生物多样性 ›› 2013, Vol. 21 ›› Issue (5): 554-563. DOI: 10.3724/SP.J.1003.2013.10049
卢品1,2, 金毅2, 陈建华1, 李铭红1,*, 于明坚2,*()
收稿日期:
2013-02-24
接受日期:
2013-04-26
出版日期:
2013-09-20
发布日期:
2013-10-08
通讯作者:
李铭红,于明坚
基金资助:
Pin Lu1,2, Yi Jin2, Jianhua Chen1, Minghong Li1,*, Mingjian Yu2,*()
Received:
2013-02-24
Accepted:
2013-04-26
Online:
2013-09-20
Published:
2013-10-08
Contact:
Li Minghong,Yu Mingjian
摘要:
β多样性度量群落物种组成随环境梯度的变化程度。为了了解地理距离和地形差异在连续空间中对β多样性的影响, 本文比较研究了地形复杂的我国古田山24 ha亚热带常绿阔叶林样地和地形平坦的巴拿马Barro Colorado Island(BCI)50 ha热带森林样地植物群落的β多样性及其形成机制, 在不同取样粒度(grain)上分析了地理距离和地形差异对β多样性的影响。我们采用1-Chao-Jaccard指数作为β多样性的度量指标, 然后用Mantel和Partial Mantel等检验来分析地理距离、地形以及5种地形因子单独对β多样性的影响。结果表明, 两个样地中群落的β多样性均具有粒度依赖性: 粒度越大, β多样性越小; 同时, 两样地β多样性均受到距离和地形的显著影响, 且随着粒度的增大, 群落β多样性与距离的相关性呈相似的单调递增趋势。另外, 地形对较复杂的古田山样地各粒度上植物群落β多样性的影响均较大, 且主要由海拔和凹凸度两个因素造成; 而地形对较平坦的BCI样地植物群落β多样性的影响则较小。本研究结果提示, 生态位过程和扩散过程都是形成β多样性的重要机制。
卢品, 金毅, 陈建华, 李铭红, 于明坚 (2013) 地理距离和地形差异对两个大型森林动态样地β多样性的影响. 生物多样性, 21, 554-563. DOI: 10.3724/SP.J.1003.2013.10049.
Pin Lu,Yi Jin,Jianhua Chen,Minghong Li,Mingjian Yu (2013) Influence of geographical distance and topographic difference on β diversity in two large-scale forest dynamics plots. Biodiversity Science, 21, 554-563. DOI: 10.3724/SP.J.1003.2013.10049.
样地 Plot | 大小 Size | 经度 Longitude | 纬度 Latitude | 海拔 Elevation (m) | 坡度 Slope |
---|---|---|---|---|---|
GTS | 400 m (SN)×600 m (WE) | 118°07.010′-118°07.400′ E | 29°15.101′-29°15.344′ N | 446.3-714.9 | 12.8°-62.0° |
BCI | 500 m (SN)×1,000 m (WE) | 79°51.31'-79°51.318' W | 9°9.075'-9°9.345' N | 121.2-159.2 | 0.2°-19.4° |
表1 古田山样地和BCI样地的背景资料
Table 1 Background information about the Gutianshan plot and the Barro Colorado Island (BCI) plot
样地 Plot | 大小 Size | 经度 Longitude | 纬度 Latitude | 海拔 Elevation (m) | 坡度 Slope |
---|---|---|---|---|---|
GTS | 400 m (SN)×600 m (WE) | 118°07.010′-118°07.400′ E | 29°15.101′-29°15.344′ N | 446.3-714.9 | 12.8°-62.0° |
BCI | 500 m (SN)×1,000 m (WE) | 79°51.31'-79°51.318' W | 9°9.075'-9°9.345' N | 121.2-159.2 | 0.2°-19.4° |
图1 不同粒度间的群落相似性与地理距离之间的关系。a、b、c和d分别表示粒度10 m、20 m、40 m和50 m; 黑线示古田山样地; 灰线示BCI样地。
Fig. 1 Relationship between community similarity and distance at different grain sizes. a, b, c and d represent grain sizes of 10 m, 20 m, 40 m and 50 m, respectively. Black line indicates Gutianshan plot; Grey line indicates BCI plot.
图2 古田山(GTS)样地和Barro Colorado Island(BCI)样地中各粒度上β多样性与地理距离之间Mantel检验的相关性(* P<0.05, ** P<0.01, *** P<0.001)。GTS和BCI: 未控制地形; gts和bci: 控制地形。
Fig. 2 The Mantel-test derived correlation coefficients bet- ween beta diversity and geographical distance at each grain size in the Gutianshan (GTS) plot and Barro Colorado Island (BCI) plot. GTS and BCI, Topography uncontrolled; gts and bci, Topography controlled.
图3 古田山(GTS)样地和Barro Colorado Island (BCI)样地中各粒度上β多样性与地形差异之间Mantel检验的相关性(* P<0.05, ** P<0.01, *** P<0.001)。GTS和BCI: 未控制距离; gts和bci: 控制距离。
Fig. 3 The Mantel-test derived correlation coefficients bet- ween beta diversity and topographic difference at each grain size in the Gutianshan (GTS) plot and Barro Colorado Island (BCI) plot (* P<0.05, ** P<0.01, *** P<0.001). GTS and BCI, Geographical distance uncontrolled; gts and bci, Geographical distance controlled.
图4 古田山样地和BCI样地中各粒度上β多样性与各地形因子差异间Partial Mantel检验的相关性(* P<0.05, ** P<0.01, *** P<0.001)。a: 海拔; b: 坡度; c: 凹凸度; d: 东西向; e: 南北向。
Fig. 4 The Partial Mantel-test derived correlation coefficients between beta diversity and each topographic variables (elevation, convexity, slope, EW aspect and SN aspect) at each grain sizes in the GTS plot and BCI plot (* P<0.05, ** P<0.01, *** P<0.001). a, Elevation; b, Slope; c, Convexity; d, Aspect 1 (East-West); e, Aspect 2 (North-South).
图5 用三阶多元回归拟合群落相似性与距离和地形之间的关系。a: BCI样地; b: GTS样地; 1: 粒度10 m; 2: 粒度20 m; 3: 粒度40 m; 4: 粒度50 m。灰线表示实际观测值; 黑线表示地理距离单独拟合值, 从10 m到50 m的各个粒度上的解释度(R2): 古田山分别为0.0211、0.0351、0.0710和0.0680; BCI分别为0.0104、0.0219、0.0601和0.0875。圆圈表示地形单独拟合值, 从10 m到50 m的各个粒度上的R2: 古田山分别为0.0596、0.1127、0.1067和0.0821; BCI分别为0.0083、0.0010、0.0212和0.0279。黑点表示地理距离和地形共同拟合值, 从10 m到50 m的各个粒度上的R2: 古田山分别为0.0667、0.1211、0.1478和0.1303; BCI分别为0.0126、0.0219、0.0584和0.0890。以上所有拟合结果的P值小于0.001。
Fig. 5 The third-degree polynomial regressions fitting the relationship between community similarity and geographical distance and topographic difference. a, BCI plot; b, GTS plot; 1, 2, 3 and 4 represent grain sizes 10 m, 20 m, 40 m, and 50 m respectively. Grey line indicate observe values. Black line represents geographical distance fitting, the adjusted R2 from 10 m to 50 m grain size in GTS were 0.0211, 0.0351, 0.0710 and 0.0680, respectively, and in BCI were 0.0104, 0.0219, 0.0601 and 0.0875, respectively. Circles represent topography fitting, the adjusted R2 from 10 m to 50 m grain size in GTS were 0.0596, 0.1127, 0.1067 and 0.0821 respectively, and in BCI were 0.0083, 0.0010, 0.0212 and 0.0279 respectively. Dots represent the geographic distance and topography joint fitting, the adjusted R2 from 10 m to 50 m grain size in GTS were 0.0667, 0.1211, 0.1478 and 0.1303, respectively, and in BCI were 0.0126, 0.0219, 0.0584 and 0.0890, respectively. P<0.001 for all the above fitting results.
附图IV Log群落相似性随地理距离衰减的线性拟合。a: BCI样地; b: 古田山样地; 1、2、3和4分别表示粒度10 m、20 m、40 m和50 m, 衰减率分别是, BCI: -2.994×10-5/m、-1.295×10-4/m、-1.081×10-4/m和-1.073×10-4/m; 古田山: -1.152×10-4/m、-3.207×10-4/m、-2.345×10-4/m和-1.742×10-4/m。以上所有拟合结果的P值小于0.001。
Appendix IV Linear regression fitting of the logged community similarity with geographical distance. a, BCI plot; b, Gutianshan plot; 1, 2, 3 and 4 represent grain size 10 m, 20 m, 40 m and 50 m respectively. BCI decay rate: -2.994×10-5/m, -1.295×10-4/m, -1.081×10-4/m and -1.073×10-4/m ; GTS decay rate: -1.152×10-4/m, -3.207×10-4/m, -2.345×10-4/m and -1.742×10-4/m .
1 | Bacaro G, Gioria M, Ricotta C (2012) Testing for differences in beta diversity from plot-to-plot dissimilarities.Ecological Research, 27, 285-292. |
2 | Borcard D, Legendre P (2002) Allscale spatial analysis of ecological data by means of principal coordinates of neighbour matrices.Ecological Monographs, 153, 51-68. |
3 | Chao AN, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data.Ecology Letters, 8, 148-159. |
4 | Chen B (陈彬), Mi XC (米湘成), Fang T (方腾), Chen L (陈磊), Ren HB (任海保), Ma KP (马克平) (2009) Gutianshan Forest in Zhejiang: Tree Species and Their Distribution Patterns (浙江古田山森林: 树种及其分布). China Forestry Publishing House, Beijing. (in Chinese) |
5 | Chen SB (陈圣宾), Ouyang ZY (欧阳志云), Xu WH (徐卫华), Xiao Y (肖燚) (2010) A review of beta diversity studies.Biodiversity Science(生物多样性), 18, 323-335. (in Chinese with English abstract) |
6 | Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and Comparison with Other Plots. Springer, Berlin. |
7 | Condit R, Pitman N, Leigh EG Jr, Chave J, Terborgh J, Foster RB, Nunez P, Aguilar S, Valencia R, Villa G, Muller- Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees.Science, 295, 666-669. |
8 | Cottenie K (2005) Integrating environmental and spatial proce- sses in ecological community dynamics.Ecology Letters, 8, 1175-1182. |
9 | Cressie N (1990) The origins of Kriging.Mathematical Geology, 22, 239-252. |
10 | Croat TB (1978) Flora of Barro Colorado Island. Stanford University Press, Stanford. |
11 | DeCáceres M, Legendre P, Valencia R, Cao M, Chang LW, Chuyong G, Condit R, Hao ZQ, Hsieh CF, Hubbell S Kenfack D, Ma KP, Mi XC, Noor NMS, Kassim AR, Ren HB, Su SH, Sun IF, Thomas D, Ye WH, He FL (2012) The variation of tree beta diversity across a global network of forest plots.Global Ecology and Biography, 21, 1191-1202. |
12 | Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics.Journal of the Royal Statistical Society: Series C (Applied Statistics), 47, 299-350. |
13 | Gilbert B, Jechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences,USA, 101, 7651-7656. |
14 | Girdler EB, Barrie BTC (2008) The scale-dependent importance of habitat factors and dispersal limitation in structuring Great Lakes shoreline plant communities.Plant Ecology, 198, 211-223. |
15 | González-Megías A, Gómez JM, Sánchez-Piñero F (2007) Diversity-habitat heterogeneity relationship at different spatial and temporal scales.Ecography, 30, 31-41. |
16 | Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot.Journal of Ecology, 89, 947-959. |
17 | Hooper ER, Legendre P, Condit R (2004) Factors affecting community composition of forest regeneration in deforested, abandoned land in Panama.Ecology, 85, 3313-3326. |
18 | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
19 | Laliberté E, Paquette A, Legendre P, Bouchard A (2009) Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest.Oecologia, 159, 377-388. |
20 | Legendre P, Legendre LFJ (1998) Numerical Ecology. Elsevier, Amsterdam. |
21 | Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data.Ecological Monographs, 75, 435-450. |
22 | Legendre P (2007) Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis.Journal of Plant Ecology(植物生态学报), 31, 976-981. (in Chinese with English abstract) |
23 | Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun YF, He FL (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China.Ecology, 90, 663-674. |
24 | Leigh EG, Rand AS, Windsor DM (1982) The Ecology of a Tropical Forest: Seasonal Rhythms and Long-Term Changes. Smithsonian Institution Press, Washington, DC. |
25 | MacArthur RH (1965) Patterns of species diversity.Biological Reviews, 40, 510-533. |
26 | Mantel N (1967) The detection of disease clustering and a generalized regression approach.Cancer Research, 27, 209-220. |
27 | Morlon H, Chuyong G, Condit R, Hubbell S, Kenfack D, Thomas D, Valencia R, Green JL (2008) A general framework for the distance-decay of similarity in ecological communities.Ecology Letters, 11, 904-917. |
28 | Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Zambrana P, Seidel R (2012) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly.Ecology Letters, 16, 151-157. |
29 | Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology.Journal of Biogeography, 26, 867-878. |
30 | Oksanen J, Kindt R, Legendre P, O’Hara RB, Stevens MHH (2010) Vegan: Community Ecology Package. R package version 1, 17-2. () (2013, 4, 4) |
31 | Reed A, Peet RK, Palmer MW, White PS (1993) Scale dependence of vegetation-environment correlations: a case study of a North Carolina piedmont woodland.Journal of Vegetation Science, 4, 329-340. |
32 | Seidler TG, Plotkin JB (2006) Seed dispersal and spatial pattern in tropical trees.PLoS Biology, 4, 2132-2137. |
33 | Shen GC, Yu MJ, Hu XS, Mi XC, Ren HB, Sun YF, Ma KP (2009) Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity.Ecology, 90, 3033-3041. |
34 | Soininen J, Lennon JJ, Hillebrand H (2007) A multivariate analysis of beta diversity across organisms and environ- ments.Ecology, 88, 2830-2838. |
35 | Steinitz O, Heller J, Tsoar A, Rotem D, Kadmon R (2005) Predicting regional patterns of similarity in species composition for conservation planning.Conservation Biology, 19, 1978-1988. |
36 | Steinbauer MJ, Dolos K, Reineking B, Beierkuhnlein C (2012) Current measures for distance decay in similarity of species composition are influenced by study extent and grain size.Global Ecology and Biogeography, 21, 1203-1212. |
37 | Tang ZY, Fang JY, Chi XL, Yang YH, Ma WH, Mohhamot A, Guo ZD, Liu YN, Gaston KJ (2012) Geography, environment, and spatial turnover of species in China’s grasslands.Ecography, 35, 1103-1109. |
38 | Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests.Science, 299, 241-244. |
39 | Tuomisto H, Ruokolainen K (2006) Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis.Ecology, 87, 2697-2708. |
40 | Valencia R, Foster RB, Villa G, Condit R, Svennings JC, Hernandez C, Romoleroux K, Losos E, Magards E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador.Ecology, 92, 214-229. |
41 | Vellend M (2001) Do commonly used indices of β-diversity measure species turnover? Vegetation Science, 12, 545-552. |
42 | Whittaker RH (1956) Vegetation of the great smoky mountains.Ecological Monographs, 26, 1-80. |
43 | Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California.Ecological Monographs, 30, 279-338. |
44 | Whittaker RH (1972) Evolution and measurement of species diversity.Taxon, 21, 213-251. |
[1] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[2] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[3] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
[4] | 陈星, 涂淑雯, 戴尊, 高爽, 王幼芳, 邢诗晨, 魏博嘉, 唐录艳, 师瑞萍, 王晓蕊, 刘永英, 赵东平, 唐霞, 姚雪, 赵明水, 吴晗星, 祁祥斌, 张健, 李敏, 王健. 浙江天目山国家级自然保护区苔藓植物多样性[J]. 生物多样性, 2023, 31(4): 22649-. |
[5] | 薛玉洁, 程安鹏, 李珊, 刘晓娟, 李景文. 亚热带森林中环境和物种多样性对灌木存活的影响[J]. 生物多样性, 2023, 31(3): 22443-. |
[6] | 商晓凡, 张健, 高浩杰, 库伟鹏, 毕玉科, 李修鹏, 阎恩荣. 岛屿面积与气候共同影响舟山群岛种子植物丰富度格局[J]. 生物多样性, 2023, 31(12): 23392-. |
[7] | 吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋. 南亚热带森林演替过程中土壤线虫群落结构变化[J]. 生物多样性, 2022, 30(12): 22205-. |
[8] | 周润, 慈秀芹, 肖建华, 曹关龙, 李捷. 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估[J]. 生物多样性, 2021, 29(6): 697-711. |
[9] | 潘玉梅, 张乃莉. 亚热带森林树种多样性对凋落叶分解胞外酶活性的影响[J]. 生物多样性, 2021, 29(11): 1447-1460. |
[10] | 谭一波,申文辉,付孜,郑威,欧芷阳,谭长强,彭玉华,庞世龙,何琴飞,黄小荣,何峰. 环境因子对桂西南蚬木林下植被物种多样性变异的解释[J]. 生物多样性, 2019, 27(9): 970-983. |
[11] | 李通,李俊凝,魏玉莲. 古田山国家级自然保护区木腐真菌物种多样性及分布[J]. 生物多样性, 2019, 27(1): 81-87. |
[12] | 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. 古田山10种主要森林群落类型的α和β多样性格局及影响因素[J]. 生物多样性, 2019, 27(1): 33-41. |
[13] | 窦丽娜, 张文富, 邓晓保, 曹敏, 唐勇. 西双版纳望天树林种子雨9年动态[J]. 生物多样性, 2018, 26(9): 919-930. |
[14] | 芦伟, 余建平, 任海保, 米湘成, 陈建华, 马克平. 古田山中亚热带常绿阔叶林群落物种多样性的空间变异特征[J]. 生物多样性, 2018, 26(9): 1023-1028. |
[15] | 倪娟平, 程赛赛, 高梅香, 卢廷玉, 金光泽. 丰林典型阔叶红松林地表鞘翅目成虫空间异质性及其与环境因子的空间关联性[J]. 生物多样性, 2018, 26(1): 14-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn