生物多样性 ›› 2024, Vol. 32 ›› Issue (1): 23026. DOI: 10.17520/biods.2023026 cstr: 32101.14.biods.2023026
• 研究报告: 动物多样性 • 下一篇
收稿日期:
2023-08-13
接受日期:
2023-12-18
出版日期:
2024-01-20
发布日期:
2024-01-17
通讯作者:
*E-mail: huyiming@giz.gd.cn
基金资助:
Liyuan Wang1,2, Huijian Hu1, Jie Jiang3, Yiming Hu1,*()()
Received:
2023-08-13
Accepted:
2023-12-18
Online:
2024-01-20
Published:
2024-01-17
Contact:
*E-mail: huyiming@giz.gd.cn
摘要:
作为华南地区的最大山脉和重要自然地理界线, 南岭是物种丰富度研究的热点区域之一。但是已有的物种丰富度相关研究集中在局部区域和单个生物类群, 缺乏对于整个南岭区域哺乳类和鸟类物种丰富度空间分布格局及其影响因子的研究。本研究利用南岭区域123种哺乳类和524种鸟类的地理分布数据, 构建了整个南岭山脉的哺乳类和鸟类的物种丰富度空间分布格局。此外, 我们利用路径分析和空间误差模型, 探讨多种环境因子(气候、生产力、人类活动、生境异质性和海拔)对南岭哺乳类和鸟类物种丰富度空间分布格局的影响。南岭地区哺乳类和鸟类物种丰富度空间分布格局差异较大: 哺乳类物种丰富度热点区域在南岭地区的西南部山地, 丰富度空间分布格局总体自西向东递减; 鸟类物种丰富度热点区域在南岭地区的东南部低地, 丰富度空间分布格局总体自东南向西北递减。路径分析和空间误差模型显示, 温度相关因子对于南岭哺乳类和鸟类物种丰富度空间分布格局影响最大。在温度相关的两个因子中, 年均温与哺乳类物种丰富度呈负相关, 与鸟类却呈正相关; 气温年较差与哺乳类呈正相关, 与鸟类却呈负相关。年均温和气温年较差对哺乳类和鸟类影响的差异可能是由哺乳类和鸟类在生理适应性和行为策略上的差异所导致。
中图分类号:
王丽媛, 胡慧建, 姜杰, 胡一鸣 (2024) 南岭哺乳类和鸟类物种丰富度空间分布格局及其影响因子. 生物多样性, 32, 23026. DOI: 10.17520/biods.2023026.
Liyuan Wang, Huijian Hu, Jie Jiang, Yiming Hu (2024) Species richness patterns of mammals and birds and their drivers in the Nanling Mountain Range. Biodiversity Science, 32, 23026. DOI: 10.17520/biods.2023026.
图2 南岭地区物种丰富度空间分布格局(GCS WGS 1984坐标系投影)。a: 哺乳类; b: 鸟类。
Fig. 2 Spatial distribution patterns of species richness in the Nanling Mountain Range (projected with GCS WGS 1984 coordinate system). a, Mammal; b, Bird.
图3 各变量(年均温、气温年较差、年均降水量、人类足迹指数、海拔、生境异质性和归一化植被指数)对南岭地区物种丰富度空间分布格局的直接和间接效应路径图。a: 哺乳类; GFI = 0.987; CFI = 0.978; IFI = 0.978。b: 鸟类; GFI = 0.997; CFI = 0.989; IFI = 0.989。红色和黑色箭头分别表示正效应和负效应; 箭头边的数字表示标准化系数, 且所有系数的P值均小于0.05; 图中标明了三个模型集的R2。
Fig. 3 The path diagram of direct and indirect effects of variables (average annual temperature, annual range of temperature, average annual precipitation, human footprint index, elevation, habitat heterogeneity, normalized difference vegetation index) on the spatial distribution pattern of species richness in the Nanling region. a, Mammal; GFI = 0.987; CFI = 0.978; IFI = 0.978. b, Bird; GFI = 0.997; CFI = 0.989; IFI = 0.989. Red and black arrows indicate positive and negative effects respectively; numbers along the arrows represent standardized coefficients and the P-values of all coefficients were less than 0.05; R2 of the three model sets is given in the figure.
类群 Group | 变量 Variables | 总影响 Total effect | 直接影响 Direct effect | 间接影响 Indirect effect |
---|---|---|---|---|
哺乳类 Mammal | 年均温 Average annual temperature | -0.537 | -0.424 | -0.113 |
气温年较差 Annual range of temperature | 0.344 | 0.361 | -0.017 | |
年均降水量 Average annual precipitation | 0.279 | 0.248 | 0.031 | |
归一化植被指数 Normalized difference vegetation index | -0.306 | -0.306 | 0 | |
人类足迹指数 Human footprint index | 0.056 | 0.017 | 0.039 | |
生境异质性 Habitat heterogeneity | -0.124 | -0.124 | 0 | |
海拔 Elevation | -0.157 | -0.208 | 0.051 | |
鸟类 Bird | 年均温 Average annual temperature | 0.525 | 0.502 | 0.023 |
气温年较差 Annual range of temperature | -0.597 | -0.615 | 0.018 | |
年均降水量 Average annual precipitation | 0.089 | 0.094 | -0.005 | |
归一化植被指数 Normalized difference vegetation index | -0.030 | -0.030 | 0 | |
人类足迹指数 Human footprint index | 0.031 | 0.019 | 0.012 | |
生境异质性 Habitat heterogeneity | 0.047 | 0.047 | 0 | |
海拔 Elevation | 0.209 | 0.201 | 0.008 |
表1 基于路径分析的哺乳类和鸟类物种丰富度空间分布格局影响因子的结果
Table 1 The results of factors influencing the spatial distribution pattern of mammal and bird species richness based on path analysis
类群 Group | 变量 Variables | 总影响 Total effect | 直接影响 Direct effect | 间接影响 Indirect effect |
---|---|---|---|---|
哺乳类 Mammal | 年均温 Average annual temperature | -0.537 | -0.424 | -0.113 |
气温年较差 Annual range of temperature | 0.344 | 0.361 | -0.017 | |
年均降水量 Average annual precipitation | 0.279 | 0.248 | 0.031 | |
归一化植被指数 Normalized difference vegetation index | -0.306 | -0.306 | 0 | |
人类足迹指数 Human footprint index | 0.056 | 0.017 | 0.039 | |
生境异质性 Habitat heterogeneity | -0.124 | -0.124 | 0 | |
海拔 Elevation | -0.157 | -0.208 | 0.051 | |
鸟类 Bird | 年均温 Average annual temperature | 0.525 | 0.502 | 0.023 |
气温年较差 Annual range of temperature | -0.597 | -0.615 | 0.018 | |
年均降水量 Average annual precipitation | 0.089 | 0.094 | -0.005 | |
归一化植被指数 Normalized difference vegetation index | -0.030 | -0.030 | 0 | |
人类足迹指数 Human footprint index | 0.031 | 0.019 | 0.012 | |
生境异质性 Habitat heterogeneity | 0.047 | 0.047 | 0 | |
海拔 Elevation | 0.209 | 0.201 | 0.008 |
类群 Group | 变量 Variables | 空间误差模型 Spatial error model | ||
---|---|---|---|---|
标准估计值 Standard estimate (β) | 标准误差 Standard error | z检验概率值 Pr(>|z|) | ||
哺乳类 Mammal | 年均温 Average annual temperature | -0.096 | 0.009 | < 0.01 |
气温年较差 Annual range of temperature | 0.138 | 0.009 | < 0.01 | |
年均降水量 Average annual precipitation | -0.039 | 0.010 | < 0.01 | |
归一化植被指数 Normalized difference vegetation index | -0.021 | 0.003 | < 0.01 | |
人类足迹指数 Human footprint index | 0.000 | 0.003 | 0.92 | |
生境异质性 Habitat heterogeneity | -0.045 | 0.004 | < 0.01 | |
海拔 Elevation | -0.013 | 0.006 | 0.03 | |
鸟类 Bird | 年均温 Average annual temperature | 0.398 | 0.008 | < 0.01 |
气温年较差 Annual range of temperature | -0.454 | 0.009 | < 0.01 | |
年均降水量 Average annual precipitation | 0.235 | 0.009 | < 0.01 | |
归一化植被指数 Normalized difference vegetation index | -0.001 | 0.003 | 0.68 | |
人类足迹指数 Human footprint index | 0.006 | 0.003 | 0.03 | |
生境异质性 Habitat heterogeneity | 0.014 | 0.004 | < 0.01 | |
海拔 Elevation | 0.037 | 0.006 | < 0.01 |
表2 基于空间误差模型的哺乳类和鸟类物种丰富度空间分布格局影响因子的结果
Table 2 The results of factors influencing the spatial distribution pattern of mammal and bird species richness based on spatial error model
类群 Group | 变量 Variables | 空间误差模型 Spatial error model | ||
---|---|---|---|---|
标准估计值 Standard estimate (β) | 标准误差 Standard error | z检验概率值 Pr(>|z|) | ||
哺乳类 Mammal | 年均温 Average annual temperature | -0.096 | 0.009 | < 0.01 |
气温年较差 Annual range of temperature | 0.138 | 0.009 | < 0.01 | |
年均降水量 Average annual precipitation | -0.039 | 0.010 | < 0.01 | |
归一化植被指数 Normalized difference vegetation index | -0.021 | 0.003 | < 0.01 | |
人类足迹指数 Human footprint index | 0.000 | 0.003 | 0.92 | |
生境异质性 Habitat heterogeneity | -0.045 | 0.004 | < 0.01 | |
海拔 Elevation | -0.013 | 0.006 | 0.03 | |
鸟类 Bird | 年均温 Average annual temperature | 0.398 | 0.008 | < 0.01 |
气温年较差 Annual range of temperature | -0.454 | 0.009 | < 0.01 | |
年均降水量 Average annual precipitation | 0.235 | 0.009 | < 0.01 | |
归一化植被指数 Normalized difference vegetation index | -0.001 | 0.003 | 0.68 | |
人类足迹指数 Human footprint index | 0.006 | 0.003 | 0.03 | |
生境异质性 Habitat heterogeneity | 0.014 | 0.004 | < 0.01 | |
海拔 Elevation | 0.037 | 0.006 | < 0.01 |
[1] | Abolafya M, Onmuş O, Şekercioğlu ÇH, Bilgin R (2013) Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios. PLoS ONE, 8, e68037. |
[2] |
Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, Fritz SA, Rahbek C, Herman F, Hooghiemstra H, Hoorn C (2018) Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11, 718-725.
DOI |
[3] | Badgley C, Smiley TM, Terry R, Davis EB, DeSantis LRG, Fox DL, Hopkins SSB, Jezkova T, Matocq MD, Matzke N, McGuire JL, Mulch A, Riddle BR, Roth VL, Samuels JX, Strömberg CAE, Yanites BJ (2017) Biodiversity and topographic complexity: Modern and geohistorical perspectives. Trends in Ecology & Evolution, 32, 211-226. |
[4] |
Bozinovic F, Calosi P, Spicer JI (2011) Physiological correlates of geographic range in animals. Annual Review of Ecology, Evolution, and Systematics, 42, 155-179.
DOI URL |
[5] | Compilation Group of China Biodiversity National Research Report (1998) China Biodiversity National Research Report. China Environmental Press, Beijing. (in Chinese) |
[《中国生物多样性国情研究报告》编写组 (1998) 中国生物多样性国情研究报告. 中国环境科学出版社, 北京.] | |
[6] | Davies RG, Storch D, Olson VA, Thomas GH, Ross SG, Ding TS, Rasmussen PC, Bennett PM, Owens IPF, Blackburn TM, Gaston KJ (2007) Topography, energy and the global distribution of bird species richness. Proceedings of the Royal Society B: Biological Sciences, 274, 1189-1197. |
[7] |
Dobrovolski R, Melo AS, Cassemiro FAS, Diniz-Filho JAF (2012) Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 21, 191-197.
DOI URL |
[8] |
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46.
DOI URL |
[9] | Duan HL, Cao FX (2012) Characteristics and trends of climate change of Chinese subtropical Nanling Mountain. Journal of Central South University of Forestry & Technology, 32(9), 110-113. (in Chinese with English abstract) |
[段辉良, 曹福祥 (2012) 中国亚热带南岭山地气候变化特点及趋势. 中南林业科技大学学报, 32(9), 110-113.] | |
[10] |
Edelman AJ, Koprowski JL (2007) Communal nesting in asocial abert’s squirrels: The role of social thermoregulation and breeding strategy. Ethology, 113, 147-154.
DOI URL |
[11] | Encalada AC, Flecker AS, Poff NL, Suárez E, Herrera-R GA, Ríos-Touma B, Jumani S, Larson EI, Anderson EP (2019) A global perspective on tropical montane rivers. Science, 365, 1124-1129. |
[12] |
Fjeldså J, Bowie RCK, Rahbek C (2012) The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics, 43, 249-265.
DOI URL |
[13] |
García-Rodríguez A, Martínez PA, Oliveira BF, Velasco JA, Pyron RA, Costa GC (2021) Amphibian speciation rates support a general role of mountains as biodiversity pumps. The American Naturalist, 198, E68-E79.
DOI PMID |
[14] |
Gonçalves GR, Santos MPD, Cerqueira PV, Juen L, Bispo AÂ (2017) The relationship between bird distribution patterns and environmental factors in an ecotone area of northeast Brazil. Journal of Arid Environments, 140, 6-13.
DOI URL |
[15] | Grace JB (2006) Structural Equation Modeling and Natural Systems. Cambridge University Press, Cambridge, UK. |
[16] | Guo CQ, Pan LY, Zhou R, Fu QJ (2012) Drought causes and countermeasures of China southwest karst area from 2009 to 2010—A case in karst area of Guangxi. Journal of Guilin University of Technology, 32, 495-499. (in Chinese with English abstract) |
[郭纯青, 潘林艳, 周蕊, 符秋菊 (2012) 2009-2010年中国西南岩溶区旱情分析与减灾对策——以广西岩溶区为例. 桂林理工大学学报, 32, 495-499.] | |
[17] | Hancock TV, Hedrick MS (2018) Physiological vagility affects population genetic structure and dispersal and enables migratory capacity in vertebrates. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 223, 42-51. |
[18] |
Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
DOI URL |
[19] | He JX, Yan C, Holyoak M, Wan XR, Ren GY, Hou YF, Xie Y, Zhang ZB (2018) Quantifying the effects of climate and anthropogenic change on regional species loss in China. PLoS ONE, 13, e0199735. |
[20] |
Hof AR, Jansson R, Nilsson C (2012) The usefulness of elevation as a predictor variable in species distribution modelling. Ecological Modelling, 246, 86-90.
DOI URL |
[21] | Howard C, Flather CH, Stephens PA (2019) What drives at-risk species richness? Environmental factors are more influential than anthropogenic factors or biological traits. Conservation Letters, 12, e12624. |
[22] |
Hu YM, Gibson L, Hu HJ, Ding ZF, Zhou ZX, Li WQ, Jiang ZG, Scheffers BR (2022) Precipitation drives species accumulation whereas temperature drives species decline in Himalayan vertebrates. Journal of Biogeography, 49, 2218-2230.
DOI URL |
[23] | Huang SL, Rao JT, Han LX, Luo X, Xiao RG, Zhang YM (2003) Analysis of bird diversity in Chebaling Nature Reserve. Sichuan Journal of Zoology, 22, 101-106. (in Chinese with English abstract) |
[黄石林, 饶纪腾, 韩联宪, 罗旭, 肖荣高, 张应明 (2003) 广东车八岭自然保护区鸟类多样性分析. 四川动物, 22, 101-106.] | |
[24] |
Hurlbert AH, Stegen JC (2014) When should species richness be energy limited, and how would we know? Ecology Letters, 17, 401-413.
DOI PMID |
[25] | Jetz W, Kreft H, Ceballos G, Mutke J (2009) Global associations between terrestrial producer and vertebrate consumer diversity. Proceedings of the Royal Society B: Biological Sciences, 276, 269-278. |
[26] | Jiang ZG (2021) China’s Red List of Biodiversity•Vertebrates (Vol. I):Mammals (I). Science Press, Beijing. (in Chinese and in English) |
[蒋志刚 (2021) 中国生物多样性红色名录•脊椎动物(第一卷): 哺乳动物(上册). 科学出版社, 北京.] | |
[27] |
Kawamura K, Yamaura Y, Senzaki M, Ueta M, Nakamura F (2019) Seasonality in spatial distribution: Climate and land use have contrasting effects on the species richness of breeding and wintering birds. Ecology and Evolution, 9, 7549-7561.
DOI URL |
[28] | Kratochwil A (1999) Biodiversity in ecosystems:Some principles. In: Tasks for Vegetation Science (ed. Kratochwil A), pp. 5-38. Springer Netherlands, Dordrecht. |
[29] | Li QF, Sun RY, Huang CX, Wang ZK, Liu XT, Hou J, Liu JS, Cai LQ, Li N, Zhang SZ, Wang Y (2001) Cold adaptive thermogenesis in small mammals from different geographical zones of China. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 129, 949-961. |
[30] | Miao SY, Huang JL, Liu C (2020) Plant diversity and its conservation values of Guangdong Nanling National Park. Guangdong Landscape Architecture, 42(5), 8-11. (in Chinese with English abstract) |
[缪绅裕, 黄金玲, 刘闯 (2020) 广东南岭国家公园植物多样性及其保护价值. 广东园林, 42(5), 8-11.] | |
[31] | Ministry of Environmental Protection (2011) China Biological Diversity Protection Action Plan. China Environmental Press, Beijing. (in Chinese) |
[环境保护部 (2011) 中国生物多样性保护战略与行动计划. 中国环境出版社, 北京.] | |
[32] |
Pearman PB (2002) The scale of community structure: Habitat variation and avian guilds in tropical forest understory. Ecological Monographs, 72, 19-39.
DOI URL |
[33] | Peng HY, Wang XC, Jiang HS, Hu JC (2006) Preliminary investigation on mammal in Huangniushi NR in Lianping County. Journal of Yulin Teachers College, 27(3), 109-113. (in Chinese with English abstract) |
[彭红元, 王新财, 江海声, 胡锦矗 (2006) 广东连平黄牛石保护区兽类初步调查. 玉林师范学院学报, 27(3), 109-113.] | |
[34] |
Quan Q, Tang X, Wu Y, Zou FS (2018) β-diversity of bird assemblages in the Nanling Mountain ranges. Tropical Geography, 38, 321-327, 346. (in Chinese with English abstract)
DOI |
[权擎, 唐璇, 吴毅, 邹发生 (2018) 南岭山脉及周边鸟类β多样性分析. 热带地理, 38, 321-327, 346.] | |
[35] |
Rahbek C, Borregaard MK, Antonelli A, Colwell RK, Holt BG, Nogues-Bravo D, Richardson K, Rosing MT, Whittaker RJ, Fjeldså J (2019a) Building mountain biodiversity: Geological and evolutionary processes. Science, 365, 1114-1119.
DOI URL |
[36] |
Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, Nogues-Bravo D, Whittaker RJ, Fjeldså J (2019b) Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science, 365, 1108-1113.
DOI URL |
[37] | Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 361, eaar5452. |
[38] |
Stein A, Beck J, Meyer C, Waldmann E, Weigelt P, Kreft H (2015) Differential effects of environmental heterogeneity on global mammal species richness. Global Ecology and Biogeography, 24, 1072-1083.
DOI URL |
[39] |
Stein A, Kreft H (2015) Terminology and quantification of environmental heterogeneity in species-richness research. Biological Reviews, 90, 815-836.
DOI URL |
[40] |
Takahashi M (2012) Heat stress on reproductive function and fertility in mammals. Reproductive Medicine and Biology, 11, 37-47.
DOI PMID |
[41] |
Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. Journal of Biogeography, 31, 79-92.
DOI URL |
[42] |
Tian S, Kou YX, Zhang ZR, Yuan L, Li DR, López-Pujol J, Fan DM, Zhang ZY (2018) Phylogeography of Eomecon chionantha in subtropical China: The dual roles of the Nanling Mountains as a glacial refugium and a dispersal corridor. BMC Evolutionary Biology, 18, 20.
DOI |
[43] | Turner MG, Gardner RH (2015) Landscape Ecology in Theory and Practice: Pattern and Process, 2nd edn. Springer, New York. |
[44] |
Virkkala R, Marmion M, Heikkinen RK, Thuiller W, Luoto M (2010) Predicting range shifts of northern bird species: Influence of modelling technique and topography. Acta Oecologica, 36, 269-281.
DOI URL |
[45] |
Webber QMR, McGuire LP (2022) Heterothermy, body size, and locomotion as ecological predictors of migration in mammals. Mammal Review, 52, 82-95.
DOI URL |
[46] | Wen H, Liang YS (2015) The essence of testing structural equation models using popular fit indexes. Journal of Psychological Science, 38, 987-994. (in Chinese with English abstract) |
[温涵, 梁韵斯 (2015) 结构方程模型常用拟合指数检验的实质. 心理科学, 38, 987-994.] | |
[47] |
Xie SL, Wang XK, Ren YF, Su ZM, Su YB, Wang SQ, Zhou WQ, Lu F, Qian YG, Gong C, Huang BB, Ouyang ZY (2020) Factors responsible for forest and water bird distributions in rivers and lakes along an urban gradient in Beijing. Science of the Total Environment, 735, 139308.
DOI URL |
[48] | Xu W, Yang T, Li ZH, Zhou P (2022) Distribution pattern of plant community species diversity along altitudinal gradients in Nanling Mountains, Guangdong. Forestry and Environmental Science, 38(1), 9-17. (in Chinese with English abstract) |
[徐卫, 杨婷, 李泽华, 周平 (2022) 广东南岭植物群落物种多样性沿海拔梯度分布格局. 林业与环境科学, 38(1), 9-17.] | |
[49] | Yang XT, Zhong ZQ, Xiu C, Lin SN, Li Y, Zeng XW, Duan ZZ, Xie SM (2022) Application of a species dispersal model to guide the establishment of a functional ecological corridor for Platalea minor in the coastal areas of Guangdong. Forestry and Environmental Science, 38(2), 12-22. (in Chinese with English abstract) |
[杨锡涛, 钟志强, 修晨, 林少娜, 李艺, 曾向武, 段智钊, 谢首冕 (2022) 利用物种扩散模型构建广东沿海地区黑脸琵鹭的功能性生态廊道. 林业与环境科学, 38(2), 12-22.] | |
[50] | Zhang JX, Zhang CL, Zhu CL (2008) Effects of ice and snow disasters on mammals, reptiles and amphibians in Nanling, Guangdong Province. In: Symposium of the 5th Zoological Seminar of Guangdong, Hunan, Jiangxi, and Hubei Provinces. Guangdong Zoological Society, Guangzhou. (in Chinese with English abstract) |
[张建新, 张春兰, 朱成林 (2008) 低温冰雪灾害对广东南岭灾区兽类和两爬动物生态影响. 见: 第五届广东、湖南、江西、湖北四省动物学学术研讨会论文摘要汇编. 广东省动物学会, 广州.] | |
[51] | Zhang YP, Qiang ZP, Chen X (2013) Spatiotemporal dynamics of NDVI and land use in China based on remote sensing images. Journal of Theoretical and Applied Information Technology, 49, 410-418. |
[52] | Zheng GM (2017) A Checklist on the Classification and Distribution of the Birds of China, 3rd edn. Science Press, Beijing. (in Chinese) |
[郑光美 (2017) 中国鸟类分类与分布名录(第三版). 科学出版社, 北京.] | |
[53] | Zhuang CW, Xiu C, Zhang RJ, Zhang XL (2021) Planning and construction strategy in priority area of biodiversity conservation in Nanling Mountain of Guangdong. Forest Inventory and Planning, 46(3), 167-170, 177. (in Chinese with English abstract) |
[庄长伟, 修晨, 张荣京, 张晓露 (2021) 广东南岭生物多样性保护优先区域规划建设策略. 林业调查规划, 46(3), 167-170, 177.] | |
[54] | Zong TY, Zhou WY, Zhou P (2019) Analysis of temporal and spatial variation of rainfall in 1968-2015 in Nanling. Ecological Science, 38, 182-190. (in Chinese with English abstract) |
[宗天韵, 周玮莹, 周平 (2019) 南岭山地1968到2015年降雨的时空变化特征研究. 生态科学, 38, 182-190.] | |
[55] |
Zou FS, Zhang Q, Zhang M, Lee MB, Wang XC, Gong YN, Yang CT (2019) Temporal patterns of three sympatric pheasant species in the Nanling Mountains: N-mixture modeling applied to detect abundance. Avian Research, 10, 42.
DOI |
[1] | 段菲, 刘鸣章, 卜红亮, 俞乐, 李晟. 城市化对鸟类群落组成及功能特征的影响——以京津冀地区为例[J]. 生物多样性, 2024, 32(8): 23473-. |
[2] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[3] | 吴琼, 赵梓羲, 孙桃柱, 赵雨梦, 于丛, 祝芹, 李忠秋. 城市道路特征及自然景观对动物路杀的影响: 以南京为例[J]. 生物多样性, 2024, 32(8): 24141-. |
[4] | 白皓天, 余上, 潘新园, 凌嘉乐, 吴娟, 谢恺琪, 刘阳, 陈学业. AI辅助识别的鸟类被动声学监测在城市湿地公园中的应用[J]. 生物多样性, 2024, 32(8): 24188-. |
[5] | 王秦韵, 张玉泉, 刘浩, 李明, 刘菲, 赵宁, 陈鹏, 齐敦武, 阙品甲. 成都大熊猫繁育研究基地鸟类多样性[J]. 生物多样性, 2024, 32(8): 24066-. |
[6] | 许佳, 崔小娟, 张翼飞, 吴昌, 孙远东. 南岭地区鱼类多样性及其地理分布[J]. 生物多样性, 2024, 32(7): 23482-. |
[7] | 顾燚芸, 薛嘉祈, 高金会, 谢心仪, 韦铭, 雷进宇, 闻丞. 一种基于公众科学数据的区域性鸟类多样性评价方法[J]. 生物多样性, 2024, 32(7): 24080-. |
[8] | 李柏灿, 张军国, 张长春, 王丽凤, 徐基良, 刘利. 基于TC-YOLO模型的北京珍稀鸟类识别方法[J]. 生物多样性, 2024, 32(5): 24056-. |
[9] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[10] | 王鹏, 隋佳容, 丁欣瑶, 王伟中, 曹雪倩, 赵海鹏, 王彦平. 郑州城市公园鸟类群落嵌套分布格局及其影响因素[J]. 生物多样性, 2024, 32(3): 23359-. |
[11] | 孟敬慈, 王国栋, 曹光兰, 胡楠林, 赵美玲, 赵延彤, 薛振山, 刘波, 朴文华, 姜明. 中国芦苇沼泽植物物种丰富度分布格局及其驱动因素[J]. 生物多样性, 2024, 32(2): 23194-. |
[12] | 林迪, 陈双林, 杜榷, 宋文龙, 饶固, 闫淑珍. 大别山黏菌的物种多样性调查[J]. 生物多样性, 2024, 32(2): 23242-. |
[13] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[14] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[15] | 杨俊毅, 关潇, 李俊生, 刘晶晶, 郝颢晶, 王槐睿. 乌江流域生物多样性与生态系统服务的空间格局及相互关系[J]. 生物多样性, 2023, 31(7): 23061-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn