生物多样性 ›› 2022, Vol. 30 ›› Issue (10): 22456. DOI: 10.17520/biods.2022456
收稿日期:
2022-08-10
接受日期:
2022-09-30
出版日期:
2022-10-20
发布日期:
2022-10-13
通讯作者:
乔慧捷,胡军华
作者简介:
hujh@cib.ac.cn基金资助:
Huijie Qiao1,*(), Junhua Hu2,*(
)
Received:
2022-08-10
Accepted:
2022-09-30
Online:
2022-10-20
Published:
2022-10-13
Contact:
Huijie Qiao,Junhua Hu
摘要:
生命形成的过程极其漫长, 经历了地球系统复杂的沧海桑田变化。当前人类所观察到的物种分布格局的形成除了由物种本身特征决定外, 还受到环境变化、人类活动以及各种随机事件的影响。受限于实验条件、时间、经费、人力等诸多因素, 我们尚无法完整地观察并记录到物种多样性形成的全过程, 只能通过片段化数据来推测该过程。信息科学中包括数值模拟在内的仿真技术以其高效、可控及全过程记录等优势, 能从某种程度上解决物种多样性格局形成过程中的部分数据黑箱问题。本文介绍了数值模拟的概念和工作原理及在物种多样性研究中应用的特点, 列举了物种生态位、扩散模式、种间互作及物种分布应对气候变化等方面的数值模拟研究, 基于已有研究系统地介绍了如何综合上述数值模拟研究构建虚拟物种、气候和场景来解释物种多样性的形成与维持机制, 并阐述了数值模拟在物种多样性研究中的优缺点及应用前景。
乔慧捷, 胡军华 (2022) 利用数值模拟重构物种多样性格局的形成过程. 生物多样性, 30, 22456. DOI: 10.17520/biods.2022456.
Huijie Qiao, Junhua Hu (2022) Reconstructing community assembly using a numerical simulation model. Biodiversity Science, 30, 22456. DOI: 10.17520/biods.2022456.
[1] |
AlQuraishi M (2019) AlphaFold at CASP13. Bioinformatics, 35, 4862-4865.
DOI PMID |
[2] |
Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. American Journal of Botany, 87, 1217-1227.
PMID |
[3] |
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253.
DOI URL |
[4] |
Chase JM, Knight TM (2013) Scale-dependent effect sizes of ecological drivers on biodiversity: Why standardised sampling is not enough. Ecology Letters, 16, 17-26.
DOI URL |
[5] |
Dawideit BA, Phillimore AB, Laube I, Leisler B, Böhning-Gaese K (2009) Ecomorphological predictors of natal dispersal distances in birds. Journal of Animal Ecology, 78, 388-395.
DOI PMID |
[6] | DeepMind (2022) AlphaFold Reveals the Structure of the Protein Universe. https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe/. (accessed on 2022-08-10) |
[7] |
Devarajan K, Morelli TL, Tenan S (2020) Multi-species occupancy models: Review, roadmap, and recommendations. Ecography, 43, 1612-1624.
DOI URL |
[8] |
Di Marco M, Chapman S, Althor G, Kearney S, Besancon C, Butt N, Maina JM, Possingham HP,von Bieberstein KR, Venter O, Watson JEM (2017) Changing trends and persisting biases in three decades of conservation science. Global Ecology and Conservation, 10, 32-42.
DOI URL |
[9] |
Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annual Review of Environment and Resources, 28, 137-167.
DOI URL |
[10] |
Duan RY, Kong XQ, Huang MY, Wu GL, Wang ZG (2015) SDMvspecies: A software for creating virtual species for species distribution modelling. Ecography, 38, 108-110.
DOI URL |
[11] |
Feeley KJ, Stroud JT, Perez TM (2017) Most ‘global reviews of species’ responses to climate change are not truly global. Diversity and Distributions, 23, 231-234.
DOI URL |
[12] |
Feng X, Qiao HJ (2022) Accounting for dispersal using simulated data improves understanding of species abundance patterns. Global Ecology and Biogeography, 31, 200-214.
DOI URL |
[13] |
Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 42-58.
DOI URL |
[14] | Furness EN, Garwood RJ, Mannion PD, Sutton MD (2021) Evolutionary simulations clarify and reconcile biodiversity- disturbance models. Proceedings of the Royal Society B: Biological Sciences, 288, 20210240. |
[15] |
Garwood RJ, Spencer ART, Sutton MD (2019) RE voSim: Organism-level simulation of macro and microevolution. Palaeontology, 62, 339-355.
DOI URL |
[16] |
Garzon-Lopez CX, Bastin L, Foody GM, Rocchini D (2016) A virtual species set for robust and reproducible species distribution modelling tests. Data in Brief, 7, 476-479.
DOI PMID |
[17] | GBIF (2022) GBIF Home Page. https://www.gbif.org/. (accessed on 2022-08-10) |
[18] |
Ginzburg LR, Burger O, Damuth J (2010) The May threshold and life-history allometry. Biology Letters, 6, 850-853.
DOI PMID |
[19] |
Hagen O, Flück B, Fopp F, Cabral JS, Hartig F, Pontarp M, Rangel TF, Pellissier L (2021) gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLoS Biology, 19, e3001340.
DOI URL |
[20] |
Hajima T, Kawamiya M, Watanabe M, Kato E, Tachiiri K, Sugiyama M, Watanabe S, Okajima H, Ito A (2014) Modeling in Earth system science up to and beyond IPCC AR5. Progress in Earth and Planetary Science, 1, 1-25.
DOI URL |
[21] |
Hardin G (1960) The competitive exclusion principle: An idea that took a century to be born has implications in ecology, economics, and genetics. Science, 131, 1292-1297.
PMID |
[22] |
Henson SA, Cael BB, Allen SR, Dutkiewicz S (2021) Future phytoplankton diversity in a changing climate. Nature Communications, 12, 5372.
DOI PMID |
[23] |
Hill MO (1973) Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432.
DOI URL |
[24] |
Hirzel AH, Helfer V, Metral F (2001) Assessing habitat- suitability models with a virtual species. Ecological Modelling, 145, 111-121.
DOI URL |
[25] |
Hughes AC, Qiao HJ, Orr MC (2020) Extinction targets are not SMART (specific, measurable, ambitious, realistic, and time bound). BioScience, 71, 115-118.
DOI URL |
[26] |
Hughes AC, Orr MC, Ma KP, Costello MJ, Waller J, Provoost P, Yang QM, Zhu CD, Qiao HJ (2021a) Sampling biases shape our view of the natural world. Ecography, 44, 1259-1269.
DOI URL |
[27] |
Hughes AC, Orr MC, Yang QM, Qiao HJ (2021b) Effectively and accurately mapping global biodiversity patterns for different regions and taxa. Global Ecology and Biogeography, 30, 1375-1388.
DOI URL |
[28] |
Hurlbert SH (1971) The nonconcept of species diversity: A critique and alternative parameters. Ecology, 52, 577-586.
DOI PMID |
[29] |
Ingber DE (2022) Human organs-on-chips for disease modelling, drug development and personalized medicine. Nature Reviews Genetics, 23, 467-491.
DOI URL |
[30] | Ji LQ, Qiao HJ, Xie BG, Zhang SW, Lin B, Zhu H, Deng H, Li N, Han Y (2004) GBIF, the global biodiversity information facility: Its organization, activity, programme and information service. China. In: Advances in Biodiversity Conservation and Research in China VI—Proceeding of the Sixth National Symposium on the Conservation and Sustainable Uses of Biodiversity in China (ed. Biodiversity Committee, Chinese Academy of Sciences), pp. 79-141. China Meteorological Press, Beijing. (in Chinese) |
[纪力强, 乔慧捷, 谢本贵, 张尚武, 林斌, 朱慧, 邓浩, 李诺, 韩艳 (2004) 全球生物多样性信息网络(GBIF)介绍: 组织、活动、项目和信息服务. 见: 中国生物多样性保护与研究进展VI——第六届全国生物多样性保护与持续利用研讨会论文集(中国科学院生物多样性委员会编著), pp. 79-141. 气象出版社, 北京.] | |
[31] | Leroy B, Meynard CN, Bellard C, Courchamp F (2016) virtualspecies, an R package to generate virtual species distributions. Ecography, 39, 599-607. |
[32] | Liu X, Wang XH, Zhang LM, Sun LL, Wang HR, Zhao H, Zhang ZT, Liu WL, Huang YM, Ji S, Zhang J, Li K, Song BB, Li C, Zhang H, Li S, Wang S, Zheng XF, Gu Q (2021) 3D liver tissue model with branched vascular networks by multimaterial bioprinting. Advanced Healthcare Materials, 10, e2101405. |
[33] | Lotka AJ (1932) Contribution to the mathematical theory of capture. I. Conditions for capture. Proceedings of the National Academy of Sciences, USA, 18, 172-178. |
[34] | Ma KP (1993) On the concept of biodiversity. Chinese Biodiversity, 1, 20-22. (in Chinese) |
[马克平 (1993) 试论生物多样性的概念. 生物多样性, 1, 20-22.] | |
[35] |
May F, Gerstner K, McGlinn DJ, Xiao X, Chase JM (2018) mobsim: An R package for the simulation and measurement of biodiversity across spatial scales. Methods in Ecology and Evolution, 9, 1401-1408.
DOI URL |
[36] |
May RM (1974) Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos. Science, 186, 645-647.
PMID |
[37] |
May RM (1976) Simple mathematical models with very complicated dynamics. Nature, 261, 459-467.
DOI URL |
[38] |
McDonald-Madden E, Sabbadin R, Game ET, Baxter PWJ, Chadès I, Possingham HP (2016) Using food-web theory to conserve ecosystems. Nature Communications, 7, 10245.
DOI PMID |
[39] |
Meynard CN, Kaplan DM (2013) Using virtual species to study species distributions and model performance. Journal of Biogeography, 40, 1-8.
DOI URL |
[40] | Miller JA (2014) Virtual species distribution models: Using simulated data to evaluate aspects of model performance. Progress in Physical Geography, 38, 117-128. |
[41] |
Murphy SJ, Lenoir J (2021) Sampling units derived from geopolitical boundaries bias biodiversity analyses. Global Ecology and Biogeography, 30, 1876-1888.
DOI URL |
[42] |
Paine RT (1966) Food web complexity and species diversity. The American Naturalist, 100, 65-75.
DOI URL |
[43] | Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological Niches and Geographic Distributions. Princeton University Press, New Jersey. |
[44] |
Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
DOI URL |
[45] |
Qiao HJ, Peterson AT, Campbell LP, Soberón J, Ji LQ, Escobar LE (2016a) NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39, 805-813.
DOI URL |
[46] |
Qiao HJ, Peterson AT, Ji LQ, Hu JH (2017) Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling. Methods in Ecology and Evolution, 8, 1804-1812.
DOI URL |
[47] |
Qiao HJ, Saupe EE, Soberón J, Peterson AT, Myers CE (2016b) Impacts of niche breadth and dispersal ability on macroevolutionary patterns. The American Naturalist, 188, 149-162.
DOI URL |
[48] |
Qiao HJ, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 6, 1126-1136.
DOI URL |
[49] |
Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 361, eaar5452.
DOI URL |
[50] |
Rota CT, Ferreira MAR, Kays RW, Forrester TD, Kalies EL, McShea WJ, Parsons AW, Millspaugh JJ (2016) A multispecies occupancy model for two or more interacting species. Methods in Ecology and Evolution, 7, 1164-1173.
DOI URL |
[51] |
Saupe EE, Myers CE, Peterson AT, Soberón J, Singarayer J, Valdes P, Qiao HJ (2019a) Non-random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Global Ecology and Biogeography, 28, 928-942.
DOI URL |
[52] | Saupe EE, Myers CE, Townsend PA, Soberón J, Singarayer J, Valdes P, Qiao HJ (2019b) Spatio-temporal climate change contributes to latitudinal diversity gradients. Nature Ecology & Evolution, 3, 1419-1429. |
[53] |
Saupe EE, Qiao HJ, Donnadieu Y, Farnsworth A, Kennedy- Asser AT, Ladant J, Lunt DJ, Pohl Al, Valdes P, Finnegan S (2020) Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience, 13, 65-70.
DOI URL |
[54] |
Seshagiri RN, Kalyani K (2020) Ecological models on multi species interaction within unlimited resources. International Journal of Applied and Computational Mathematics, 6, 95.
DOI URL |
[55] |
Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423.
DOI URL |
[56] |
Silvestro D, Goria S, Sterner T, Antonelli A (2022) Improving biodiversity protection through artificial intelligence. Nature Sustainability, 5, 415-424.
DOI PMID |
[57] |
Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
DOI URL |
[58] |
Smith AB, Godsoe W, Rodríguez-Sánchez F, Wang HH, Warren D (2019) Niche estimation above and below the species level. Trends in Ecology & Evolution, 34, 260-273.
DOI URL |
[59] |
Soberón J, Nakamura M (2009) Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Science, USA, 106 (Suppl. 2), 19644-19650.
DOI URL |
[60] |
Soberón J, Peterson AT (2020) What is the shape of the fundamental Grinnellian niche? Theoretical Ecology, 13, 105-115.
DOI URL |
[61] |
Spellerberg IF, Fedor PJ (2003) A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’ index. Global Ecology and Biogeography, 12, 177-179.
DOI URL |
[62] | Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences, USA, 108, 3648-3652. |
[63] |
Tamme R, Götzenberger L, Zobel M, Bullock JM, Hooftman DAP, Kaasik A, Pärtel M (2014) Predicting species’ maximum dispersal distances from simple plant traits. Ecology, 95, 505-513.
PMID |
[64] |
Tao TT, Deng PW, Wang YQ, Zhang X, Guo YQ, Chen WW, Qin JH (2022) Microengineered multi-organoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes. Advanced Science, 9, 2103495.
DOI URL |
[65] |
Tittensor DP, Novaglio C, Harrison CS, Heneghan RF, Barrier N, Bianchi D, Bopp L, Bryndum-Buchholz A, Britten GL, Büchner M, Cheung WWL, Christensen V, Coll M, Dunne JP, Eddy TD, Everett JD, Fernandes-Salvador JA, Fulton EA, Galbraith ED, Gascuel D, Guiet J, John JG, Link JS, Lotze HK, Maury O, Ortega-Cisneros K, Palacios-Abrantes J, Petrik CM, du Pontavice H, Rault J, Richardson AJ, Shannon L, Shin YJ, Steenbeek J, Stock CA, Blanchard JL (2021) Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 11, 973-981.
DOI PMID |
[66] |
Trisos CH, Merow C, Pigot AL (2020) The projected timing of abrupt ecological disruption from climate change. Nature, 580, 496-501.
DOI URL |
[67] |
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D (2021) Highly accurate protein structure prediction for the human proteome. Nature, 596, 590-596.
DOI URL |
[68] |
Vignali S, Barras AG, Arlettaz R, Braunisch V (2020) SDMtune: An R package to tune and evaluate species distribution models. Ecology and Evolution, 10, 11488-11506.
DOI PMID |
[69] |
Volterra V (1928) Variations and fluctuations of the number of individuals in animal species living together. ICES Journal of Marine Science, 3(1), 3-51.
DOI URL |
[70] |
Whitmee S, Orme CDL (2013) Predicting dispersal distance in mammals: A trait-based approach. Journal of Animal Ecology, 82, 211-221.
DOI PMID |
[1] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[2] | 钱宏, 张健, 赵静超. 世界上已知维管植物有多少种? 基于多个全球植物数据库的整合[J]. 生物多样性, 2022, 30(7): 22254-. |
[3] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[4] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[5] | 李正飞, 蒋小明, 王军, 孟星亮, 张君倩, 谢志才. 雅鲁藏布江中下游底栖动物物种多样性及其影响因素[J]. 生物多样性, 2022, 30(6): 21431-. |
[6] | 袁桃花, 李美君, 任柳伊, 黄榕鑫, 陈益, 白新祥. 中国野生凤仙花属物种多样性和地理分布数据集[J]. 生物多样性, 2022, 30(5): 22019-. |
[7] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[8] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[9] | 张敏, 田春坡, 车先丽, 赵岩岩, 陈什旺, 周霞, 邹发生. 广东省鸟类新记录及其与自然和社会经济因素的关联性[J]. 生物多样性, 2022, 30(5): 21396-. |
[10] | 李海萍, 徐竹青, 龙志航. 大兴安岭地区重点保护和珍稀动物保护空缺分析[J]. 生物多样性, 2022, 30(2): 21294-. |
[11] | 陈胜仙, 张喜亭, 佘丹琦, 张衷华, 周志强, 王慧梅, 王文杰. 森林植物多样性、树种重要值与土壤理化性质对球囊霉素相关土壤蛋白的影响[J]. 生物多样性, 2022, 30(2): 21115-. |
[12] | 乔江, 贾国清, 周华明, 龚林, 蒋勇, 肖能文, 高晓奇, 温安祥, 王杰. 四川贡嘎山国家级自然保护区鸟兽多样性[J]. 生物多样性, 2022, 30(2): 20395-. |
[13] | 王军, 赵超. 中国菌食性管蓟马物种多样性及分布格局[J]. 生物多样性, 2022, 30(12): 22128-. |
[14] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[15] | 戴梓潇, 陈国科, 张乃莉, 马克平. 中国森林附生维管植物多样性数据集[J]. 生物多样性, 2022, 30(11): 22332-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn