生物多样性 ›› 2022, Vol. 30 ›› Issue (10): 22456. DOI: 10.17520/biods.2022456
所属专题: 物种形成与系统进化
收稿日期:
2022-08-10
接受日期:
2022-09-30
出版日期:
2022-10-20
发布日期:
2022-10-13
通讯作者:
乔慧捷,胡军华
作者简介:
hujh@cib.ac.cn基金资助:
Huijie Qiao1,*(), Junhua Hu2,*()
Received:
2022-08-10
Accepted:
2022-09-30
Online:
2022-10-20
Published:
2022-10-13
Contact:
Huijie Qiao,Junhua Hu
摘要:
生命形成的过程极其漫长, 经历了地球系统复杂的沧海桑田变化。当前人类所观察到的物种分布格局的形成除了由物种本身特征决定外, 还受到环境变化、人类活动以及各种随机事件的影响。受限于实验条件、时间、经费、人力等诸多因素, 我们尚无法完整地观察并记录到物种多样性形成的全过程, 只能通过片段化数据来推测该过程。信息科学中包括数值模拟在内的仿真技术以其高效、可控及全过程记录等优势, 能从某种程度上解决物种多样性格局形成过程中的部分数据黑箱问题。本文介绍了数值模拟的概念和工作原理及在物种多样性研究中应用的特点, 列举了物种生态位、扩散模式、种间互作及物种分布应对气候变化等方面的数值模拟研究, 基于已有研究系统地介绍了如何综合上述数值模拟研究构建虚拟物种、气候和场景来解释物种多样性的形成与维持机制, 并阐述了数值模拟在物种多样性研究中的优缺点及应用前景。
乔慧捷, 胡军华 (2022) 利用数值模拟重构物种多样性格局的形成过程. 生物多样性, 30, 22456. DOI: 10.17520/biods.2022456.
Huijie Qiao, Junhua Hu (2022) Reconstructing community assembly using a numerical simulation model. Biodiversity Science, 30, 22456. DOI: 10.17520/biods.2022456.
[1] |
AlQuraishi M (2019) AlphaFold at CASP13. Bioinformatics, 35, 4862-4865.
DOI PMID |
[2] |
Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. American Journal of Botany, 87, 1217-1227.
PMID |
[3] |
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253.
DOI URL |
[4] |
Chase JM, Knight TM (2013) Scale-dependent effect sizes of ecological drivers on biodiversity: Why standardised sampling is not enough. Ecology Letters, 16, 17-26.
DOI URL |
[5] |
Dawideit BA, Phillimore AB, Laube I, Leisler B, Böhning-Gaese K (2009) Ecomorphological predictors of natal dispersal distances in birds. Journal of Animal Ecology, 78, 388-395.
DOI PMID |
[6] | DeepMind (2022) AlphaFold Reveals the Structure of the Protein Universe. https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe/. (accessed on 2022-08-10) |
[7] |
Devarajan K, Morelli TL, Tenan S (2020) Multi-species occupancy models: Review, roadmap, and recommendations. Ecography, 43, 1612-1624.
DOI URL |
[8] |
Di Marco M, Chapman S, Althor G, Kearney S, Besancon C, Butt N, Maina JM, Possingham HP,von Bieberstein KR, Venter O, Watson JEM (2017) Changing trends and persisting biases in three decades of conservation science. Global Ecology and Conservation, 10, 32-42.
DOI URL |
[9] |
Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annual Review of Environment and Resources, 28, 137-167.
DOI URL |
[10] |
Duan RY, Kong XQ, Huang MY, Wu GL, Wang ZG (2015) SDMvspecies: A software for creating virtual species for species distribution modelling. Ecography, 38, 108-110.
DOI URL |
[11] |
Feeley KJ, Stroud JT, Perez TM (2017) Most ‘global reviews of species’ responses to climate change are not truly global. Diversity and Distributions, 23, 231-234.
DOI URL |
[12] |
Feng X, Qiao HJ (2022) Accounting for dispersal using simulated data improves understanding of species abundance patterns. Global Ecology and Biogeography, 31, 200-214.
DOI URL |
[13] |
Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 42-58.
DOI URL |
[14] | Furness EN, Garwood RJ, Mannion PD, Sutton MD (2021) Evolutionary simulations clarify and reconcile biodiversity- disturbance models. Proceedings of the Royal Society B: Biological Sciences, 288, 20210240. |
[15] |
Garwood RJ, Spencer ART, Sutton MD (2019) RE voSim: Organism-level simulation of macro and microevolution. Palaeontology, 62, 339-355.
DOI URL |
[16] |
Garzon-Lopez CX, Bastin L, Foody GM, Rocchini D (2016) A virtual species set for robust and reproducible species distribution modelling tests. Data in Brief, 7, 476-479.
DOI PMID |
[17] | GBIF (2022) GBIF Home Page. https://www.gbif.org/. (accessed on 2022-08-10) |
[18] |
Ginzburg LR, Burger O, Damuth J (2010) The May threshold and life-history allometry. Biology Letters, 6, 850-853.
DOI PMID |
[19] |
Hagen O, Flück B, Fopp F, Cabral JS, Hartig F, Pontarp M, Rangel TF, Pellissier L (2021) gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLoS Biology, 19, e3001340.
DOI URL |
[20] |
Hajima T, Kawamiya M, Watanabe M, Kato E, Tachiiri K, Sugiyama M, Watanabe S, Okajima H, Ito A (2014) Modeling in Earth system science up to and beyond IPCC AR5. Progress in Earth and Planetary Science, 1, 1-25.
DOI URL |
[21] |
Hardin G (1960) The competitive exclusion principle: An idea that took a century to be born has implications in ecology, economics, and genetics. Science, 131, 1292-1297.
PMID |
[22] |
Henson SA, Cael BB, Allen SR, Dutkiewicz S (2021) Future phytoplankton diversity in a changing climate. Nature Communications, 12, 5372.
DOI PMID |
[23] |
Hill MO (1973) Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432.
DOI URL |
[24] |
Hirzel AH, Helfer V, Metral F (2001) Assessing habitat- suitability models with a virtual species. Ecological Modelling, 145, 111-121.
DOI URL |
[25] |
Hughes AC, Qiao HJ, Orr MC (2020) Extinction targets are not SMART (specific, measurable, ambitious, realistic, and time bound). BioScience, 71, 115-118.
DOI URL |
[26] |
Hughes AC, Orr MC, Ma KP, Costello MJ, Waller J, Provoost P, Yang QM, Zhu CD, Qiao HJ (2021a) Sampling biases shape our view of the natural world. Ecography, 44, 1259-1269.
DOI URL |
[27] |
Hughes AC, Orr MC, Yang QM, Qiao HJ (2021b) Effectively and accurately mapping global biodiversity patterns for different regions and taxa. Global Ecology and Biogeography, 30, 1375-1388.
DOI URL |
[28] |
Hurlbert SH (1971) The nonconcept of species diversity: A critique and alternative parameters. Ecology, 52, 577-586.
DOI PMID |
[29] |
Ingber DE (2022) Human organs-on-chips for disease modelling, drug development and personalized medicine. Nature Reviews Genetics, 23, 467-491.
DOI URL |
[30] | Ji LQ, Qiao HJ, Xie BG, Zhang SW, Lin B, Zhu H, Deng H, Li N, Han Y (2004) GBIF, the global biodiversity information facility: Its organization, activity, programme and information service. China. In: Advances in Biodiversity Conservation and Research in China VI—Proceeding of the Sixth National Symposium on the Conservation and Sustainable Uses of Biodiversity in China (ed. Biodiversity Committee, Chinese Academy of Sciences), pp. 79-141. China Meteorological Press, Beijing. (in Chinese) |
[纪力强, 乔慧捷, 谢本贵, 张尚武, 林斌, 朱慧, 邓浩, 李诺, 韩艳 (2004) 全球生物多样性信息网络(GBIF)介绍: 组织、活动、项目和信息服务. 见: 中国生物多样性保护与研究进展VI——第六届全国生物多样性保护与持续利用研讨会论文集(中国科学院生物多样性委员会编著), pp. 79-141. 气象出版社, 北京.] | |
[31] | Leroy B, Meynard CN, Bellard C, Courchamp F (2016) virtualspecies, an R package to generate virtual species distributions. Ecography, 39, 599-607. |
[32] | Liu X, Wang XH, Zhang LM, Sun LL, Wang HR, Zhao H, Zhang ZT, Liu WL, Huang YM, Ji S, Zhang J, Li K, Song BB, Li C, Zhang H, Li S, Wang S, Zheng XF, Gu Q (2021) 3D liver tissue model with branched vascular networks by multimaterial bioprinting. Advanced Healthcare Materials, 10, e2101405. |
[33] | Lotka AJ (1932) Contribution to the mathematical theory of capture. I. Conditions for capture. Proceedings of the National Academy of Sciences, USA, 18, 172-178. |
[34] | Ma KP (1993) On the concept of biodiversity. Chinese Biodiversity, 1, 20-22. (in Chinese) |
[马克平 (1993) 试论生物多样性的概念. 生物多样性, 1, 20-22.] | |
[35] |
May F, Gerstner K, McGlinn DJ, Xiao X, Chase JM (2018) mobsim: An R package for the simulation and measurement of biodiversity across spatial scales. Methods in Ecology and Evolution, 9, 1401-1408.
DOI URL |
[36] |
May RM (1974) Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos. Science, 186, 645-647.
PMID |
[37] |
May RM (1976) Simple mathematical models with very complicated dynamics. Nature, 261, 459-467.
DOI URL |
[38] |
McDonald-Madden E, Sabbadin R, Game ET, Baxter PWJ, Chadès I, Possingham HP (2016) Using food-web theory to conserve ecosystems. Nature Communications, 7, 10245.
DOI PMID |
[39] |
Meynard CN, Kaplan DM (2013) Using virtual species to study species distributions and model performance. Journal of Biogeography, 40, 1-8.
DOI URL |
[40] | Miller JA (2014) Virtual species distribution models: Using simulated data to evaluate aspects of model performance. Progress in Physical Geography, 38, 117-128. |
[41] |
Murphy SJ, Lenoir J (2021) Sampling units derived from geopolitical boundaries bias biodiversity analyses. Global Ecology and Biogeography, 30, 1876-1888.
DOI URL |
[42] |
Paine RT (1966) Food web complexity and species diversity. The American Naturalist, 100, 65-75.
DOI URL |
[43] | Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological Niches and Geographic Distributions. Princeton University Press, New Jersey. |
[44] |
Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
DOI URL |
[45] |
Qiao HJ, Peterson AT, Campbell LP, Soberón J, Ji LQ, Escobar LE (2016a) NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39, 805-813.
DOI URL |
[46] |
Qiao HJ, Peterson AT, Ji LQ, Hu JH (2017) Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling. Methods in Ecology and Evolution, 8, 1804-1812.
DOI URL |
[47] |
Qiao HJ, Saupe EE, Soberón J, Peterson AT, Myers CE (2016b) Impacts of niche breadth and dispersal ability on macroevolutionary patterns. The American Naturalist, 188, 149-162.
DOI URL |
[48] |
Qiao HJ, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 6, 1126-1136.
DOI URL |
[49] |
Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 361, eaar5452.
DOI URL |
[50] |
Rota CT, Ferreira MAR, Kays RW, Forrester TD, Kalies EL, McShea WJ, Parsons AW, Millspaugh JJ (2016) A multispecies occupancy model for two or more interacting species. Methods in Ecology and Evolution, 7, 1164-1173.
DOI URL |
[51] |
Saupe EE, Myers CE, Peterson AT, Soberón J, Singarayer J, Valdes P, Qiao HJ (2019a) Non-random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Global Ecology and Biogeography, 28, 928-942.
DOI URL |
[52] | Saupe EE, Myers CE, Townsend PA, Soberón J, Singarayer J, Valdes P, Qiao HJ (2019b) Spatio-temporal climate change contributes to latitudinal diversity gradients. Nature Ecology & Evolution, 3, 1419-1429. |
[53] |
Saupe EE, Qiao HJ, Donnadieu Y, Farnsworth A, Kennedy- Asser AT, Ladant J, Lunt DJ, Pohl Al, Valdes P, Finnegan S (2020) Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience, 13, 65-70.
DOI URL |
[54] |
Seshagiri RN, Kalyani K (2020) Ecological models on multi species interaction within unlimited resources. International Journal of Applied and Computational Mathematics, 6, 95.
DOI URL |
[55] |
Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423.
DOI URL |
[56] |
Silvestro D, Goria S, Sterner T, Antonelli A (2022) Improving biodiversity protection through artificial intelligence. Nature Sustainability, 5, 415-424.
DOI PMID |
[57] |
Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
DOI URL |
[58] |
Smith AB, Godsoe W, Rodríguez-Sánchez F, Wang HH, Warren D (2019) Niche estimation above and below the species level. Trends in Ecology & Evolution, 34, 260-273.
DOI URL |
[59] |
Soberón J, Nakamura M (2009) Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Science, USA, 106 (Suppl. 2), 19644-19650.
DOI URL |
[60] |
Soberón J, Peterson AT (2020) What is the shape of the fundamental Grinnellian niche? Theoretical Ecology, 13, 105-115.
DOI URL |
[61] |
Spellerberg IF, Fedor PJ (2003) A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’ index. Global Ecology and Biogeography, 12, 177-179.
DOI URL |
[62] | Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences, USA, 108, 3648-3652. |
[63] |
Tamme R, Götzenberger L, Zobel M, Bullock JM, Hooftman DAP, Kaasik A, Pärtel M (2014) Predicting species’ maximum dispersal distances from simple plant traits. Ecology, 95, 505-513.
PMID |
[64] |
Tao TT, Deng PW, Wang YQ, Zhang X, Guo YQ, Chen WW, Qin JH (2022) Microengineered multi-organoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes. Advanced Science, 9, 2103495.
DOI URL |
[65] |
Tittensor DP, Novaglio C, Harrison CS, Heneghan RF, Barrier N, Bianchi D, Bopp L, Bryndum-Buchholz A, Britten GL, Büchner M, Cheung WWL, Christensen V, Coll M, Dunne JP, Eddy TD, Everett JD, Fernandes-Salvador JA, Fulton EA, Galbraith ED, Gascuel D, Guiet J, John JG, Link JS, Lotze HK, Maury O, Ortega-Cisneros K, Palacios-Abrantes J, Petrik CM, du Pontavice H, Rault J, Richardson AJ, Shannon L, Shin YJ, Steenbeek J, Stock CA, Blanchard JL (2021) Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 11, 973-981.
DOI PMID |
[66] |
Trisos CH, Merow C, Pigot AL (2020) The projected timing of abrupt ecological disruption from climate change. Nature, 580, 496-501.
DOI URL |
[67] |
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D (2021) Highly accurate protein structure prediction for the human proteome. Nature, 596, 590-596.
DOI URL |
[68] |
Vignali S, Barras AG, Arlettaz R, Braunisch V (2020) SDMtune: An R package to tune and evaluate species distribution models. Ecology and Evolution, 10, 11488-11506.
DOI PMID |
[69] |
Volterra V (1928) Variations and fluctuations of the number of individuals in animal species living together. ICES Journal of Marine Science, 3(1), 3-51.
DOI URL |
[70] |
Whitmee S, Orme CDL (2013) Predicting dispersal distance in mammals: A trait-based approach. Journal of Animal Ecology, 82, 211-221.
DOI PMID |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[3] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[4] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[5] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[6] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[7] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[8] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[9] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[10] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[11] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[12] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[13] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[14] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[15] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn