生物多样性 ›› 2021, Vol. 29 ›› Issue (9): 1215-1228. DOI: 10.17520/biods.2021006
宋文宇1,2, 李学友1, 王洪娇1, 陈中正3,1, 何水旺1, 蒋学龙1,*()
收稿日期:
2021-01-06
接受日期:
2021-06-17
出版日期:
2021-09-20
发布日期:
2021-07-27
通讯作者:
蒋学龙
作者简介:
* E-mail: jiangxl@mail.kiz.ac.cn基金资助:
Wenyu Song1,2, Xueyou Li1, Hongjiao Wang1, Zhongzheng Chen3,1, Shuiwang He1, Xuelong Jiang1,*()
Received:
2021-01-06
Accepted:
2021-06-17
Online:
2021-09-20
Published:
2021-07-27
Contact:
Xuelong Jiang
摘要:
三江并流区具有极高的环境异质性和丰富的生物多样性, 树线以上的高山生境是该地区的核心景观之一。本研究拟通过物种、系统发育和功能多样性对高山小型兽类多样性进行评价, 并从保护生物学的角度讨论生物多样性多维度评价的意义。2013年9月至2018年11月对三江并流区树线区域展开规范化野外调查, 收集小型兽类群落信息。从野外采集的组织样品中提取、扩增、测定线粒体CYTB基因序列, 构建小型兽类物种系统发育树。通过α多样性的不同维度以及功能冗余度评价了三江并流区树线生境小型兽类多样性。结果显示, 使用不同数据类型(出现/缺失数据和多度数据)的结果并不一致, 说明仅使用传统的丰富度指数对于描述多样性分布存在较大局限。物种和系统发育多样性在不同地点间的分布相似, 但功能多样性的分布与这两者有所差异, 从另一角度说明综合评价生物多样性的不同维度对于全面保护演化历史和生态功能的必要性。与高黎贡山、云岭相比较, 怒山山脉在5个样带尺度的多样性指数上呈现最高水平, 且具有最低的功能冗余度, 说明怒山的研究和保护力度均亟待加强。
宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙 (2021) 三江并流区树线生境小型兽类多样性多维度评价及其保护启示. 生物多样性, 29, 1215-1228. DOI: 10.17520/biods.2021006.
Wenyu Song, Xueyou Li, Hongjiao Wang, Zhongzheng Chen, Shuiwang He, Xuelong Jiang (2021) Multi-dimensional evaluation of small mammal diversity in tree line habitats across the Three Parallel Rivers of Yunnan Protected Areas: Implications for conservation. Biodiversity Science, 29, 1215-1228. DOI: 10.17520/biods.2021006.
图2 基于CYTB构建的三江并流区高山小型兽类物种贝叶斯树。节点处数值为后验概率。
Fig. 2 Bayesian species tree of alpine small mammals based on the CYTB gene. Node numbers denotes posterior probabilities.
多样性指数 Diversity index | ||||||
---|---|---|---|---|---|---|
SR | D | PD | MPD | FRic | Q | |
雨季前 Before wet season | 10.04 ± 2.68 | 0.68 ± 0.14 | 1.36 ± 0.30 | 0.22 ± 0.05 | 0.27 ± 0.18 | 0.07 ± 0.02 |
雨季后 After wet season | 8.92 ± 2.52 | 0.68 ± 0.14 | 1.24 ± 0.29 | 0.23 ± 0.05 | 0.18 ± 0.16 | 0.06 ± 0.02 |
SR: 物种丰富度; D: Simpson指数; PD: Faith's系统发育多样性; MPD: 种间平均配对距离; FRic; 功能丰富度; Q: Rao的二次熵。 SR, Species richness; D: Simpson's index; PD, Faith's phylogenetic diversity; MPD, Mean pairwise distance; FRic, Functional richness, Q, Rao's quadratic entropy. |
表1 不同季节18个样地样带尺度的α多样性比较(mean ± SD)
Table 1 Comparison of transect level α-diversity measurements in the 18 studied sites between different seasons (mean ± SD)
多样性指数 Diversity index | ||||||
---|---|---|---|---|---|---|
SR | D | PD | MPD | FRic | Q | |
雨季前 Before wet season | 10.04 ± 2.68 | 0.68 ± 0.14 | 1.36 ± 0.30 | 0.22 ± 0.05 | 0.27 ± 0.18 | 0.07 ± 0.02 |
雨季后 After wet season | 8.92 ± 2.52 | 0.68 ± 0.14 | 1.24 ± 0.29 | 0.23 ± 0.05 | 0.18 ± 0.16 | 0.06 ± 0.02 |
SR: 物种丰富度; D: Simpson指数; PD: Faith's系统发育多样性; MPD: 种间平均配对距离; FRic; 功能丰富度; Q: Rao的二次熵。 SR, Species richness; D: Simpson's index; PD, Faith's phylogenetic diversity; MPD, Mean pairwise distance; FRic, Functional richness, Q, Rao's quadratic entropy. |
山脉 Mountain range | 多样性指数 Diversity index | ||||||
---|---|---|---|---|---|---|---|
SR | PD | FRic | D | MPD | Q | R | |
高黎贡山 Mt. Gaoligong | 9.90 ± 2.42 | 1.37 ± 0.25 | 0.20 ± 0.15 | 0.70 ± 0.16 | 0.24 ± 0.05 | 0.046 ± 0.011 | 0.575 ± 0.020 |
怒山 Mt. Nushan | 11.62 ± 2.72 | 1.49 ± 0.28 | 0.29 ± 0.16 | 0.70 ± 0.22 | 0.23 ± 0.07 | 0.049 ± 0.017 | 0.569 ± 0.046 |
云岭 Mt. Yunling | 9.54 ± 1.90 | 1.34 ± 0.23 | 0.23 ± 0.16 | 0.66 ± 0.08 | 0.20 ± 0.03 | 0.044 ± 0.011 | 0.571 ± 0.013 |
沙鲁里山 Mt. Shaluli | 8.18 ± 2.63 | 1.13 ± 0.32 | 0.17 ± 0.16 | 0.67 ± 0.13 | 0.20 ± 0.05 | 0.044 ± 0.013 | 0.569 ± 0.041 |
SR: 物种丰富度; D: Simpson指数; PD: Faith's系统发育多样性; MPD: 种间平均配对距离; FRic; 功能丰富度; Q: Rao的二次熵; R: 功能冗余度 SR: species richness; D: Simpson's index; PD: Faith's phylogenetic diversity; MPD: mean pairwise distance; FRic: functional richness, Q: Rao's quadratic entropy; R: functional redundancy |
表2 不同山脉样带尺度的多维度α多样性及功能冗余度水平(mean ± SD)
Table 2 Multi-dimensional evaluation of transect level α-diversity and functional redundancy in different major mountain ranges (mean ± SD)
山脉 Mountain range | 多样性指数 Diversity index | ||||||
---|---|---|---|---|---|---|---|
SR | PD | FRic | D | MPD | Q | R | |
高黎贡山 Mt. Gaoligong | 9.90 ± 2.42 | 1.37 ± 0.25 | 0.20 ± 0.15 | 0.70 ± 0.16 | 0.24 ± 0.05 | 0.046 ± 0.011 | 0.575 ± 0.020 |
怒山 Mt. Nushan | 11.62 ± 2.72 | 1.49 ± 0.28 | 0.29 ± 0.16 | 0.70 ± 0.22 | 0.23 ± 0.07 | 0.049 ± 0.017 | 0.569 ± 0.046 |
云岭 Mt. Yunling | 9.54 ± 1.90 | 1.34 ± 0.23 | 0.23 ± 0.16 | 0.66 ± 0.08 | 0.20 ± 0.03 | 0.044 ± 0.011 | 0.571 ± 0.013 |
沙鲁里山 Mt. Shaluli | 8.18 ± 2.63 | 1.13 ± 0.32 | 0.17 ± 0.16 | 0.67 ± 0.13 | 0.20 ± 0.05 | 0.044 ± 0.013 | 0.569 ± 0.041 |
SR: 物种丰富度; D: Simpson指数; PD: Faith's系统发育多样性; MPD: 种间平均配对距离; FRic; 功能丰富度; Q: Rao的二次熵; R: 功能冗余度 SR: species richness; D: Simpson's index; PD: Faith's phylogenetic diversity; MPD: mean pairwise distance; FRic: functional richness, Q: Rao's quadratic entropy; R: functional redundancy |
[1] |
Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: Implications for conservation in Yunnan, P. R. China. Arctic, Antarctic, and Alpine Research, 39, 200-209.
DOI URL |
[2] | Barnett A, Dutton J (1995) Expedition Field Techniques: Small Mammals (excluding bats), 2nd edn. Expedition Adivisory Centre, London. |
[3] | Barry RG (2008) Mountain Weather and Climate, 3rd edn. Cambridge University Press, Cambridge. |
[4] |
Botta-Dukát Z (2005) Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16, 533-540.
DOI URL |
[5] |
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH, Xie D, Zhang C, Stadler T, Drummond AJ (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15, e1006650.
DOI URL |
[6] | Brubaker LB, Anderson PM, Hu FS (1995) Arctic tundra biodiversity:A temporal perspective from Late Quaternary pollen records. In: Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin FS, Körner C), pp. 111-125. Springer Berlin Heidelberg, Berlin, Heidelberg. |
[7] | Brum FT, Graham CH, Costa GC, Hedges SB, Penone C, Radeloff VC, Rondinini C, Loyola R, Davidson AD (2017) Global priorities for conservation across multiple dimensions of mammalian diversity. Proceedings of the National Academy of Sciences, USA, 114, 7641-7646. |
[8] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[9] |
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715.
DOI PMID |
[10] |
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253.
DOI URL |
[11] |
Chalmandrier L, Münkemüller T, Lavergne S, Thuiller W (2015) Effects of species' similarity and dominance on the functional and phylogenetic structure of a plant meta-community. Ecology, 96, 143-153.
PMID |
[12] |
Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45-67.
DOI URL |
[13] | Chen JG, Yang Y, Sun H (2011) Advances in the studies of responses of alpine plants to global warming. Chinese Journal of Applied & Environmental Biology, 17, 435-446. (in Chinese with English abstract) |
[陈建国, 杨扬, 孙航 (2011) 高山植物对全球气候变暖的响应研究进展. 应用与环境生物学报, 17, 435-446.] | |
[14] |
Chen ZZ, Li XY, Song WY, Li Q, Onditi K, Khanal L, Jiang XL (2020) Small mammal species richness and turnover along elevational gradient in Yulong Mountain, Yunnan, Southwest China. Ecology and Evolution, 10, 2545-2558.
DOI URL |
[15] | Dai JH, Cui HT (1999) A review on the studies of alpine timberline. Scientia Geographica Sinica, 19, 243-249. (in Chinese with English abstract) |
[戴君虎, 崔海亭 (1999) 国内外高山林线研究综述. 地理科学, 19, 243-249.] | |
[16] | Dai W, Li CY, Zhou SF, Wang YB (2017) Research overview on Baimaxueshan National Nature Reserve from 1996 to 2016. Forest Inventory and Planning, 42, 96-103. (in Chinese with English abstract) |
[代万, 李春叶, 周顺福, 王有兵 (2017) 近20年白马雪山国家级自然保护区研究综述. 林业调查规划, 42, 96-103.] | |
[17] |
De Bello F, Carmona CP, Lepš J, Szava-Kovats R, Pärtel M (2016) Functional diversity through the mean trait dissimilarity: Resolving shortcomings with existing paradigms and algorithms. Oecologia, 180, 933-940.
DOI URL |
[18] | Deng M, Zhou ZK (2004) Seed plant diversity on screes from northwest Yunnan. Acta Botanica Yunnanica, 26, 23-34. (in Chinese with English abstract) |
[邓敏, 周浙昆 (2004) 滇西北高山流石滩植物多样性. 云南植物研究, 26, 23-34.] | |
[19] | Díaz S, Lavorel S, Chapin FS, Tecco PA, Gurvich DE, Grigulis K (2007) Functional diversity-At the crossroads between ecosystem functioning and environmental filters. In: Terrestrial Ecosystems in a Changing World eds Canadell JG, PatakiDE, PitelkaLF,pp.81-91. Springer, Berlin. |
[20] |
Du YB, Wen ZX, Zhang JL, Lv X, Cheng JL, Ge DY, Xia L, Yang QS (2017) The roles of environment, space, and phylogeny in determining functional dispersion of rodents (Rodentia) in the Hengduan Mountains, China. Ecology and Evolution, 7, 10941-10951.
DOI URL |
[21] |
Dueser RD, Shugart HH Jr (1978) Microhabitats in a forest-floor small mammal fauna. Ecology, 59, 89-98.
DOI URL |
[22] |
Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
DOI URL |
[23] |
Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton-Grier AE, Williams L, Wright J (2017) Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biological Reviews of the Cambridge Philosophical Society, 92, 1156-1173.
DOI URL |
[24] |
Gainsbury AM, Tallowin OJS, Meiri S (2018) An updated global data set for diet preferences in terrestrial mammals: Testing the validity of extrapolation. Mammal Review, 48, 160-167.
DOI URL |
[25] |
Gao G, Wang B, He CX, Luo X (2017) Biodiversity of birds and mammals in alpine habitat of Mt. Gaoligong, Lushui County, Yunnan. Biodiversity Science, 25, 332-339. (in Chinese with English abstract)
DOI |
[高歌, 王斌, 何臣相, 罗旭 (2017) 云南泸水高黎贡山高山生境的鸟兽多样性. 生物多样性, 25, 332-339.]
DOI |
|
[26] |
Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado MR, Kazakis G, Krajči J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat JP, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2, 111-115.
DOI URL |
[27] |
He K, Jiang XL (2014) Sky Islands of southwest China. I: An overview of phylogeographic patterns. Chinese Science Bulletin, 59, 585-597.
DOI URL |
[28] |
He K, Li YJ, Brandley MC, Lin LK, Wang YX, Zhang YP, Jiang XL (2010) A multi-locus phylogeny of Nectogalini shrews and influences of the paleoclimate on speciation and evolution. Molecular Phylogenetics and Evolution, 56, 734-746.
DOI URL |
[29] |
He K, Wang WZ, Li Q, Luo PP, Sun YH, Jiang XL (2013) DNA barcoding in surveys of small mammal community: A case study in Lianhuashan, Gansu Province, China. Biodiversity Science, 21, 197-205. (in Chinese with English abstract)
DOI URL |
[何锴, 王文智, 李权, 罗培鹏, 孙悦华, 蒋学龙 (2013) DNA条形码技术在小型兽类鉴定中的探索: 以甘肃莲花山为例. 生物多样性, 21, 197-205.]
DOI |
|
[30] | Hsieh TC, Ma KH, Chao A (2019) iNEXT: iNterpolation and Extrapolation for Species Diversity. R Package Version 2.0.20.https://cran.r-project.org/web/packages/iNEXT/index.html. (accessed on 2021-06-28) |
[31] | Jiang XL, Li Q, Chen ZZ, Zhang B, Li XY, Wan T (2017) Mammals. In:Yunnan Sheng Shengwu Wuzhong Minglu (2016) (eds Gao ZW, Sun H), pp. 583-598. Yunnan Scientific Publishing Press, Kunming. (in Chinese) |
[蒋学龙, 李权, 陈中正, 张斌, 李学友, 万韬 (2017) 哺乳类. 见: 云南省生物物种名录(2016版)(高正文, 孙航主编编), 583-598页. 云南科技出版社, 昆明.] | |
[32] |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
DOI URL |
[33] |
Kissling WD, Dalby L, Fløjgaard C, Lenoir J, Sandel B, Sandom C, Trøjelsgaard K, Svenning JC (2014) Establishing macroecological trait datasets: Digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecology and Evolution, 4, 2913-2930.
DOI URL |
[34] |
Knowles LL (2001) Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshoppers. Molecular Ecology, 10, 691-701.
PMID |
[35] |
Koju NP, He K, Chalise MK, Ray C, Chen ZZ, Zhang B, Wan T, Chen SD, Jiang XL (2017) Multilocus approaches reveal underestimated species diversity and inter-specific gene flow in pikas (Ochotona) from southwestern China. Molecular Phylogenetics and Evolution, 107, 239-245.
DOI URL |
[36] | Körner C (2008) Alpine ecosystems and the high-elevation treeline. In: Encyclopedia of Ecology eds Jørgensen SE, FathBD,pp. 138-144. Elsevier, Amsterdam. |
[37] |
Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer KR, Spehn EM (2017) A global inventory of mountains for bio-geographical applications. Alpine Botany, 127, 1-15.
DOI URL |
[38] | Laliberté E, Legendre P, Shipley B (2014) FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology. R Package Version 1.0-12. https://cran.r-project.org/web/packages/FD/index.html. (accessed on 2021-06-28) |
[39] |
Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556.
DOI URL |
[40] | Lean C, Maclaurin J (2016) The value of phylogenetic diversity. In: Biodiversity Conservation and Phylogenetic Systematics: Preserving Our Evolutionary Heritage in an Extinction Crisis (eds Pellens R, Grandcolas P), pp. 19-37. Springer, Cham. |
[41] | Li D, Gong ZD (2011) Research advance on the fauna and diversity of small mammals in Yunnan Province. Chinese Journal of Vector Biology and Control, 22, 89-93, 97. (in Chinese with English abstract) |
[李栋, 龚正达 (2011) 云南省小型兽类区系与多样性的研究概况. 中国媒介生物学及控制杂志, 22, 89-93, 97.] | |
[42] | Liu SZ, Chai ZX (1986) Geomorphologic characteristics in Hengduan Mountain region. Discovery of Nature, 5(15), 139-143. (in Chinese with English abstract) |
[刘淑珍, 柴宗新 (1986) 横断山区地貌特征. 大自然探索, 5(15), 139-143.] | |
[43] |
Liu Y, Zhang J, Yang WQ (2009) Responses of alpine biodiversity to climate change. Biodiversity Science, 17, 88-96. (in Chinese with English abstract)
DOI |
[刘洋, 张健, 杨万勤 (2009) 高山生物多样性对气候变化响应的研究进展. 生物多样性, 17, 88-96.]
DOI |
|
[44] | Liu ZX, Hong M, Yang GR, Song ZZ, Gao ZH, Sun SH, Xu YY (2013) Preliminary study on vertical spatial niche of small mammals in Shangrila County of Yunnan Province. Chinese Journal of Zoology, 48, 619-625. (in Chinese with English abstract) |
[刘正祥, 洪梅, 杨桂荣, 宋志忠, 高子厚, 孙绍华, 徐友谊 (2013) 香格里拉县小型兽类垂直空间生态位初步研究. 动物学杂志, 48, 619-625.] | |
[45] | López-Delgado EO, Winemiller KO, Villa-Navarro FA (2020) Local environmental factors influence beta-diversity patterns of tropical fish assemblages more than spatial factors. Ecology, 101, e02940. |
[46] |
Lyons MP, Kozak KH (2020) Vanishing islands in the sky? A comparison of correlation- and mechanism-based forecasts of range dynamics for montane salamanders under climate change. Ecography, 43, 481-493.
DOI URL |
[47] | Magurran AE (2003) Measuring Biological Diversity. Blackwell Publishing, Oxford. |
[48] | McCain CM, Grytnes JA (2010) Elevational gradients in species richness. In: Encyclopediaof Life. JohnWiley & Sons, Ltd., Chichester. |
[49] | Ming QZ (2006) The landform Development and Environment Effects of Three Parallel Rivers in the North of Longitudinal Range-gorge Region (LRGR). PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract) |
[明庆忠 (2006) 纵向岭谷北部三江并流区河谷地貌发育及其环境效应研究. 博士学位论文, 兰州大学, 兰州.] | |
[50] | Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global biodiversity conservation:The critical role of hotspots. In: Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Zachos FE, Habel JC), pp. 3-22. Springer, Berlin. |
[51] |
Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876.
DOI URL |
[52] |
Nakamura G, Gonçalves LO, Duarte LDS (2020) Revisiting the dimensionality of biological diversity. Ecography, 43, 539-548.
DOI |
[53] |
Oberosler V, Tenan S, Zipkin EF, Rovero F (2020) Poor management in protected areas is associated with lowered tropical mammal diversity. Animal Conservation, 23, 171-181.
DOI |
[54] |
Ochoa-Ochoa LM, Mejía-Domínguez NR, Velasco JA, Dimitrov D, Marske KA (2020) Dimensions of amphibian alpha diversity in the New World. Journal of Biogeography, 47, 2293-2302.
DOI URL |
[55] | Oksanen J, Blanchet FGB, Friendly MF, Kindt R, Legendre PM, Minchin PR, O'Hrar RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: Community Ecology Package. R Package Version 2.5-7. https://CRAN.R-project.org/package=vegan. (accessed on 2021-06-28) |
[56] | Pan QH, Wang YX, Yan K (2007) A Field Guide to the Mammals of China. China Forestry Publishing House, Beijing. (in Chinese) |
[潘清华, 王应祥, 岩崑 (2007) 中国哺乳动物彩色图鉴. 中国林业出版社, 北京.] | |
[57] |
Pavoine S (2020) adiv: An R package to analyse biodiversity in ecology. Methods in Ecology and Evolution, 11, 1106-1112.
DOI URL |
[58] |
Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain community assembly: A unified approach. Biological Reviews, 86, 792-812.
DOI URL |
[59] |
Posada D (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253-1256.
DOI PMID |
[60] | Quan SY, Yue RP, Zhang LY, Lian HY, Zang YH, Bian CL, Li D, Ju JK, Gong ZD (2010) The composition and spatial distribution of small mammals in the Hengduan Mountains of Yunnan, China. Chinese Journal of Vector Biology and Control, 21, 16-22. (in Chinese with English abstract) |
[权寿瑛, 岳仁苹, 张丽云, 连宏宇, 臧颖惠, 边长玲, 李栋, 琚俊科, 龚正达 (2010) 云南省横断山区小型兽类的组成及空间分布. 中国媒介生物学及控制杂志, 21, 16-22.] | |
[61] |
Rahbek C, Borregaard MK, Antonelli A, Colwell RK, Holt BG, Nogues-Bravo D, Rasmussen CMØ, Richardson K, Rosing MT, Whittaker RJ, Fjeldså J (2019) Building mountain biodiversity: Geological and evolutionary processes. Science, 365, 1114-1119.
DOI URL |
[62] | Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901-904. |
[63] |
Ramírez-Bautista A, Williams JN (2019) The importance of productivity and seasonality for structuring small rodent diversity across a tropical elevation gradient. Oecologia, 190, 275-286.
DOI PMID |
[64] |
Ricotta C (2007) A semantic taxonomy for diversity measures. Acta Biotheoretica, 55, 23-33.
PMID |
[65] |
Ricotta C de Bello F,Moretti M, Caccianiga M, Cerabolini BEL, Pavoine S (2016) Measuring the functional redundancy of biological communities: A quantitative guide. Methods in Ecology and Evolution, 7, 1386-1395.
DOI URL |
[66] |
Sherman R, Mullen R, Li HM, Fang ZD, Wang Y (2008) Spatial patterns of plant diversity and communities in alpine ecosystems of the Hengduan Mountains, northwest Yunnan, China. Journal of Plant Ecology, 1, 117-136.
DOI URL |
[67] |
Sigdel SR, Liang EY, Wang YF, Dawadi B, Camarero JJ (2020) Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns. Journal of Biogeography, 47, 1816-1826.
DOI URL |
[68] |
Simpson E.H. (1949) Measurement of Diversity. Nature, 163, 688-688.
DOI URL |
[69] |
Smiley TM, Title PO, Zelditch ML, Terry RC (2020) Multi- dimensional biodiversity hotspots and the future of taxonomic, ecological and phylogenetic diversity: A case study of North American rodents. Global Ecology and Biogeography, 29, 516-533.
DOI URL |
[70] | Smith AT, Xie Y (2009) A Guide to the Mammals of China. Hunan Education Press, Hunan. (in Chinese) |
[Smith AT, 解焱 (2009) 中国兽类野外手册. 湖南教育出版社, 长沙.] | |
[71] | Song WY, Li XY, Chen ZZ, Li Q, Onditi KO, He SW, Jiang XL (2020) Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages. Zoological Research, 41, 670-683. |
[72] | Song WY, Wang HJ, Li YX, He SW, Jiang XL (2021) New records of Tibetan shrew (Sorex thibetanus Kastschenko, 1905) and Gansu shrew (Sorex cansulus Thomas, 1912) in Yunnan Province. Acta Theriologica Sinica, 41, 352-360. (in Chinese with English abstract) |
[宋文宇, 王洪娇, 李弈仙, 何水旺, 蒋学龙 (2021) 云南省两种兽类新纪录--藏鼩鼱(Sorex thibetanus Kastschenko, 1905)和甘肃鼩鼱(Sorex cansulus Thomas, 1912). 兽类学报, 41, 352-360.] | |
[73] | South-west Foresty College, Yunnan Forestry Survey Planning and Design Institute, Yunnan Provincial Forestry Department (1995) The Gaoligong National Nature Reserve. China Forestry Publishing House, Beijing. (in Chinese) |
[西南林学院, 云南省林业调查规划设计院, 云南省林业厅 (1995) 高黎贡山国家自然保护区. 中国林业出版社, 北京.] | |
[74] |
Stevens RD, Tello JS (2014) On the measurement of dimensionality of biodiversity. Global Ecology and Biogeography, 23, 1115-1125.
DOI URL |
[75] |
Testolin R, Attorre F, Jiménez-Alfaro B (2020) Global distribution and bioclimatic characterization of alpine biomes. Ecography, 43, 779-788.
DOI URL |
[76] | Veech JA (2018) Measuring biodiversity. In: Encyclopedia of the Anthropocene, pp. 287-295. Elsevier, Amsterdam. |
[77] | Vellend M, Cornwell WK, Magnuson-Ford K, Mooers AØ (2011) Measuring phylogenetic biodiversity. In: Biological Diversity: Frontiers in Measurement and Assessment, pp. 194-207. Oxford University Press, Oxford. |
[78] | Villéger S, Maire E, Leprieur F (2017) On the risks of using dendrograms to measure functional diversity and multidimensional spaces to measure phylogenetic diversity: A comment on Sobral et al. (2016). Ecology Letters, 20, 554-557. |
[79] |
Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
DOI URL |
[80] |
Walker BH (1992) Biodiversity and ecological redundancy. Conservation Biology, 6, 18-23.
DOI URL |
[81] | Wang WL (2014) Alpine Treeline Patterns and Its Formation Causes in the Three Parallel Rivers Region, NW Yunnan. PhD dissertation, Yunnan University, Kunming. (in Chinese with English abstract) |
[王文礼 (2014) 滇西北“三江并流”区高山树线的分布格局及其形成机制. 博士学位论文, 云南大学, 昆明.] | |
[82] |
Wang WL, Körner C, Zhang ZM, Wu RD, Geng YP, Shi W, Ou XK (2013) No slope exposure effect on alpine treeline position in the Three Parallel Rivers Region, SW China. Alpine Botany, 123, 87-95.
DOI URL |
[83] |
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
DOI URL |
[84] |
Wen ZX, Wu YJ, Du YB, Xia L, Ge DY, Yang QS, Chen LM (2014) Seasonal change of species diversity patterns of non-volant small mammals along three subtropical elevational gradients. Biotropica, 46, 479-488.
DOI URL |
[85] |
Wershow ST, DeChaine EG (2018) Retreat to refugia: Severe habitat contraction projected for endemic alpine plants of the Olympic Peninsula. American Journal of Botany, 105, 760-778.
DOI PMID |
[86] |
Wu YJ, Yang QS, Wen ZX, Xia L, Zhang Q, Zhou HM (2013) What drives the species richness patterns of non-volant small mammals along a subtropical elevational gradient? Ecography, 36, 185-196.
DOI URL |
[87] | Xu B, Li ZM, Sun H (2014) Seed Plants of the Alpine Subnival Belt from the Hengduan Mountains, SW China. Science Press, Beijing. (in Chinese) |
[徐波, 李志敏, 孙航 (2014) 横断山高山冰缘带种子植物. 科学出版社, 北京.] | |
[88] | Yang JW (2002) Status and solutions of biodiversity protection in northwest Yunnan. Forest Resources Management, (3), 61-65. (in Chinese with English abstract) |
[杨家伟 (2002) 滇西北地区生物多样性保护现状与对策. 林业资源管理, (3), 61-65.] | |
[89] | Yang QY, Shen KD (1984) On vertical zonation of the northwestern Yunnan. Acta Geographica Sinica, 39, 141-147. (in Chinese with English abstract) |
[杨勤业, 沈康达 (1984) 滇西北横断山地区的垂直自然带. 地理学报, 39, 141-147.]
DOI |
|
[90] | Yunnan Provincial Forestry Department, People's Government of Diqing Tibetan Autonomous Prefecture, Administrative Bureau of the Baima Snow Mountain National Nature Reserve, Diqing Tibetan Autonomous Prefecture Forestry Bureau, Yunnan Institute of Forest Inventory and Planning (2003) The Baima Snow Mountain National Nature Reserve. Yunnan Ethnic Publishing House, Kunming. (in Chinese) |
[ 云南省林业厅, 迪庆藏族自治州人民政府, 白马雪山国家级自然保护区管理局, 迪庆藏族自治州林业局, 云南省林业调查规划院 (2003) 白马雪山国家级自然保护区. 云南民族出版社, 昆明.] | |
[91] | Zhang R, Huang B, Zhou RL (2013) Endemic terrestrial mammal species to China and their spatial distribution patterns. Yunnan Geographic Environment Research, 25, 65-70. (in Chinese) |
[张瑞, 黄贝, 周汝良 (2013) 中国陆栖哺乳动物特有种及其空间分布格局. 云南地理环境研究, 25, 65-70.] | |
[92] | Zhang RZ (1997) Physical Geography of Hengduan Mountains. Science Press, Beijing. (in Chinese) |
[张荣祖 (1997) 横断山区自然地理. 科学出版社, 北京.] |
[1] | 马海港 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
[2] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[3] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[4] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[5] | 李爽, 朱彦鹏, 曹萌, 李俊生. 我国生物多样性保护标准体系现状、问题与建议[J]. 生物多样性, 2022, 30(11): 22117-. |
[6] | 张健, 孔宏智, 黄晓磊, 傅声雷, 郭良栋, 郭庆华, 雷富民, 吕植, 周玉荣, 马克平. 中国生物多样性研究的30个核心问题[J]. 生物多样性, 2022, 30(10): 22609-. |
[7] | 任淯, 陶胜利, 胡天宇, 杨海涛, 关宏灿, 苏艳军, 程凯, 陈梦玺, 万华伟, 郭庆华. 中国生物多样性核心监测指标遥感产品体系构建与思考[J]. 生物多样性, 2022, 30(10): 22530-. |
[8] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[9] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
[10] | 高梅香, 刘启龙, 朱家祺, 赵博宇, 杜嘉, 吴东辉. 中国农田土壤动物长期监测样地科学调查监测的实施方法[J]. 生物多样性, 2022, 30(1): 21265-. |
[11] | 戴尊, 陈星, 张建行, 朱毛洁, 宋坤, 邢诗晨, 涂淑雯, 邹璐, 雷祖培, 李宏庆, 王健. 浙江乌岩岭国家级自然保护区叶附生苔类及附主植物多样性[J]. 生物多样性, 2022, 30(1): 21229-. |
[12] | 万霞, 张丽兵. 2020年发表的全球维管植物新种[J]. 生物多样性, 2021, 29(8): 1003-1010. |
[13] | 王琴, 陈远, 禹洋, 向左甫. 动物对孢子植物的传播模式及进化意义[J]. 生物多样性, 2021, 29(7): 995-1001. |
[14] | 周润, 慈秀芹, 肖建华, 曹关龙, 李捷. 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估[J]. 生物多样性, 2021, 29(6): 697-711. |
[15] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn