生物多样性 ›› 2022, Vol. 30 ›› Issue (5): 21451.  DOI: 10.17520/biods.2021451

• 综述 • 上一篇    下一篇

山地物种海拔分布对气候变化响应的研究进展

祖奎玲, 王志恒()   

  1. 北京大学城市与环境学院生态研究中心、地表过程分析与模拟教育部重点实验室, 北京 100871
  • 收稿日期:2021-11-12 接受日期:2022-02-02 出版日期:2022-05-20 发布日期:2022-03-01
  • 通讯作者: 王志恒
  • 作者简介:* E-mail: zhiheng.wang@pku.edu.cn
  • 基金资助:
    国家自然科学基金(32125026);国家自然科学基金(31988102)

Research progress on the elevational distribution of mountain species in response to climate change

Kuiling Zu, Zhiheng Wang()   

  1. Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871
  • Received:2021-11-12 Accepted:2022-02-02 Online:2022-05-20 Published:2022-03-01
  • Contact: Zhiheng Wang

摘要:

过去1个世纪以来, 全球气候变化显著并已成为全球生物多样性面临的重要威胁之一。如何利用有限的资源最有效地保护生物多样性已成为亟待解决的最重要科学问题之一。山地因其具有较高的生境异质性、气候多样性和较低的人类活动干扰, 已成为最重要的生物多样性避难所, 也具有较高的生态服务价值, 在生物多样性保护中扮演着重要角色。但山地更容易受到气候变化的影响, 山地地区较为剧烈的气候变化将对山地生态系统的稳定性及其多样性造成严重威胁。理解山地物种海拔分布对气候变化的响应和潜在机理, 以及气候变化带来的物种海拔分布变化的负面效应, 将为全球气候变化背景下的山地生物多样性保护提供参考依据。本文综述了全球山地地区的气候变化情况, 总结了物种海拔迁移的研究进展, 重点讨论了山地物种分布最适海拔、海拔上下限和海拔分布范围变化的研究进展及不足, 比较了不同地区和不同类群物种海拔迁移的差异性, 以及物种对气候变化响应的滞后性。从生物及非生物因素等多个角度概括了物种海拔迁移响应气候变化的潜在机理, 评估并总结了气候变化引起的物种海拔分布所产生的负面效应, 主要对物种向上迁移对高海拔地区物种多样性的影响、物种迁移带来的分布区改变导致的物种灭绝风险以及物种海拔分布变化导致的种间相互作用改变等方面进行全面探讨。最后, 展望了未来在此领域研究中应注意的问题, 提出了在未来气候变化下山地生物多样性保护需要采取的措施, 强调应重点关注对气候变化较为敏感的类群及生物多样性区域, 加强中国山地物种对气候变化响应的监测网络建设和研究力度, 重点加强监测气候变化对动植物互作关系的影响。

关键词: 海拔迁移, 气候变化, 保护策略, 分布区, 山地, 滞后

Abstract

Background & Aim: Over the past century, the global climate has changed dramatically and has become a major threat to global biodiversity. How to limit use of resources and power in order to protect biodiversity effectively has become one of the most significant issues concerning researchers. Mountain regions play an important role in biodiversity protection and have high ecological service value. They have become one of the most important biodiversity refuges due to its high habitat heterogeneity, climate diversity, and low human disturbance. However, mountain regions are more vulnerable to climate change, and severe climate change in mountain regions will pose a serious threat to the stability and diversity of mountain species ecosystems. Therefore, understanding the potential mechanisms of climate change and how they affect the elevational distributions of mountain species, and the negative effects of the elevational distribution changes induced by climate change, will provide a direct reference for the future conservation of mountain biodiversity under global climate change. In this paper, we review the research progress of climate change and the elevational range shifts of species in mountain regions around the world.

Summary: We focus on changes of optimum elevation, upper and lower range limits, and range size of species elevational distributions in response to climate change in mountain regions because the elevational range shifts of mountain species have profound impact on mountain biodiversity. We summarize the direction and magnitude of elevational range shifts across species and regions using historical and recent occurrence records of different species, and the lagged effect of climate change on species. Furthermore, we also summarize the potential mechanism of species elevational shifts in response to climate change from biological and abiotic factors and evaluate the negative effects of species elevational distributions caused by climate change. This paper mainly discusses the impact of the upward shifts of species in high-altitude regions, the increase of species extinction risk caused by the elevational shifts of species, and the change of species interactions caused by the elevational shifts of species.

Perspectives: We prospect the problems that should be paid attention to during future research on elevational shifts of species, as well as measures to be taken to protect mountain biodiversity under climate change. We suggest that we should focus on the groups and biodiversity regions that are more sensitive to climate change. Furthermore, we iterate the need to strengthen China’s mountainous species monitoring network and research efforts. Emphasis is placed on strengthening monitoring of the effects of climate change on animal and plant interactions.

Key words: elevational shifts, climate change, protection strategy, range size, mountains, lag