生物多样性 ›› 2022, Vol. 30 ›› Issue (5): 21451. DOI: 10.17520/biods.2021451
收稿日期:
2021-11-12
接受日期:
2022-02-02
出版日期:
2022-05-20
发布日期:
2022-03-01
通讯作者:
王志恒
作者简介:
* E-mail: zhiheng.wang@pku.edu.cn基金资助:
Received:
2021-11-12
Accepted:
2022-02-02
Online:
2022-05-20
Published:
2022-03-01
Contact:
Zhiheng Wang
摘要:
过去1个世纪以来, 全球气候变化显著并已成为全球生物多样性面临的重要威胁之一。如何利用有限的资源最有效地保护生物多样性已成为亟待解决的最重要科学问题之一。山地因其具有较高的生境异质性、气候多样性和较低的人类活动干扰, 已成为最重要的生物多样性避难所, 也具有较高的生态服务价值, 在生物多样性保护中扮演着重要角色。但山地更容易受到气候变化的影响, 山地地区较为剧烈的气候变化将对山地生态系统的稳定性及其多样性造成严重威胁。理解山地物种海拔分布对气候变化的响应和潜在机理, 以及气候变化带来的物种海拔分布变化的负面效应, 将为全球气候变化背景下的山地生物多样性保护提供参考依据。本文综述了全球山地地区的气候变化情况, 总结了物种海拔迁移的研究进展, 重点讨论了山地物种分布最适海拔、海拔上下限和海拔分布范围变化的研究进展及不足, 比较了不同地区和不同类群物种海拔迁移的差异性, 以及物种对气候变化响应的滞后性。从生物及非生物因素等多个角度概括了物种海拔迁移响应气候变化的潜在机理, 评估并总结了气候变化引起的物种海拔分布所产生的负面效应, 主要对物种向上迁移对高海拔地区物种多样性的影响、物种迁移带来的分布区改变导致的物种灭绝风险以及物种海拔分布变化导致的种间相互作用改变等方面进行全面探讨。最后, 展望了未来在此领域研究中应注意的问题, 提出了在未来气候变化下山地生物多样性保护需要采取的措施, 强调应重点关注对气候变化较为敏感的类群及生物多样性区域, 加强中国山地物种对气候变化响应的监测网络建设和研究力度, 重点加强监测气候变化对动植物互作关系的影响。
祖奎玲, 王志恒 (2022) 山地物种海拔分布对气候变化响应的研究进展. 生物多样性, 30, 21451. DOI: 10.17520/biods.2021451.
Kuiling Zu, Zhiheng Wang (2022) Research progress on the elevational distribution of mountain species in response to climate change. Biodiversity Science, 30, 21451. DOI: 10.17520/biods.2021451.
[1] |
Ahmad M, Sharma P, Rathee S, Singh HP, Batish DR, Lone GR, Kaur S, Jaryan V, Kohli RK (2021) Niche width analyses facilitate identification of high-risk endemic species at high altitudes in western Himalayas. Ecological Indicators, 126, 107653.
DOI URL |
[2] |
Alexander JM, Chalmandrier L, Lenoir J, Burgess TI, Essl F, Haider S, Kueffer C, McDougall K, Milbau A, Nuñez MA, Pauchard A, Rabitsch W, Rew LJ, Sanders NJ, Pellissier L (2018) Lags in the response of mountain plant communities to climate change. Global Change Biology, 24, 563-579.
DOI PMID |
[3] |
Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature, 525, 515-518.
DOI URL |
[4] | Améztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Global Ecology and Biogeography, 19, 632-641. |
[5] |
Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species’ traits predict recent shifts at expanding range edges? Ecology Letters, 14, 677-689.
DOI PMID |
[6] |
Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: Implications for conservation in Yunnan, P.R. China. Arctic, Antarctic, and Alpine Research, 39, 200-209.
DOI URL |
[7] | Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81, 71-95. |
[8] |
Bertrand R, Lenoir J, Piedallu C, Riofrío-Dillon G, de Ruffray P, Vidal C, Pierrat JC, Gégout JC (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479, 517-520.
DOI URL |
[9] |
Bertrand R, Riofrı́o-Dillon G, Lenoir J, Drapier J, de Ruffray P, Gégout JC, Loreau M (2016) Ecological constraints increase the climatic debt in forests. Nature Communications, 7, 12643.
DOI PMID |
[10] | Blyth S, Groombridge B, Lysenko I, Miles L, Newton A (2002) Mountain Watch. UNEP World Conservation Monitoring Centre, Cambridge, UK. |
[11] | Boithias L, Acuña V, Vergoñós L, Ziv G, Marcé R, Sabater S (2014) Assessment of the water supply: Demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Science of the Total Environment, 470, 567-577. |
[12] | Brown CD, Vellend M (2014) Non-climatic constraints on upper elevational plant range expansion under climate change. Proceedings of the Royal Society B: Biological Sciences, 281, 20141779. |
[13] | Büntgen U, Greuter L, Bollmann K, Jenny H, Mysterud A (2017) Elevational range shifts in four mountain ungulate species from the Swiss Alps. Ecosphere, 8, e01761. |
[14] |
Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature, 417, 844-848.
DOI URL |
[15] |
Carroll C, Roberts DR, Michalak JL, Lawler JJ, Nielsen SE, Stralberg D, Hamann A, McRae BH, Wang TL (2017) Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Global Change Biology, 23, 4508-4520.
DOI PMID |
[16] |
Cavieres LA, Brooker RW, Butterfield BJ, Cook BJ, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Schöb C, Xiao S, Anthelme F, Björk RG, Dickinson KJM, Cranston BH, Gavilán R, Gutiérrez-Girón A, Kanka R, Maalouf JP, Mark AF, Noroozi J, Parajuli R, Phoenix GK, Reid AM, Ridenour WM, Rixen C, Wipf S, Zhao L, Escudero A, Zaitchik BF, Lingua E, Aschehoug ET, Callaway RM (2014) Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 17, 193-202.
DOI URL |
[17] |
Chakraborty A (2021) Mountains as vulnerable places: A global synthesis of changing mountain systems in the Anthropocene. GeoJournal, 86, 585-604.
DOI URL |
[18] | Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026. |
[19] | Chen JG, Yang Y, Sun H (2011) Advances in the studies of responses of alpine plants to global warming. Chinese Journal of Applied & Environmental Biology, 17, 435-446. (in Chinese with English abstract) |
[陈建国, 杨扬, 孙航 (2011) 高山植物对全球气候变暖的响应研究进展. 应用与环境生物学报, 17, 435-446.] | |
[20] |
Christensen JH, Carter TR, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. Eos, Transactions American Geophysical Union, 83, 147.
DOI URL |
[21] |
Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322, 258-261.
DOI PMID |
[22] |
Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR (2011) Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science, 331, 324-327.
DOI PMID |
[23] |
Czerepko J (2008) A long-term study of successional dynamics in the forest wetlands. Forest Ecology and Management, 255, 630-642.
DOI URL |
[24] |
Dainese M, Aikio S, Hulme PE, Bertolli A, Prosser F, Marini L (2017) Human disturbance and upward expansion of plants in a warming climate. Nature Climate Change, 7, 577-580.
DOI URL |
[25] | Darwin C (1859) On the Origin of Species by Means of Natural Selection. John Murray, London. |
[26] |
Dedieu JP, Lessard-Fontaine A, Ravazzani G, Cremonese E, Shalpykova G, Beniston M (2014) Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Science of the Total Environment, 493, 1267-1279.
DOI URL |
[27] | Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliölä J, Herrando S, Julliard R, Kuussaari M, Lindström Å, Reif J, Roy DB, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C, Vermouzek Z, WallisDeVries M, Wynhoff I, Jiguet F (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2, 121-124. |
[28] |
Diaz HF, Bradley RS (1997) Temperature variations during the last century at high elevation sites. Climatic Change, 36, 253-279.
DOI URL |
[29] | Ding XZ, Zheng YC (1986) A preliminary discussion on montology. Journal of Mountain Research, 4, 179-186. (in Chinese with English abstract) |
[丁锡祉, 郑远昌 (1986) 初论山地学. 山地研究, 4, 179-186.] | |
[30] | Ding XZ, Zheng YC (1996) The second discussion on montology. Mountain Research, 14, 83-88. (in Chinese with English abstract) |
[丁锡祉, 郑远昌 (1996) 再论山地学. 山地研究, 14, 83-88.] | |
[31] |
Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. Journal of Biogeography, 30, 401-417.
DOI URL |
[32] |
Duchenne F, Martin G, Porcher E (2021) European plants lagging behind climate change pay a climatic debt in the North, but are favoured in the South. Ecology Letters, 24, 1178-1186.
DOI URL |
[33] |
Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T, Caccianiga M, Dirnböck T, Ertl S, Fischer A, Lenoir J, Svenning JC, Psomas A, Schmatz DR, Silc U, Vittoz P, Hülber K (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2, 619-622.
DOI URL |
[34] |
Dyurgerov M (2003) Mountain and subpolar glaciers show an increase in sensitivity to climate warming and intensification of the water cycle. Journal of Hydrology, 282, 164-176.
DOI URL |
[35] |
Eriksson O (2000) Functional roles of remnant plant populations in communities and ecosystems. Global Ecology and Biogeography, 9, 443-449.
DOI URL |
[36] |
Fadrique B, Báez S, Duque Á, Malizia A, Blundo C, Carilla J, Osinaga-Acosta O, Malizia L, Silman M, Farfán-Ríos W, Malhi Y, Young KR, Cuesta CF, Homeier J, Peralvo M, Pinto E, Jadan O, Aguirre N, Aguirre Z, Feeley KJ (2018) Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564, 207-212.
DOI URL |
[37] |
Fang JY, Shen ZH, Cui HT (2004) Ecological characteristics of mountains and research issues of mountain ecology. Biodiversity Science, 12, 10-19. (in Chinese with English abstract)
DOI URL |
[方精云, 沈泽昊, 崔海亭 (2004) 试论山地的生态特征及山地生态学的研究内容. 生物多样性, 12, 10-19.]
DOI |
|
[38] | Freeman BG, Class Freeman AM (2014) Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proceedings of the National Academy of Sciences, USA, 111, 4490-4494. |
[39] |
Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL (2018a) Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Global Ecology and Biogeography, 27, 1268-1276.
DOI URL |
[40] | Freeman BG, Scholer MN, Ruiz-Gutierrez V, Fitzpatrick JW (2018b) Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proceedings of the National Academy of Sciences, USA, 115, 11982-11987. |
[41] |
Fréjaville T, Vizcaíno-Palomar N, Fady B, Kremer A, Benito Garzón M (2020) Range margin populations show high climate adaptation lags in European trees. Global Change Biology, 26, 484-495.
DOI PMID |
[42] |
García-Valdés R, Svenning JC, Zavala MA, Purves DW, Araújo MB (2015) Evaluating the combined effects of climate and land-use change on tree species distributions. Journal of Applied Ecology, 52, 902-912.
DOI URL |
[43] |
Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: Climate change or land abandonment? Journal of Vegetation Science, 18, 571-582.
DOI URL |
[44] |
Gérard M, Vanderplanck M, Wood T, Michez D (2020) Global warming and plant-pollinator mismatches. Emerging Topics in Life Sciences, 4, 77-86.
DOI URL |
[45] |
Gibson-Reinemer DK, Sheldon KS, Rahel FJ (2015) Climate change creates rapid species turnover in montane communities. Ecology and Evolution, 5, 2340-2347.
DOI PMID |
[46] |
Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—A review. Science of the Total Environment, 493, 1138-1151.
DOI URL |
[47] |
Greaver TL, Clark CM, Compton JE, Vallano D, Talhelm AF, Weaver CP, Band LE, Baron JS, Davidson EA, Tague CL, Felker-Quinn E, Lynch JA, Herrick JD, Liu L, Goodale CL, Novak KJ, Haeuber RA (2016) Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 6, 836-843.
DOI URL |
[48] |
Grenouillet G, Comte L (2014) Illuminating geographical patterns in species’ range shifts. Global Change Biology, 20, 3080-3091.
DOI PMID |
[49] | Grover V (2014) Introduction and road map for global changes on high mountains. In: Impact of Global Changes on Mountains, Responses and Adaptation (eds Grover VI, Borsdorf A, Breutse JH, Tiwari PC, Frangetto FW), pp. 15-32. CRC Press, New York. |
[50] |
Guo FY, Lenoir J, Bonebrake TC (2018) Land-use change interacts with climate to determine elevational species redistribution. Nature Communications, 9, 1315.
DOI URL |
[51] |
He X, Burgess KS, Gao LM, Li DZ. (2019) Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains. Plant Diversity, 41, 26-32.
DOI URL |
[52] |
Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature, 405, 907-913.
DOI URL |
[53] |
Hitch AT, Leberg PL (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conservation Biology, 21, 534-539.
PMID |
[54] | Hughes C, Eastwood R (2006) Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, USA, 103, 10334-10339. |
[55] |
Hulme PE (2017) Climate change and biological invasions: Evidence, expectations, and response options. Biological Reviews of the Cambridge Philosophical Society, 92, 1297- 1313.
DOI URL |
[56] |
Inouye DW (2009) The effects of climate change on the phenological interactions of plants and pollinators. Nature Precedings, doi: 10.1038/npre.2009.3583.1.
DOI |
[57] | IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I. In: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL). Cambridge University Press, Cambridge. |
[58] | Jiang XB (2008) Preliminary study on computing the area of mountain regions in China based on geographic information system. Journal of Mountain Science, 26, 129-136. (in Chinese with English abstract) |
[江晓波 (2008) 中国山地范围界定的初步意见. 山地学报, 26, 129-136.] | |
[59] |
Körner C (2004) Mountain biodiversity, its causes and function. Ambio, 33, 11-17.
DOI URL |
[60] |
Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22, 569-574.
DOI URL |
[61] | Lenoir J, Bertrand R, Comte L, Bourgeaud L, Grenouillet G (2020) Species better track climate warming in the oceans than on land. Nature Ecology & Evolution, 4, 1-16. |
[62] | Lenoir J, Gégout JC, Guisan A, Vittoz P, Wohlgemuth T, Zimmermann NE, Dullinger S, Pauli H, Willner W, Svenning JC (2010) Going against the flow, potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography, 33, 295-303. |
[63] |
Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768-1771.
DOI PMID |
[64] |
Lenoir J, Svenning JC (2015) Climate-related range shifts—A global multidimensional synthesis and new research directions. Ecography, 38, 15-28.
DOI URL |
[65] |
Li L, Chen JK (2014) Influence of climate change on wild plants and the conservation strategies. Biodiversity Science, 22, 549-563. (in Chinese with English abstract)
DOI URL |
[黎磊, 陈家宽 (2014) 气候变化对野生植物的影响及保护对策. 生物多样性, 22, 549-563.]
DOI |
|
[66] | Li KR (1996) Research progress of global climate change and its impact and future prospect. Acta Geographica Sinica, 51, 1-14. (in Chinese with English abstract) |
[李克让 (1996) 全球气候变化及其影响研究进展和未来展望. 地理学报, 51, 1-14.]
DOI |
|
[67] |
Liang EY, Wang YF, Eckstein D, Luo TX (2011) Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytologist, 190, 760-769.
DOI URL |
[68] | Liang EY, Wang YF, Piao SL, Lu XM, Camarero JJ, Zhu HF, Zhu LP, Ellison AM, Ciais P, Penuelas J (2016) Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences, USA, 113, 4380-4385. |
[69] |
Liang QL, Xu XT, Mao KS, Wang MC, Wang K, Xi ZX, Liu JQ (2018) Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. Journal of Biogeography, 45, 1334-1344.
DOI URL |
[70] |
Liu HY, Yin Y (2013) Response of forest distribution to past climate change: An insight into future predictions. Chinese Science Bulletin, 58, 4426-4436.
DOI URL |
[71] |
Lu X, Liang E, Wang Y, Babst F, Camarero JJ (2021) Mountain treelines climb slowly despite rapid climate warming. Global Ecology and Biogeography, 30, 305-315.
DOI URL |
[72] |
Lyu LX, Zhang QB, Deng X, Mäkinen H (2016) Fine-scale distribution of treeline trees and the nurse plant facilitation on the eastern Tibetan Plateau. Ecological Indicators, 66, 251-258.
DOI URL |
[73] | MacArthur RH (1972) Geographical Ecology, Patterns in the Distribution of Species. Princeton University Press, Princeton. |
[74] |
Maggini R, Lehmann A, Kéry M, Schmid H, Beniston M, Jenni L, Zbinden N (2011) Are Swiss birds tracking climate change? Detecting elevational shifts using response curve shapes. Ecological Modelling, 222, 21-32.
DOI URL |
[75] | Mamantov MA, Gibson-Reinemer DK, Linck EB, Sheldon KS (2021) Climate-driven range shifts of montane species vary with elevation. Global Ecology and Biogeography, 30, 784-794. |
[76] |
Manne LL, Brooks TM, Pimm SL (1999) Relative risk of extinction of passerine birds on continents and islands. Nature, 399, 258-261.
DOI URL |
[77] |
Mantyka-Pringle CS, Visconti P, Di Marco M, Martin TG, Rondinini C, Rhodes JR (2015) Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation, 187, 103-111.
DOI URL |
[78] | McCain CM, Grytnes JA (2010) Elevational gradients in species richness. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd., Chichester. |
[79] |
McCullough IM, Davis FW, Dingman JR, Flint LE, Flint AL, Serra-Diaz JM, Syphard AD, Moritz MA, Hannah L, Franklin J (2016) High and dry: High elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landscape Ecology, 31, 1063-1075.
DOI URL |
[80] |
McGuire LP, Boyle WA (2013) Altitudinal migration in bats: Evidence, patterns, and drivers. Biological Reviews of the Cambridge Philosophical Society, 88, 767-786.
DOI PMID |
[81] |
Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecology Letters, 10, 710-717.
PMID |
[82] |
Menéndez R, González-Megías A, Jay-Robert P, Marquéz- Ferrando R (2014) Climate change and elevational range shifts: Evidence from dung beetles in two European mountain ranges. Global Ecology and Biogeography, 23, 646-657.
DOI URL |
[83] | Mittermeier CG, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global biodiversity conservation: The critical role of hotspots. In: Biodiversity Hotspots: Distribution and Protection of Priority Conservation Areas (eds Zachos FE, Habel JC), pp 3-22. Springer-Verlag, Berlin. |
[84] | Mizel JD, Schmidt JH, Mcintyre CL, Roland CA (2016) Rapidly shifting elevational distributions of passerine species parallel vegetation change in the subarctic. Ecosphere, 7, e1264. |
[85] |
Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science, 322, 261-264.
DOI PMID |
[86] | Morueta-Holme N, Engemann K, Sandoval-Acuña P, Jonas JD, Segnitz RM, Svenning JC (2015) Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proceedings of the National Academy of Sciences, USA, 112, 12741-12745. |
[87] |
Neate-Clegg MHC, Jones SEI, Tobias JA, Newmark WD, Şekercioǧlu ÇH (2021) Ecological correlates of elevational range shifts in tropical birds. Frontiers in Ecology and Evolution, 9, 621749.
DOI URL |
[88] |
Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st century. Global Environmental Change, 17, 420-428.
DOI URL |
[89] |
Ordonez A (2020) Points of view matter when assessing biodiversity vulnerability to environmental changes. Global Change Biology, 26, 2734-2736.
DOI URL |
[90] |
O’Sullivan KSW, Ruiz-Benito P, Chen JC, Jump AS (2021) Onward but not always upward: Individualistic elevational shifts of tree species in subtropical montane forests. Ecography, 44, 112-123.
DOI URL |
[91] |
Paquette A, Hargreaves AL (2021) Biotic interactions are more often important at species’ warm versus cool range edges. Ecology Letters, 24, 2427-2438.
DOI URL |
[92] |
Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
DOI URL |
[93] |
Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puşcaş M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science, 336, 353-355.
DOI URL |
[94] |
Payne D, Spehn EM, Snethlage M, Fischer M (2017) Opportunities for research on mountain biodiversity under global change. Current Opinion in Environmental Sustainability, 29, 40-47.
DOI URL |
[95] |
Perrigo A, Hoorn C, Antonelli A (2020) Why mountains matter for biodiversity? Journal of Biogeography, 47, 315-325.
DOI URL |
[96] |
Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science, 308, 1912-1915.
DOI URL |
[97] |
Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA (2013) Marine taxa track local climate velocities. Science, 341, 1239-1242.
DOI PMID |
[98] |
Powers RP, Jetz W (2019) Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nature Climate Change, 9, 323-329.
DOI |
[99] |
Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato JB, Raselimanana AP, Wu SH, Nussbaum RA, Stone DA (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Global Change Biology, 14, 1703-1720.
DOI URL |
[100] | Rumpf SB, Hülber K, Klonner G, Moser D, Schütz M, Wessely J, Willner W, Zimmermann NE, Dullinger S (2018) Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences, USA, 115, 1848-1853. |
[101] |
Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
PMID |
[102] |
Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography, 38, 406-416.
DOI URL |
[103] |
Sheldon KS, Yang S, Tewksbury JJ (2011) Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure. Ecology Letters, 14, 1191-1200.
DOI URL |
[104] |
Shepard ID, Wissinger SA, Greig HS (2021) Elevation alters outcome of competition between resident and range-shifting species. Global Change Biology, 27, 270-281.
DOI PMID |
[105] |
Shi H, Zhou Q, Xie FL, He NJ, He R, Zhang KR, Zhang QF, Dang HS (2020) Disparity in elevational shifts of upper species limits in response to recent climate warming in the Qinling Mountains, North-central China. Science of the Total Environment, 706, 135718.
DOI URL |
[106] |
Shi YH, Ren ZX, Zhao YH, Wang H (2021) Effect of climate change on the distribution and phenology of plants, insect pollinators, and their interactions. Biodiversity Science, 29, 495-506. (in Chinese with English abstract)
DOI URL |
[施雨含, 任宗昕, 赵延会, 王红 (2021) 气候变化对植物-传粉昆虫的分布区和物候及其互作关系的影响. 生物多样性, 29, 495-506.]
DOI |
|
[107] |
Sigdel SR, Pandey J, Liang EY, Muhammad S, Flurin B, Leavitt SW, Shen MG, Zhu HF, Salerno F, Piao SL, Camarero JJ, Peñuelas J (2021) No benefits from warming even for subnival vegetation in the central Himalayas. Science Bulletin, 66, 1825-1829.
DOI URL |
[108] |
Sigdel SR, Wang YF, Camarero JJ, Zhu HF, Liang EY, Peñuelas J (2018) Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biology, 24, 5549-5559.
DOI URL |
[109] |
Steinbauer MJ, John-Arvid G, Gerald J, Aino K, Jonathan L, Harald P, Christian R, Manuela W, Manfred BD, Elena B, Bjorkman AD, Breiner FT, Sarah B, Patryk C, Dawes MA, Anna D, Stefan D, Brigitta E, Felde VA, Olatz FA, Fossheim KF, Daniel GG, Damien G, Grindrud ET, Sylvia H, Haugum SV, Hanne H, Herreros MJ, Bogdan J (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556, 231-234.
DOI URL |
[110] | Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited:Individualistic responses of species in space and time. Proceedings of the Royal Society B: Biological Sciences, 277, 661-671. |
[111] |
Thuiller W (2007) Biodiversity: Climate change and the ecologist. Nature, 448, 550-552.
DOI URL |
[112] |
Tsai PY, Ko CJ, Chia SY, Lu YJ, Tuanmu MN (2021) New insights into the patterns and drivers of avian altitudinal migration from a growing crowdsourcing data source. Ecography, 44, 75-86.
DOI URL |
[113] |
Tsiftsis S, Djordjević V (2020) Modelling sexually deceptive orchid species distributions under future climates: The importance of plant-pollinator interactions. Scientific Reports, 10, 10623.
DOI PMID |
[114] | Vitasse Y, Signarbieux C, Fu YH (2018) Global warming leads to more uniform spring phenology across elevations. Proceedings of the National Academy of Sciences, USA, 115, 1004-1008. |
[115] |
Vitasse Y, Ursenbacher S, Klein G, Bohnenstengel T, Chittaro Y, Delestrade A, Monnerat C, Rebetez M, Rixen C, Strebel N, Schmidt BR, Wipf S, Wohlgemuth T, Yoccoz NG, Lenoir J (2021) Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biological Reviews of the Cambridge Philosophical Society, 96, 1816-1835.
DOI URL |
[116] |
Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature, 416, 389-395.
DOI URL |
[117] | Xia B, Deng F, He SA (1997) Advances on the forest gap studies. Journal of Plant Resources and Environment, 9, 51-58. (in Chinese with English abstract) |
[夏冰, 邓飞, 贺善安 (1997) 林窗研究进展. 植物资源与环境, 9, 51-58.] | |
[118] |
Zhou W, Yan F, Fu J, Wu S, Murphy RW, Che J, Zhang YP (2012) River islands, refugia and genetic structuring in the endemic brown frog Rana kukunoris (Anura, Ranidae) of the Qinghai-Tibetan Plateau. Molecular Ecology, 22, 130-142.
DOI URL |
[119] |
Zu KL, Wang ZH, Zhu XY, Lenoir J, Shrestha N, Lyu T, Luo A, Li YQ, Ji CJ, Peng SJ, Meng JH, Zhou J (2021) Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Science of the Total Environment, 783, 146896.
DOI URL |
[1] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[2] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[3] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[4] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[5] | 李仕裕, 张奕奇, 邹璞, 宁祖林, 廖景平. 广东省植物园植物多样性迁地保护现状及发展建议[J]. 生物多样性, 2023, 31(6): 22647-. |
[6] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[7] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[8] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[9] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
[10] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[11] | 李国华, 郭向阳, 李霖明, 任明迅, 万玲, 丁琼, 李娟玲. 海南热带雨林国家公园不同植被类型的大型真菌多样性[J]. 生物多样性, 2022, 30(7): 22110-. |
[12] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[13] | 韩艺茹, 薛琪琪, 宋厚娟, 祁靖宇, 高瑞贺, 崔绍朋, 门丽娜, 张志伟. 燕山地区访花昆虫多样性及其影响因子[J]. 生物多样性, 2022, 30(3): 21448-. |
[14] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[15] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn