生物多样性 ›› 2020, Vol. 28 ›› Issue (6): 651-657. DOI: 10.17520/biods.2020044 cstr: 32101.14.biods.2020044
所属专题: 生物入侵
• 研究报告: 植物多样性 • 下一篇
收稿日期:
2020-02-16
接受日期:
2020-04-03
出版日期:
2020-06-20
发布日期:
2020-08-19
通讯作者:
潘晓云
基金资助:
Liangrui Yu1,2,Zhengcai Zhu4,Xiaoyun Pan1,2,3,*()
Received:
2020-02-16
Accepted:
2020-04-03
Online:
2020-06-20
Published:
2020-08-19
Contact:
Xiaoyun Pan
摘要:
植物对邻体根系的表型可塑性是指与无邻体对照相比, 即使个体平均可获取土壤资源相同, 在有邻体根系存在时植物也会改变根系生物量分配, 并影响其他功能性状和适合度。表型可塑性进化假说(evolution of plasticity hypothesis)认为外来植物在入侵地进化出了更强的表型可塑性。对该假说的验证多集中于外来植物对光照、水分、养分以及天敌等的可塑性进化, 但对邻体根系的可塑性在入侵植物中是否发生进化尚未见报道。我们采用同质园实验比较了喜旱莲子草(Alternanthera philoxeroides)入侵地(美国)和原产地(阿根廷)各5个基因型的适合度与功能性状对同基因型邻体根系的可塑性。结果表明: 喜旱莲子草的根冠比(P = 0.088)和比叶面积(P = 0.007)对同基因型邻体根系的可塑性在入侵地和原产地基因型间存在差异: 入侵地基因型在有邻体根系时根冠比和比叶面积增加, 而原产地基因型则相反。但是, 总生物量、贮藏根生物量、比茎长和分枝强度对邻体根系的可塑性在入侵地和原产地间没有显著差异。此外, 与分隔邻体根系相比, 同基因型邻体根系存在时总生物量(+9.9%)和贮藏根生物量(+13.9%)显著增加, 比茎长(-9.5%)显著降低。最后, 与原产地基因型相比, 总体上入侵地基因型的总生物量(+62.0%)和贮藏根生物量(+58.9%)增加, 比茎长(-28.5%)和分枝强度(-42.8%)降低。这些结果表明喜旱莲子草入侵地基因型与资源利用相关功能性状(如根冠比和比叶面积)对邻体根系的可塑性方向与原产地基因型相反; 但适合度和株型相关性状(如比茎长和分枝强度)对同基因型邻体根系的可塑性与原产地没有差异。
于良瑞, 朱政财, 潘晓云 (2020) 喜旱莲子草对同基因型邻体根系的表型可塑性: 入侵地和原产地的比较. 生物多样性, 28, 651-657. DOI: 10.17520/biods.2020044.
Liangrui Yu, Zhengcai Zhu, Xiaoyun Pan (2020) Phenotypic plasticity of Alternanthera philoxeroides in response to root neighbors of kin: Introduced vs. native genotypes. Biodiversity Science, 28, 651-657. DOI: 10.17520/biods.2020044.
图1 同基因型邻体根系处理示意图。(a)邻体根系分隔(absent); (b)邻体根系接触(present)。
Fig. 1 Schematic diagram of experimental setup for plants of kins planted in pots with or without root neighbors. (a) Root neighbors were absent; (b) Root neighbor were present.
变异来源 Source of variation | 总生物量 Total biomass | 贮藏根生物量 Storage root biomass | 根冠比 RSR | 比叶面积 SLA | 比茎长 SSL | 分枝强度 BI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
c2 | P | c2 | P | c2 | P | c2 | P | c2 | P | c2 | P | |
来源地 Origin | 6.767 | 0.009 | 3.663 | 0.056 | 0.213 | 0.645 | 2.373 | 0.123 | 5.408 | 0.020 | 3.377 | 0.066 |
邻体根系 Root neighbor | 11.513 | 0.001 | 8.456 | 0.004 | 0.938 | 0.333 | 0.592 | 0.442 | 18.183 | 0.000 | 0.148 | 0.700 |
来源地 × 邻体根系 Origin × root neighbor | 0.501 | 0.479 | 2.410 | 0.121 | 2.911 | 0.088 | 7.165 | 0.007 | 1.240 | 0.265 | 0.037 | 0.847 |
表1 喜旱莲子草入侵地(美国)和原产地(阿根廷)基因型在两种邻体根系处理(邻体根系分隔、邻体根系接触)下适合度性状(总生物量和贮藏根生物量)和功能性状(根冠比、分枝强度、比茎长和比叶面积)的差异。字体加粗表示效应显著, 加粗斜体表示边际显著。
Table 1 Effects of origin (i.e. introduced vs native) and root neighbors (i.e. absent vs present) and their interaction on fitness traits (total biomass, storage root biomass) and functional traits (root to shoot ratio (RSR), specific leaf area (SLA), specific stem length (SSL) and branching intensity (BI)) of Alternanthera philoxeroides. Significant effects are marked in bold. Marginally significant effects are marked in italics and bold.
变异来源 Source of variation | 总生物量 Total biomass | 贮藏根生物量 Storage root biomass | 根冠比 RSR | 比叶面积 SLA | 比茎长 SSL | 分枝强度 BI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
c2 | P | c2 | P | c2 | P | c2 | P | c2 | P | c2 | P | |
来源地 Origin | 6.767 | 0.009 | 3.663 | 0.056 | 0.213 | 0.645 | 2.373 | 0.123 | 5.408 | 0.020 | 3.377 | 0.066 |
邻体根系 Root neighbor | 11.513 | 0.001 | 8.456 | 0.004 | 0.938 | 0.333 | 0.592 | 0.442 | 18.183 | 0.000 | 0.148 | 0.700 |
来源地 × 邻体根系 Origin × root neighbor | 0.501 | 0.479 | 2.410 | 0.121 | 2.911 | 0.088 | 7.165 | 0.007 | 1.240 | 0.265 | 0.037 | 0.847 |
图2 喜旱莲子草入侵地(美国)和原产地(阿根廷)基因型对邻体根系的响应。(a)总生物量; (b)贮藏根生物量; (c)根冠比; (d)比叶面积; (e)比茎长; (f)分枝强度。误差棒代表95%的置信区间。*表示邻体处理与来源地的交互作用显著, ?表示邻体处理与来源地的交互作用边际显著。
Fig. 2 Responses of introduced (USA) and native (Argentina) genotypes of Alternanthera philoxeroides to the root neighbors. (a) Total biomass; (b) Storage root biomass; (c) Root to shoot ratio (RSR); (d) Specific leaf area (SLA); (e) Specific stem length (SSL); (f) Branching intensity (BI). Error bars indicate 95% confidence intervals. * indicate significant differences in responses between introduced and native genotypes. ? indicate marginally significant differences in responses between introduced and native genotypes.
[1] |
Abakumova M, Zobel K, Lepik A, Semchenko M (2016) Plasticity in plant functional traits is shaped by variability in neighbourhood species composition. New Phytologist, 211, 455-463.
URL PMID |
[2] | Aikio S, Markkola AM (2002) Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availabilities. Evolutionary Ecology, 16, 67-76. |
[3] |
Barney JN, Whitlow TH, DiTommaso A (2009) Evolution of an invasive phenotype: Shift to belowground dominance and enhanced competitive ability in the introduced range. Plant Ecology, 202, 275-284.
DOI URL |
[4] |
Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science, 290, 521-523.
URL PMID |
[5] | Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology, 84, 1115-1128. |
[6] |
Chincinska IA, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Kuhn C (2008) Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiology, 146, 515-528.
DOI URL PMID |
[7] |
Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 14, 419-431.
URL PMID |
[8] |
Dlugosch KM, Parker IM (2008) Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology, 17, 431-449.
URL PMID |
[9] |
Geng YP, van Klinken RD, Sosa A, Li B, Chen JK, Xu CY (2016) The relative importance of genetic diversity and phenotypic plasticity in determining invasion success of a clonal weed in the USA and China. Frontiers in Plant Science, 7, 213.
DOI URL PMID |
[10] | Gunasekera L, Bonila J (2001) Alligator weed: Tasty vegetable in Australian backyards? Journal of Aquatic Plant Management, 39, 17-20. |
[11] | Gunn S, Farrar JF, Collis BE, Nason M (1999) Specific leaf area in barley: Individual leaves versus whole plants. New Phytologist, 143, 45-51. |
[12] | Liu M, Zhou F, Pan XY, Zhang ZJ, Traw MB, Li B (2018) Specificity of herbivore-induced responses in an invasive species, Alternanthera philoxeroides (alligator weed). Ecology and Evolution, 8, 59-70. |
[13] |
Lu X, Dai H, Ding J (2010) Con-specific neighbours may enhance compensation capacity in an invasive plant. Plant Biology, 12, 445-452.
DOI URL PMID |
[14] | Murphy GP, Dudley SA (2007) Above- and below-ground competition cues elicit independent responses. Journal of Ecology, 95, 261-272. |
[15] | Pan XY, Geng YP, Sosa A, Zhang WJ, Li B, Chen JK (2007) Invasive Alternanthera philoxeroides: Biology, ecology and management. Acta Phytotaxonomica Sinica, 45, 884-900. |
[16] | Pan XY, Geng YP, Zhang WJ, Li B, Chen JK (2006) The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecologica, 30, 333-341. |
[17] | Qing H, Yao YH, Xiao Y, Hu FQ, Sun YX, Zhou CF, An SQ (2011) Invasive and native tall forms of Spartina alterniflora respond differently to nitrogen availability. Acta Oecologica, 37, 23-30. |
[18] | R Development Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna. |
[19] |
Rice KJ, Gordon DR, Hardison JL, Welker JM (1993) Phenotypic variation in seedlings of a keystone tree species (Quercus douglasii): The interactive effects of acorn source and competitive environment. Oecologia, 96, 537-547.
DOI URL PMID |
[20] |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
DOI URL PMID |
[21] |
Schwaegerle KE, McIintyre H, Swingley C (2000) Quantitative genetics and the persistence of environmental effects in clonally propagated organisms. Evolution, 54, 452-461.
DOI URL PMID |
[22] | Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16, 326-331. |
[23] |
Sun Y, Collins AR, Schaffner U, Muller-Scharer H (2013) Dissecting impact of plant invaders: Do invaders behave differently in the new range? Ecology, 94, 2124-2130.
DOI URL PMID |
[24] |
Turkington R, Hamilton RS, Gliddon C (1991) Within- population variation in localized and integrated responses of Trifolium repens to biotically patchy environments. Oecologia, 86, 183-192.
URL PMID |
[25] | Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
[26] |
Zhang ZJ, Pan XY, Zhang ZY, He KS, Li B (2015) Specialist insect herbivore and light availability do not interact in the evolution of an invasive plant. PLoS ONE, 10, e0139234.
URL PMID |
[27] | Zhang ZJ, Zhou F, Pan XY, van Kleunen M, Liu M, Li B (2019) Evolution of increased intraspecific competitive ability following introduction: The importance of relatedness among genotypes. Journal of Ecology, 107, 387-395. |
[28] | Zhang ZY, Zhang ZJ, Pan XY (2015) Phenotypic plasticity of Alternanthera philoxeroides in response to shading: Introduced vs. native populations. Biodiversity Science, 23, 18-22. (in Chinese with English abstract) |
[ 张紫妍, 张致杰, 潘晓云 (2015) 喜旱莲子草对遮荫的可塑性反应: 入侵地与原产地种群的比较. 生物多样性, 23, 18-22.] | |
[29] |
Zheng YL, Liao ZY (2017) High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range. Scientific Reports, 7, 16075.
URL PMID |
[30] | Zhou F, Zhang ZJ, Liu M, Pan XY (2017) Effects of nutrient levels on defense against specialist insects in an invasive alligator weed. Biodiversity Science, 25, 1276-1284. (in Chinese with English abstract) |
[ 周方, 张致杰, 刘木, 潘晓云(2017) 养分影响入侵种喜旱莲子草对专食性天敌的防御. 生物多样性, 25, 1276-1284.] |
[1] | 张浩斌, 肖路, 刘艳杰. 夜间灯光对外来入侵植物和本地植物群落多样性和生长的影响[J]. 生物多样性, 2025, 33(4): 24553-. |
[2] | 陈楠, 张全国. 实验进化研究途径[J]. 生物多样性, 2024, 32(9): 24171-. |
[3] | 何花, 谭敦炎, 杨晓琛. 被子植物隐性雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[4] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[5] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[6] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[7] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[8] | 俄广旭, 白天天, 朱振宇, 郭雪峰. 动物消化道微生物多样性与宿主协同进化关系的研究进展[J]. 生物多样性, 2023, 31(11): 23214-. |
[9] | 戚海迪, 张定海, 单立山, 陈国鹏, 张勃. 昆虫病原真菌感染昆虫宿主的机制和宿主昆虫的防御策略研究进展[J]. 生物多样性, 2023, 31(11): 23273-. |
[10] | 葛颂. 中国植物系统和进化生物学研究进展[J]. 生物多样性, 2022, 30(7): 22385-. |
[11] | 王芸芸, 郝占庆. 被子植物性系统的多样性、生态功能及分布规律[J]. 生物多样性, 2022, 30(7): 22065-. |
[12] | 薛成, 李波卡, 雷天宇, 山红艳, 孔宏智. 生物多样性起源与进化研究进展[J]. 生物多样性, 2022, 30(10): 22460-. |
[13] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[14] | 邓铭先, 黄河燕, 沈诗韵, 吴纪华, 拉琼, 斯确多吉, 潘晓云. 喜旱莲子草在青藏高原对模拟增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(9): 1198-1205. |
[15] | 陈旭, 王国严, 彭培好, 李景吉, 石松林, 张廷斌. 四川攀西地区云南松群落物种多样性和谱系多样性对紫茎泽兰入侵的影响[J]. 生物多样性, 2021, 29(7): 865-874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn