生物多样性 ›› 2016, Vol. 24 ›› Issue (4): 453-461. DOI: 10.17520/biods.2015246
所属专题: 中国西南干旱河谷的植物多样性
收稿日期:
2015-09-14
接受日期:
2016-01-15
出版日期:
2016-04-20
发布日期:
2016-05-11
通讯作者:
沈泽昊
基金资助:
Lingxiao Ying1, Ye Liu2, Shaotian Chen3, Zehao Shen1,*()
Received:
2015-09-14
Accepted:
2016-01-15
Online:
2016-04-20
Published:
2016-05-11
Contact:
Shen Zehao
摘要:
清香木(Pistacia weinmannifolia)是中国西南干旱河谷植被的特征种。本文利用野外调查的165个清香木分布点信息以及22个环境变量数据, 基于最大熵(Maxent)算法构建清香木分布的适宜生境预测模型, 并据此模拟清香木在我国西南地区的适宜分布区, 以及历史和未来不同气候情景下的分布格局变化。结果表明: 清香木生境预测的Maxent模型准确性非常高(AUC = 0.974), 温度季节性变化、极端低温和降水量是限制其分布的主要气候因子。清香木当前的潜在分布区集中在我国西南干旱河谷区, 其适宜生境的气候特征是降水少、温度季节性变化小且无极端低温。对清香木在末次间冰期和末次冰盛期分布的模拟结果表明, 其分布区范围均以诸大江河的河谷为中心, 随气候变化在我国西南地区主要呈现先向东扩张, 然后向西退缩的趋势, 并印证了“冰期走出横断山(glacial out-of-Hengduan Mts.)”的观点。在未来(2061-2080年) 3种典型浓度路径(representative concentration pathway, RCP)的气候情景下, 清香木在我国西南地区的分布都向东扩张, 主要分布在云贵高原与四川盆地结合地带的河谷, 以及云贵高原与广西西部交界地带的河谷中, 这也反映了这些地区河谷地段干旱化的可能, 而当前的潜在分布区趋于消失; 清香木的潜在适宜分布面积在中低浓度路径情景下均将减少约33%, 而在高浓度路径情景下有所增加。
应凌霄, 刘晔, 陈绍田, 沈泽昊 (2016) 气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟. 生物多样性, 24, 453-461. DOI: 10.17520/biods.2015246.
Lingxiao Ying, Ye Liu, Shaotian Chen, Zehao Shen (2016) Simulation of the potential range of Pistacia weinmannifolia in Southwest China with climate change based on the maximum-entropy (Maxent) model. Biodiversity Science, 24, 453-461. DOI: 10.17520/biods.2015246.
环境变量 Environmental variables | 代号 Code |
---|---|
年均温 Mean annual temperature | Bio1 |
昼夜温差月均值 Mean diurnal range (Mean of monthly (max temperature - min temperature)) | Bio2 |
等温性 Isothermality (Bio2/Bio7 × 100) | Bio3 |
温度季节性变化标准差 Standard deviation of temperature seasonality | Bio4 |
最暖月最高温 Max. temperature of warmest month | Bio5 |
最冷月最低温 Min. temperature of coldest month | Bio6 |
温度年较差 Temperature annual range (Bio5 - Bio6) | Bio7 |
最湿季均温 Mean temperature of wettest quarter | Bio8 |
最干季均温 Mean temperature of driest quarter | Bio9 |
最暖季均温 Mean temperature of warmest quarter | Bio10 |
最冷季均温 Mean temperature of coldest quarter | Bio11 |
年降水量 Annual precipitation | Bio12 |
最湿月降水量 Precipitation of wettest month | Bio13 |
最干月降水量 Precipitation of driest month | Bio14 |
降水量季节性变异系数 Coefficient of variation of precipitation seasonality | Bio15 |
最湿季降水量 Precipitation of wettest quarter | Bio16 |
最干季降水量 Precipitation of driest quarter | Bio17 |
最暖季降水量 Precipitation of warmest quarter | Bio18 |
最冷季降水量 Precipitation of coldest quarter | Bio19 |
海拔 Elevation | - |
坡度 Slope | - |
坡向 Aspect | - |
表1 22个用于清香木潜在适宜分布模拟的环境变量
Table 1 22 environmental variables used for modeling potential suitable distribution of Pistacia weinmannifolia
环境变量 Environmental variables | 代号 Code |
---|---|
年均温 Mean annual temperature | Bio1 |
昼夜温差月均值 Mean diurnal range (Mean of monthly (max temperature - min temperature)) | Bio2 |
等温性 Isothermality (Bio2/Bio7 × 100) | Bio3 |
温度季节性变化标准差 Standard deviation of temperature seasonality | Bio4 |
最暖月最高温 Max. temperature of warmest month | Bio5 |
最冷月最低温 Min. temperature of coldest month | Bio6 |
温度年较差 Temperature annual range (Bio5 - Bio6) | Bio7 |
最湿季均温 Mean temperature of wettest quarter | Bio8 |
最干季均温 Mean temperature of driest quarter | Bio9 |
最暖季均温 Mean temperature of warmest quarter | Bio10 |
最冷季均温 Mean temperature of coldest quarter | Bio11 |
年降水量 Annual precipitation | Bio12 |
最湿月降水量 Precipitation of wettest month | Bio13 |
最干月降水量 Precipitation of driest month | Bio14 |
降水量季节性变异系数 Coefficient of variation of precipitation seasonality | Bio15 |
最湿季降水量 Precipitation of wettest quarter | Bio16 |
最干季降水量 Precipitation of driest quarter | Bio17 |
最暖季降水量 Precipitation of warmest quarter | Bio18 |
最冷季降水量 Precipitation of coldest quarter | Bio19 |
海拔 Elevation | - |
坡度 Slope | - |
坡向 Aspect | - |
环境变量 Environmental variables | 贡献率 Contribution (%) | 相关性 Correlation* |
---|---|---|
温度季节变化标准差 SD of temperature seasonality | 24.2 | - |
等温性 Isothermality | 15.3 | + |
最湿月降水量 Precipitation of wettest month | 11.2 | - |
温度年较差 Temperature annual range | 9.8 | - |
最湿季均温 Mean temperature of wettest quarter | 7.6 | - |
年均温 Mean annual temperature | 6.7 | + |
年降水量 Annual precipitation | 4.5 | - |
最冷季均温 Mean temperature of coldest quarter | 4.2 | + |
表2 影响清香木潜在适宜分布的主要环境变量
Table 2 Dominant environmental variables for potential suitable distribution of Pistacia weinmannifolia
环境变量 Environmental variables | 贡献率 Contribution (%) | 相关性 Correlation* |
---|---|---|
温度季节变化标准差 SD of temperature seasonality | 24.2 | - |
等温性 Isothermality | 15.3 | + |
最湿月降水量 Precipitation of wettest month | 11.2 | - |
温度年较差 Temperature annual range | 9.8 | - |
最湿季均温 Mean temperature of wettest quarter | 7.6 | - |
年均温 Mean annual temperature | 6.7 | + |
年降水量 Annual precipitation | 4.5 | - |
最冷季均温 Mean temperature of coldest quarter | 4.2 | + |
图3 气候变化下清香木在中国西南地区的潜在分布格局。为了突出显示适宜分布区, 只显示了研究区域内东部(95° E以东)的结果, 95° E以西的区域无适宜分布。(a)末次间冰期; (b)末次冰盛期; (c)当前历史时期; (d)未来时期(RCP2.6); (e)未来时期(RCP4.5); (f)未来时期(RCP8.5)。
Fig. 3 Patterns of potential distribution for Pistacia weinmannifolia in Southwest China under climate change in different periods, and only the east region of the study area (east of 95° E) was showed to highlight the suitable distributions for Pistacia weinmannifolia. There is no distribution in the west of 95° E. (a) Last Inter-Glacial (LIG); (b) Last Glacial Maximum (LGM); (c) Current period; (d) Future with RCP2.6; (e) Future with RCP4.5; (f) Future with RCP8.5.
1 | An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 19, 171-187. |
2 | Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377. |
3 | Boulangeat I, Gravel D, Thuiller W (2012) Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology Letters, 15, 584-593. |
4 | Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin FF (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4, 111-116. |
5 | Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026. |
6 | Cox CB, Moore PD, Marquardt WC, Demaree RS, Grieve RB (1993) Biogeography: An Ecological and Evolutionary Approach 6th edn. Blackwell Scientific Publications, London. |
7 | Coyne JA, Orr HA (2004) Speciation. Sinauer Associates,Sunderland. |
8 | Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z (2015) Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Global Change Biology, 21, 388-395. |
9 | Dong M, Wu TW, Wang ZZ, Xin XG, Zhang F (2013) Simulation of the precipitation and its variation during the 20th century using the BCC climate model (BCC_CSM1.0). Journal of Applied Meteorological Science, 24(1), 1-11.(in Chinese with English abstract) |
[董敏, 吴统文, 王在志, 辛晓歌, 张芳 (2013) BCC_CSM1.0模式对20世纪降水及其变率的模拟. 应用气象学报, 24(1), 1-11.] | |
10 | Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE, Araujo M (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129-151. |
11 | Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of Maxent for ecologists. Diversity and Distributions, 17, 43-57. |
12 | Fan DM, Yue JP, Nie ZL, Li ZM, Comes HP, Sun H (2013) Phylogeography of Sophora davidii (Leguminosae) across the ‘acros-Kaiyong Line’, an important phytogeographic boundary in Southwest China. Molecular Ecology, 22, 4270-4288. |
13 | Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81, 583-585. |
14 | Fu LG (2001) Higher Plants of China, Vol. 8. Qingdao Publishing House, Qingdao.(in Chinese with English foreword) |
[傅立国 (2001) 中国高等植物第八卷. 青岛出版社, 青岛.] | |
15 | Gelviz-Gelvez SM, Pavón NP, Illoldi-Rangel P, Ballesteros- Barrera C (2015) Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico. Ecological Engineering, 74, 302-309. |
16 | Hasumi H, Emori S (2004) K-1 Coupled GCM (MIROC) description. Center for Climate System Research (CCSR), University of Tokyo, Tokyo. |
17 | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. |
18 | Hu Q, Jiang DB, Fan GZ (2015) Climate change projection on the Tibetan Plateau: results of CMIP5 models. Chinese Journal of Atmospheric Sciences, 39, 260-270.(in Chinese with English abstract) |
[胡芩, 姜大膀, 范广洲 (2015) 青藏高原未来气候变化预估: CMIP5 模式结果. 大气科学, 39, 260-270.] | |
19 | Intergovernmental Panel on Climate Change (IPCC) (2013) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
20 | Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345-357. |
21 | Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st-century warming scenarios. Geophysical Research Letters, 38, L08705. |
22 | Kozhoridze G, Orlovsky N, Orlovsky L, Blumberg DG, Golan-Goldhirsh A (2015) Geographic distribution and migration pathways of Pistacia—present, past and future. Ecography, 38, 1-14. |
23 | Lin RP, Zhou TJ (2015) Reproducibility and future projections of the precipitation structure in East Asia in four Chinese GCMs that participated in the CMIP5 experiments. Chinese Journal of Atmospheric Sciences, 39, 338-356.(in Chinese with English abstract) |
[林壬萍, 周天军 (2015) 参加CMIP5计划的四个中国模式模拟的东亚地区降水结构特征及未来变化. 大气科学, 39, 338-356.] | |
24 | Liu XD, Cheng ZG, Zhang R (2009) The A1B scenario projection for climate change over the Tibetan Plateau in the next 30-50 years. Plateau Meteorology, 28, 475-484.(in Chinese with English abstract) |
[刘晓东, 程志刚, 张冉 (2009) 青藏高原未来30~50年A1B情景下气候变化预估. 高原气象, 28, 475-484.] | |
25 | Liu Y, Li P, Xu Y, Shi SL, Ying LX, Zhang WJ, Peng PH, Shen ZH (2016) Quantitative classification and ordination for plant communities in dry valleys of Southwest China. Biodiversity Science, 24, 378-388.(in Chinese with English abstract) |
[刘晔, 李鹏, 许玥, 石松林, 应凌霄, 张婉君, 彭培好, 沈泽昊 (2016) 中国西南干旱河谷植物群落的数量分类和排序分析. 生物多样性, 24, 378-388.] | |
26 | Merow C, Smith MJ, Silander JA (2013) A practical guide to Maxent for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 1058-1069. |
27 | Miller RG (1968) Jackknifing variances. The Annals of Mathematical Statistics, 39, 567-582. |
28 | Moor H, Hylander K, Norberg J (2015) Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. AMBIO, 44, 113-126. |
29 | Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756. |
30 | Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A (2006) Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science, 311, 1751-1753. |
31 | Patricola CM, Chang P, Saravanan R (2015) Impact of Atlantic SST and high frequency atmospheric variability on the 1993 and 2008 Midwest floods: regional climate model simulations of extreme climate events. Climatic Change, 129, 397-411. |
32 | Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. |
33 | Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175. |
34 | Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197. |
35 | Pio DV, Engler R, Linder HP, Monadjem A, Cotterill FPD, Taylor PJ, Schoeman MC, Price BW, Villet MH, Eick G, Salamin N, Guisan A (2014) Climate change effects on animal and plant phylogenetic diversity in southern Africa. Global Change Biology, 20, 1538-1549. |
36 | Planton S, Déqué M, Chauvin F, Terray L (2008) Expected impacts of climate change on extreme climate events. Comptes Rendus Geoscience, 340, 564-574. |
37 | Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59, 225-244. |
38 | Raes N, ter Steege H (2007) A null-model for significance testing of presence-only species distribution models. Ecography, 30, 727-736. |
39 | Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution, 3, 545-554. |
40 | Ruiz-Labourdette D, Nogués-Bravo D, Ollero HS, Schmitz MF, Pineda FD (2012) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography, 39, 162-176. |
41 | Shi YJ, Ren YL, Wang SG, Shang KZ, Li X, Zhou GL (2012) Verification of simulation ability of BCC_CSM climate model in regional climate change in China. Plateau Meteorology, 31, 1257-1267.(in Chinese with English abstract) |
[石彦军, 任余龙, 王式功, 尚可政, 李旭, 周甘霖 (2012) BCC_CSM气候模式对中国区域气候变化模拟能力的检验. 高原气象, 31, 1257-1267.] | |
42 | Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature, 470, 531-534. |
43 | van der Wal J, Murphy HT, Kutt AS, Perkins GC, Bateman BL, Perry JJ, Reside AE (2013) Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nature Climate Change, 3, 239-243. |
44 | van Zyl JJ (2001) The shuttle radar topography mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronautica, 48, 559-565. |
45 | Veloz SD, Williams JW, Blois JL, He F, Otto-Bliesner, Liu Z (2012) No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Global Change Biology, 18, 1698-1713. |
46 | Wang B (2002) Rainy season of the Asian-Pacific summer monsoon. Journal of Climate, 15, 386-398. |
47 | Wang Y, Zhang C, Li K (2013) Investigation on the distribution of Pistacia weinmannifolia in dry-hot valley of Yunnan Province. Forest Resources Management, (3), 156-160.(in Chinese with English abstract) |
[王妍, 张超, 李昆 (2013) 云南干热河谷地区清香木分布调查. 林业资源管理, (3), 156-160.] | |
48 | Wang Y, Zhang C, Li K (2014) Responses of Pistacia weinmannifolia seedling to different water gradient in dry-hot valley. Journal of Central South University of Forestry & Technology, 34(10), 19-25.(in Chinese with English abstract) |
[王妍, 张超, 李昆 (2014) 干热河谷乡土树种清香木幼苗生长对不同水分梯度的响应. 中南林业科技大学学报, 34(10), 19-25.] | |
49 | Xie L, Yang ZY, Wen J, Li DZ, Yi TS (2014) Biogeographic history of Pistacia (Anacardiaceae), emphasizing the evolution of the Madrean-Tethyan and the eastern Asian-Tethyan disjunctions. Molecular Phylogenetics and Evolution, 77, 136-146. |
50 | Xu CH, Xu Y (2012) The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters, 5, 527-533. |
51 | Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell GEH, Veran S (2013) Presence-only modelling using Maxent: when can we trust the inferences? Methods in Ecology and Evolution, 4, 236-243. |
52 | Yu DH, Yuan CJ, An MT, Li H, Yan LB (2014) Study on the niche characteristics of main tree species of Pistacia weinmannifolia community in natural forest along Chishui River. Journal of West China Forestry Science, 43(6), 91-96.(in Chinese with English abstract) |
[余德会, 袁丛军, 安明态, 李鹤, 严令斌 (2014) 赤水河流域清香木天然群落主要树种生态位研究. 西部林业科学, 43(6), 91-96.] | |
53 | Zhao X, Sun H, Hou A, Zhao Q, Wei T, Xin W (2005) Antioxidant properties of two gallotannins isolated from the leaves of Pistacia weinmannifolia. Biochimica et Biophysica Acta, 1725, 103-110. |
54 | Zhou BH (2008) Volatile oil in the leaves of Pistacia weinmannifolia and their antibacterial effects. Chinese Journal of Applied Chemistry, 25, 305-308.(in Chinese with English abstract) |
[周葆华 (2008) 清香木叶挥发油成分及其抑菌作用. 应用化学, 25, 305-308.] | |
55 | Zhou X, Li QQ, Sun XB, Wei M (2014) Simulation and projection of temperature in China with BCC_CSM1.1 model. Journal of Applied Meteorological Science, 25, 95-106.(in Chinese with English abstract) |
[周鑫, 李清泉, 孙秀博, 魏敏 (2014) BCC_CSM1.1模式对我国气温的模拟和预估. 应用气象学报, 25, 95-106.] |
[1] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[2] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[3] | 刘伟, 王濡格, 范天巧, 娜依曼·阿不都力江, 宋新航, 肖书平, 郭宁, 帅凌鹰. 福建省明溪县黑冠鹃隼生境适宜性[J]. 生物多样性, 2023, 31(7): 22660-. |
[4] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[5] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[6] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[7] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[8] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
[9] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[10] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[11] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[12] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[13] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
[14] | 宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙. 三江并流区树线生境小型兽类多样性多维度评价及其保护启示[J]. 生物多样性, 2021, 29(9): 1215-1228. |
[15] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn