限制在局域群落构建中发挥关键作用, 而区域因素如区域地质历史、区域物种库大小等塑造不同生物地理区群落之间的生物多样性差异; (5)宏观和微观两个方面的新技术促进群落构建机制的研究。在宏观方面, 遥感技术以低成本使大范围、多尺度的连续群落生物多样性监测和时空比较研究成为可能; 另一方面, 叶绿体基因技术和代谢组学等微观技术能促进推导群落构建的分子机制。同时, 本文还总结了以往研究的不足, 并展望了基于森林动态样地开展群落构建机制研究的未来发展, 特别强调了: (1)关注群落构建研究中的尺度问题; (2)深入开展多维度(物种、功能和系统发育)、多营养级生物互作相关的研究; (3)拓展全球变化对群落构建影响的研究; (4)融合观测-实验-模型多种手段开展群落构建机制的研究; (5)连结“群落构建理论研究”和“森林管理实践”。总之, 中国森林生物多样性监测网络的长期监测和联网研究是森林群落构建机制研究的重要基础, 也是推动群落构建理论、解决森林管理难题的重要平台。

关键词: 森林生物多样性, 群落构建, 格局, 生境过滤, 生物相互作用, 局域扩散

Abstract

Background & Aim: Since 2004, the Chinese Forest Biodiversity Monitoring Network (CForBio) has established 23 large forest dynamics plots along a latitude gradient ranging from cold temperate forests to tropical forests in China. The forest dynamics plots include about 1,893 species, representing one-sixth of the known tree diversity in China. With > 700 papers and > 400 papers published in international journals, CForBio researchers have made significant contributions toward understanding mechanisms of forest community assembly. This review summarizes the progresses achieved by CForBio researchers, including knowledge of the spatiotemporal patterns of plant communities, the roles of habitat filtering, biotic interactions, effects of dispersal limitation and regional effects in structuring plant communities, and the application of new technologies in understanding community assembly.
Review Results: (1) Habitat filtering and dispersal limitation jointly affect the diversity patterns such as species-area relationship and β diversity, but their relative effects vary among plots and across scales. (2) Habitat filtering generally plays an important role in forest community assembly. However, it is difficult to quantify its relative importance. (3) Conspecific negative density dependence (CNDD) is prevalent in these CForBio plots across latitudes. In addition, the strength of CNDD is found to be mediated by plant mycorrhizal type, and varies with life history, functional traits and environmental change. (4) Dispersal limitation predominantly shapes community structure at local scales, whereas regional effects, such as regional pool size and geological history, strongly determine spatial patterns of biodiversity among communities over broader biogeographic regions. (5) New technologies provide novel ways to advance studies of community assembly from both macro and micro-perspectives. On one hand, remote sensing enables us to monitor forest community biodiversity from local to large scales in a cost-effective way. On the other hand, transcriptomics and metabolomics enable us to precisely infer molecular mechanisms of community assembly.
Perspectives: This review also discusses the limitations in current community assembly studies and proposes some issues and potential topics to be considered for future studies. We discuss the vital role of CForBio in promoting the application and future development of community assembly studies, including (1) the spatiotemporal scale problem; (2) the multi-dimensional (taxonomic, functional, and phylogenetic diversity) and multi-trophic biotic interactions; (3) the advantages of interdisciplinary and multipath approaches such as the “observational evidence-controlled experiment- ecosystem model” methodology; (4) the effect of global change on community assembly; and (5) the applications of community assembly findings for addressing forest management challenges. In conclusion, the long-term forest biodiversity monitoring is fundamental for a comprehensive understanding of community assembly and serves as an important platform for bridging studies on theories of assembly and on forest management challenges.

Key words: forest biodiversity, community assembly, pattern, habitat filtering, biotic interaction, dispersal limitation