生物多样性 ›› 2021, Vol. 29 ›› Issue (11): 1447-1460. DOI: 10.17520/biods.2021240
收稿日期:
2021-06-16
接受日期:
2021-07-30
出版日期:
2021-11-20
发布日期:
2021-08-17
通讯作者:
张乃莉
作者简介:
E-mail: zhangnaili@bjfu.edu.cn基金资助:
Received:
2021-06-16
Accepted:
2021-07-30
Online:
2021-11-20
Published:
2021-08-17
Contact:
Naili Zhang
摘要:
森林生物多样性与生态系统功能关系是当前群落生态学的热点研究领域。然而, 以往研究更多聚焦在森林植物多样性丧失对群落生产力的影响, 而对森林凋落物分解的相关研究稍显不足。森林凋落叶分解的快慢直接受控于凋落物分解者分泌的胞外酶的活性, 后者更是指示森林生态系统养分循环的重要指标之一。本研究依托我国江西亚热带森林生物多样性与生态系统功能控制实验, 通过对不同植物多样性梯度样方内目标树种凋落叶胞外酶活性、理化性质以及腐生真菌的分析, 探索树种多样性丧失对胞外酶活性的影响及其调控机制, 以探讨森林树种多样性对地表、地下生态过程和功能的影响。结果表明, 样方水平树种多样性丧失显著影响胞外酶的活性, 除单种样方外, 随着样方水平树种丰富度的增加, 胞外酶活性呈现出增长趋势; 与碳周转相关的α-葡萄糖苷酶(AG)、β-葡萄糖苷酶(BG)、纤维二糖水解酶(CB)在树种多样性最大时活性达到最高; 而木糖苷酶(XS)以及与氮、磷和顽拗有机养分分解相关的N-乙酰-β-氨基葡萄糖苷酶(NAG)、酸性磷酸酶(AP)和多酚氧化酶(PPO)在树种多样性较低时活性较高。针对目标树种周围的邻居树种多样性进一步分析发现, 各胞外酶活性随着邻居树种多样性的变化呈“单峰”响应趋势, 酶活性大多在邻居树种丰富度为6时呈现峰值。研究发现真菌分解者在胞外酶活性对植物多样性的响应上可能存在重要的调控作用, 可以推测树种多样性通过改变腐生真菌分解者的群落结构和多度, 从而影响胞外酶活性。
潘玉梅, 张乃莉 (2021) 亚热带森林树种多样性对凋落叶分解胞外酶活性的影响. 生物多样性, 29, 1447-1460. DOI: 10.17520/biods.2021240.
Yumei Pan, Naili Zhang (2021) Effects of tree diversity on enzyme activity in litter of a subtropical forest ecosystem. Biodiversity Science, 29, 1447-1460. DOI: 10.17520/biods.2021240.
胞外酶名称 Extracellular enzyme | 胞外酶活性对应底物 Extracellular enzyme activity substrate |
---|---|
α-葡萄糖苷酶 α-glucosidase (AG) | 4-羟甲基-7-香豆素(MUB)-α-D-葡萄糖苷 4-MUB-α-D-glucopyranoside |
β-葡萄糖苷酶 β-glucosidase (BG) | 4-羟甲基-7-香豆素(MUB)-β-D-葡萄糖苷 4-MUB-β-D-glucopyranoside |
纤维二糖水解酶 Cellubiosidase (CB) | 4-羟甲基-7-香豆素(MUB)-β-D-纤维二糖糖苷 4-MUB-β-D-cellobioside |
木糖苷酶 Xylosidase (XS) | 4-羟甲基-7-香豆素(MUB)-β-D-木吡喃糖苷 4-MUB-β-D-xylopyranoside |
N-乙酰-β-氨基葡萄糖苷酶 N-acetyl-β-glucosaminidase (NAG) | 4-羟甲基-7-香豆素(MUB)-N-乙酰-β-氨基葡萄糖苷 4-MUB-N-acetyl-β-D-glucosaminide |
酸性磷酸酶 Acid phosphatase (AP) | 4-羟甲基-7-香豆素(MUB)磷酸盐 4-MUB phosphate |
多酚氧化酶 Polyphenol oxidase (PPO) | L-二羟苯丙氨酸(DOPA) L-dihydroxyphenyllalanine |
表1 凋落叶胞外酶活性测定的对应底物
Table 1 The corresponding substrate of extracellular enzyme activity of litter leaves
胞外酶名称 Extracellular enzyme | 胞外酶活性对应底物 Extracellular enzyme activity substrate |
---|---|
α-葡萄糖苷酶 α-glucosidase (AG) | 4-羟甲基-7-香豆素(MUB)-α-D-葡萄糖苷 4-MUB-α-D-glucopyranoside |
β-葡萄糖苷酶 β-glucosidase (BG) | 4-羟甲基-7-香豆素(MUB)-β-D-葡萄糖苷 4-MUB-β-D-glucopyranoside |
纤维二糖水解酶 Cellubiosidase (CB) | 4-羟甲基-7-香豆素(MUB)-β-D-纤维二糖糖苷 4-MUB-β-D-cellobioside |
木糖苷酶 Xylosidase (XS) | 4-羟甲基-7-香豆素(MUB)-β-D-木吡喃糖苷 4-MUB-β-D-xylopyranoside |
N-乙酰-β-氨基葡萄糖苷酶 N-acetyl-β-glucosaminidase (NAG) | 4-羟甲基-7-香豆素(MUB)-N-乙酰-β-氨基葡萄糖苷 4-MUB-N-acetyl-β-D-glucosaminide |
酸性磷酸酶 Acid phosphatase (AP) | 4-羟甲基-7-香豆素(MUB)磷酸盐 4-MUB phosphate |
多酚氧化酶 Polyphenol oxidase (PPO) | L-二羟苯丙氨酸(DOPA) L-dihydroxyphenyllalanine |
影响因子 Impact factor | AG | BG | CB | XS | NAG | AP | PPO |
---|---|---|---|---|---|---|---|
树种丰富度 Tree richness | 12.469*** | 2.245 | 5.282** | 4.683** | 0.434 | 1.945 | 0.404 |
邻居树种丰富度 Neighbor tree richness | 8.351*** | 1.474 | 6.076** | 4.712** | 8.009*** | 1.100 | 1.897 |
同种树种丰富度 Conspecific species richness | 1.058 | 10.658*** | 11.566*** | 17.113*** | 10.518*** | 11.720*** | 5.526** |
凋落叶有机碳含量 Litter organic carbon content | 0.500 | 0.290 | 0.177 | 0.566 | 1.982 | 0.000 | 1.008 |
凋落叶全氮含量 Litter total nitrogen content | 1.868 | 1.845 | 3.140* | 0.000 | 9.660*** | 1.214 | 1.424 |
凋落叶磷含量 Litter P content | 0.652 | 2.313 | 3.109* | 1.374 | 3.378* | 0.626 | 0.057 |
凋落叶钙含量 Litter Ca content | 0.452 | 0.462 | 0.669 | 3.195* | 10.781*** | 4.451** | 1.122 |
凋落叶铁含量 Litter Fe content | 0.591 | 2.325 | 1.532 | 1.884 | 0.925 | 1.066 | 0.172 |
凋落叶镁含量 Litter Mg content | 0.101 | 0.234 | 0.269 | 0.352 | 0.068 | 3.068* | 0.035 |
海拔 Altitude | 0.218 | 0.169 | 0.218 | 0.413 | 0.238 | 0.187 | 1.234 |
南北坡向 North-south aspect | 2.519 | 5.133** | 6.337** | 13.787*** | 6.817** | 5.251** | 0.072 |
东西坡向 East-west aspect | 0.089 | 0.001 | 1.414 | 0.392 | 0.061 | 7.307** | 3.663* |
坡度 Slope | 1.305 | 2.709 | 2.303 | 1.526 | 0.237 | 1.215 | 0.988 |
表2 样方水平和邻居树种多样性及其凋落叶化学属性对胞外酶活性的影响(F值)。以树种丰富度, 邻居树种丰富度, 同种树种丰富度(邻居树种为目标树种的同种树种的丰富度), 凋落叶有机碳、全氮、磷、钙、铁、镁含量, 海拔, 南北坡向, 东西坡向为固定因子, 树种和物种类别为随机变量构建线性混合效应模型。AG: α-葡萄糖苷酶; BG: β-葡萄糖苷酶; CB: 纤维二糖水解酶; XS: 木糖苷酶; NAG: N-乙酰-β-氨基葡萄糖苷酶; AP: 酸性磷酸酶; PPO: 多酚氧化酶。*, P < 0.1; **, P < 0.05; ***, P < 0.01.
Table 2 The effects of tree richness at the plot level, neighbor tree richness and litter chemicals on the activities of extracellular enzymes (F value). A linear mixed effect model was established with tree species richness, neighbour tree species richness, conspecifics richness (the richness of the same species with neighbor species as target species), litter organic carbon, total nitrogen, phosphorus, calcium, iron, magnesium, elevation, north-south slope orientation and east-west slope orientation as fixed factors, and tree species and species category as random variables. AG, α-glucosidase; BG, β-glucosidase; CB, Cellubiosidase; XS, Xylosidase; NAG, N-acetyl-β-glucosaminidase; AP, Acid phosphatase; PPO, Polyphenol oxidase. *, P < 0.1; **, P < 0.05; ***, P < 0.01.
影响因子 Impact factor | AG | BG | CB | XS | NAG | AP | PPO |
---|---|---|---|---|---|---|---|
树种丰富度 Tree richness | 12.469*** | 2.245 | 5.282** | 4.683** | 0.434 | 1.945 | 0.404 |
邻居树种丰富度 Neighbor tree richness | 8.351*** | 1.474 | 6.076** | 4.712** | 8.009*** | 1.100 | 1.897 |
同种树种丰富度 Conspecific species richness | 1.058 | 10.658*** | 11.566*** | 17.113*** | 10.518*** | 11.720*** | 5.526** |
凋落叶有机碳含量 Litter organic carbon content | 0.500 | 0.290 | 0.177 | 0.566 | 1.982 | 0.000 | 1.008 |
凋落叶全氮含量 Litter total nitrogen content | 1.868 | 1.845 | 3.140* | 0.000 | 9.660*** | 1.214 | 1.424 |
凋落叶磷含量 Litter P content | 0.652 | 2.313 | 3.109* | 1.374 | 3.378* | 0.626 | 0.057 |
凋落叶钙含量 Litter Ca content | 0.452 | 0.462 | 0.669 | 3.195* | 10.781*** | 4.451** | 1.122 |
凋落叶铁含量 Litter Fe content | 0.591 | 2.325 | 1.532 | 1.884 | 0.925 | 1.066 | 0.172 |
凋落叶镁含量 Litter Mg content | 0.101 | 0.234 | 0.269 | 0.352 | 0.068 | 3.068* | 0.035 |
海拔 Altitude | 0.218 | 0.169 | 0.218 | 0.413 | 0.238 | 0.187 | 1.234 |
南北坡向 North-south aspect | 2.519 | 5.133** | 6.337** | 13.787*** | 6.817** | 5.251** | 0.072 |
东西坡向 East-west aspect | 0.089 | 0.001 | 1.414 | 0.392 | 0.061 | 7.307** | 3.663* |
坡度 Slope | 1.305 | 2.709 | 2.303 | 1.526 | 0.237 | 1.215 | 0.988 |
图1 不同样方水平目标树种丰富度凋落叶的7种胞外酶活性(平均值 ± 标准误)。不同字母表示差异显著(P < 0.05)。
Fig. 1 The activities of seven extracellular enzymes in litter of the target tree species under different tree species richness at the plot level (mean ± SE). Different letters indicate significant differences (P < 0.05).
图2 不同邻居树种丰富度中目标树种林冠下凋落叶的7种胞外酶活性(平均值 ± 标准误)。不同字母表示差异显著(P < 0.05)。
Fig. 2 The activities of seven extracellular enzymes in litter of the target tree species under different neighbour tree species richness (mean ± SE). Different letters indicate significant differences (P < 0.05).
图3 腐生真菌α多样性指数与目标树种林冠下凋落叶的7种胞外酶活性的相关性。AG: α-葡萄糖苷酶; BG: β-葡萄糖苷酶; CB: 纤维二糖水解酶; XS: 木糖苷酶; NAG: N-乙酰-β-氨基葡萄糖苷酶; AP: 酸性磷酸酶; PPO: 多酚氧化酶。Richness: 腐生真菌物种丰富度; Chao1: Chao1丰富度指数; ACE: 基于丰度的覆盖估计值; Shannon: Shannon指数; Simpson: Simpson指数; Pielou’s: Pielou’s均匀度指数; Abundance: 腐生真菌物种多度。绿色, 正相关; 红色, 负相关; *, P < 0.1; **, P < 0.05; ***, P < 0.001。
Fig. 3 Correlation between alpha-diversity index of saprotrophic fungal community and extracellular enzyme activities in litter of the target tree species. AG, α-glucosidase; BG, β-glucosidase; CB, Cellubiosidase; XS, Xylosidase; NAG, N-acetyl-β-glucosaminidase; AP, Acid phosphatase; PPO, Polyphenol oxidase. Richness, Saprotrophic fungal richness; Chao 1, Chao 1 index; ACE, Abundance-based coverage estimators index; Shannon, Shannon index; Simpson, Simpson index; Pielou’s, Pielou’s evennesss index; Abundance, Saprotrophic fungal abundance. green, Positive correlation; red, Negative correlation; *, P < 0.1; **, P < 0.05; ***, P < 0.001.
图4 基于距离矩阵的腐生真菌群落与胞外酶活的Mantel分析(a)和db-RDA (b)结果。AG: α-葡萄糖苷酶; BG: β-葡萄糖苷酶; CB: 纤维二糖水解酶; XS: 木糖苷酶; NAG: N-乙酰-β-氨基葡萄糖苷酶; AP: 酸性磷酸酶; PPO: 多酚氧化酶。
Fig. 4 Mantel test and distance-based redundancy analysis (db-RDA) of saprotrophic fungal community and extracellular enzyme activities. AG, α-glucosidase; BG, β-glucosidase; CB, Cellubiosidase; XS, Xylosidase; NAG, N-acetyl-β-glucosaminidase; AP, Acid phosphatase; PPO, Polyphenol oxidase.
[1] |
Ali A, Yan ER (2017) The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. Forest Ecology and Management, 401, 125-134.
DOI URL |
[2] | Babe GN, Toukam ST, Massai JT, Maigari P, Ngakou A, Ibrahima A (2020) Isolation and characterization of bacteria involved in Daniellia oliveri, Ficus sycomorus, Hymenocardia acida and Terminalia glaucescens leaf litter decomposition and their hydrolytic enzyme potentials. International Journal of Plant & Soil Science, 32, 65-82. |
[3] | Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A de Wit P, Sánchez-García M, Ebersberger I de Sousa F, Amend AS, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4, 914-919. |
[4] |
Bongers FJ, Schmid B, Durka W, Li S, Bruelheide H, Hahn CZ, Yan HR, Ma KP, Liu XJ (2020) Genetic richness affects trait variation but not community productivity in a tree diversity experiment. New Phytologist, 227, 744-756.
DOI PMID |
[5] |
Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR, Lyver POB, Meurisse N, Oxbrough A, Taki H, Thompson ID, van der Plas F, Jactel H (2017) Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 26, 3005-3035.
DOI URL |
[6] |
Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Gutknecht JLM, Guo DL, Guo LD, Härdtle W, He JS, Klein AM, Kühn P, Liang Y, Liu XJ, Michalski S, Niklaus PA, Pei KQ, Scherer‐Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, Fischer M, Ma KP, Schmid B (2014) Designing forest biodiversity experiments: General considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89.
DOI URL |
[7] | Bruelheide H, Schmidt K, Seidler G, Nadrowski K (2013) Main Experiment: Site A plots: Diversity treatments coordinates, topography. BEF-China data portal. http://china.befdata.biow.uni-leipzig.de/datasets/71. .(accessed on 2021-04-29) |
[8] |
Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biology and Biochemistry, 43, 795-803.
DOI URL |
[9] |
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216-234.
DOI URL |
[10] |
Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: A review. Pedobiologia, 49, 637-644.
DOI URL |
[11] | Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences, USA, 114, E6089-E6096. |
[12] |
Chen C, Chen HYH, Chen XL, Huang ZQ (2019) Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nature Communications, 10, 1332.
DOI PMID |
[13] |
Chen H, Li DJ, Xiao KC, Wang KL (2018) Soil microbial processes and resource limitation in karst and non-karst forests. Functional Ecology, 32, 1400-1409.
DOI URL |
[14] | Chen YX, Huang YY, Niklaus PA, Castro-Izaguirre N, Clark AT, Bruelheide H, Ma KP, Schmid B (2020) Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nature Ecology & Evolution, 4, 550-559. |
[15] |
Cheng KK, Yu SX (2020) Neighboring trees regulate the root-associated pathogenic fungi on the host plant in a subtropical forest. Ecology and Evolution, 10, 3932-3943.
DOI URL |
[16] |
DeForest JL (2009) The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil Biology and Biochemistry, 41, 1180-1186.
DOI URL |
[17] |
De Groote SRE, Vanhellemont M, Baeten L, Schrijver A, Martel A, Bonte D, Lens L, Verheyen K (2018) Tree species diversity indirectly affects nutrient cycling through the shrub layer and its high-quality litter. Plant and Soil, 427, 335-350.
DOI URL |
[18] |
Eisenhauer N, Milcu A, Sabais ACW, Bessler H, Brenner J, Engels C, Klarner B, Maraun M, Partsch S, Roscher C, Schonert F, Temperton VM, Thomisch K, Weigelt A, Weisser WW, Scheu S (2011) Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE, 6, e16055.
DOI URL |
[19] |
Garland G, Banerjee S, Edlinger A, Miranda Oliveira E, Herzog C, Wittwer R, Philippot L, Maestre FT, van der Heijden MGA (2021) A closer look at the functions behind ecosystem multifunctionality: A review. Journal of Ecology, 109, 600-613.
DOI URL |
[20] |
Germany MS, Bruelheide H, Erfmeier A (2021) Drivers of understorey biomass: Tree species identity is more important than richness in a young forest. Journal of Plant Ecology, 14, 465-477.
DOI URL |
[21] |
Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Global Change Biology, 6, 751-765.
DOI URL |
[22] |
Gracia M, Montané F, Piqué J, Retana J (2007) Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). Forest Ecology and Management, 242, 391-397.
DOI URL |
[23] | Guo ZW, Wang XP, Fan DY (2021) Ecosystem functioning and stability are mainly driven by stand structural attributes and biodiversity, respectively, in a tropical forest in Southwestern China. Forest Ecology and Management, 481, 118696. |
[24] |
Haghverdi K, Kooch Y (2019) Effects of diversity of tree species on nutrient cycling and soil-related processes. Catena, 178, 335-344.
DOI |
[25] |
Hättenschwiler S, Fromin N, Barantal S (2011) Functional diversity of terrestrial microbial decomposers and their substrates. Comptes Rendus Biologies, 334, 393-402.
DOI PMID |
[26] |
Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191-218.
DOI URL |
[27] | He J, Zhao YP, Guan LZ (2011) Effect of free calcium carbonate on soil pH and enzyme activities. Journal of Shenyang Agricultural University, 42, 614-617. (in Chinese with English abstract) |
[ 贺婧, 赵亚平, 关连珠 (2011) 土壤中游离碳酸钙对土壤pH及酶活性的影响. 沈阳农业大学学报, 42, 614-617.] | |
[28] |
Hooper DU, Bignell DE, Brown VK, Brussard L, Mark Dangerfield J, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, van der Putten WH, de Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. BioScience, 50, 1049-1061.
DOI URL |
[29] | Hou EQ, Chen CR, McGroddy ME, Wen DZ (2012) Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. PLoS ONE, 7, e52071. |
[30] |
Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hönig L, Hu RY, Klein AM, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZW, Welk E, Wirth C, Wubet T, Xiang WH, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI |
[31] |
Huang YY, Ma YL, Zhao K, Niklaus PA, Schmid B, He JS (2017) Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. Journal of Plant Ecology, 10, 28-35.
DOI URL |
[32] |
Hubert NA, Gehring CA (2008) Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone. Mycorrhiza, 18, 363-374.
DOI URL |
[33] |
Hunt HW, Ingham ER, Coleman DC, Elliott ET, Reid CPP (1988) Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology, 69, 1009-1016.
DOI URL |
[34] | Kizilkaya R, Dengiz O, Göl C, Hepşen Ş (2007) Effects of different topographic positions on soil properties and soil enzymes activities. Asian Journal of Chemistry, 19, 2295-2306. |
[35] | Laureto LMO, Cianciaruso MV, Samia DSM (2015) Functional diversity: An overview of its history and applicability. Natureza & Conservação, 13, 112-116. |
[36] | Leonhardt S, Hoppe B, Stengel E, Noll L, Moll J, Bässler C, Dahl A, Buscot F, Hofrichter M, Kellner H (2019) Molecular fungal community and its decomposition activity in sapwood and heartwood of 13 temperate European tree species. PLoS ONE, 14, e0212120. |
[37] |
Li JJ, Zhou XM, Yan JX, Li HJ, He JZ (2015) Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coal mine site. Applied Soil Ecology, 87, 56-62.
DOI URL |
[38] |
Li Y, Tian DS, Yang H, Niu SL (2018) Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Functional Ecology, 32, 95-105.
DOI URL |
[39] | Liu JB, Chen J, Chen GS, Guo JF, Li YQ (2020) Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests. PLoS ONE, 15, e0220599. |
[40] | Liu XW, Li XL, Li XT, Ma WJ, Guo Q, Zhu XR, Xing F (2021) Dominant plant identity determines soil extracellular enzyme activities of its entire community in a semi-arid grassland. Applied Soil Ecology, 161, 103872. |
[41] |
Liu Y, Shen X, Chen YM, Wang LF, Chen QM, Zhang J, Xu ZF, Tan B, Zhang L, Xiao JJ, Zhu P, Chen LH (2019) Litter chemical quality strongly affects forest floor microbial groups and ecoenzymatic stoichiometry in the subalpine forest. Annals of Forest Science, 76, 1-15.
DOI URL |
[42] | Lübbe T, Schuldt B, Leuschner C (2015) Species identity and neighbor size surpass the impact of tree species diversity on productivity in experimental broad-leaved tree sapling assemblages under dry and moist conditions. Frontiers in Plant Science, 6, 857. |
[43] |
Ma LW, Bongers FJ, Li S, Tang T, Yang B, Ma KP, Liu XJ (2021) Species identity and composition effects on community productivity in a subtropical forest. Basic and Applied Ecology, 55, 87-97.
DOI URL |
[44] |
Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology and Biochemistry, 33, 1633-1640.
DOI URL |
[45] |
Maxwell TL, Augusto L, Bon L, Courbineau A, Altinalmazis-Kondylis A, Milin S, Bakker MR, Jactel H, Fanin N (2020) Effect of a tree mixture and water availability on soil nutrients and extracellular enzyme activities along the soil profile in an experimental forest. Soil Biology and Biochemistry, 148, 107864.
DOI URL |
[46] | Meng YY, Hui DF, Huangfu CH (2020) Site conditions interact with litter quality to affect home-field advantage and rhizosphere effect of litter decomposition in a subtropical wetland ecosystem. Science of the Total Environment, 749, 141442. |
[47] |
Mori AS, Lertzman KP, Gustafsson L (2017) Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. Journal of Applied Ecology, 54, 12-27.
DOI URL |
[48] | Ostertag R, Sebastián-González E, Peck R, Hall T, Kim J, DiManno N, Rayome D, Cordell S, Banko P, Uowolo A (2020) Linking plant and animal functional diversity with an experimental community restoration in a Hawaiian lowland wet forest. Food Webs, 25, e00171. |
[49] |
Patarkalashvili T (2017) Forest biodiversity of Georgia and endangered plant species. Annals of Agrarian Science, 15, 349-351.
DOI URL |
[50] |
Patrick CJ, McCluney KE, Ruhi A, Gregory A, Sabo J, Thorp JH (2021) Multi-scale biodiversity drives temporal variability in macrosystems. Frontiers in Ecology and the Environment, 19, 47-56.
DOI URL |
[51] |
Pei ZQ, Leppert KN, Eichenberg D, Bruelheide H, Niklaus PA, Buscot F, Gutknecht JLM (2017) Leaf litter diversity alters microbial activity, microbial abundances, and nutrient cycling in a subtropical forest ecosystem. Biogeochemistry, 134, 163-181.
DOI URL |
[52] |
Peng XQ, Wang W (2016) Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of Northern China. Soil Biology and Biochemistry, 98, 74-84.
DOI URL |
[53] |
Prada-Salcedo LD, Goldmann K, Heintz-Buschart A, Reitz T, Wambsganss J, Bauhus J, Buscot F (2021) Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Molecular Ecology, 30, 572-591.
DOI PMID |
[54] | R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[55] |
Ristok C, Leppert KN, Scherer-Lorenzen M, Niklaus PA, Bruelheide H (2019) Soil macrofauna and leaf functional traits drive the decomposition of secondary metabolites in leaf litter. Soil Biology and Biochemistry, 135, 429-437.
DOI |
[56] | Sanaei A, Ali A, Yuan ZQ, Liu SF, Lin F, Fang S, Ye J, Hao ZQ, Loreau M, Bai E, Wang XG (2021) Context-dependency of tree species diversity, trait composition and stand structural attributes regulate temperate forest multifunctionality. Science of the Total Environment, 757, 143724. |
[57] |
Santonja M, Foucault Q, Rancon A, Gauquelin T, Fernandez C, Baldy V, Mirleau P (2018) Contrasting responses of bacterial and fungal communities to plant litter diversity in a Mediterranean oak forest. Soil Biology and Biochemistry, 125, 27-36.
DOI URL |
[58] |
Schmitt S, Maréchaux I, Chave J, Fischer FJ, Piponiot C, Traissac S, Hérault B (2020) Functional diversity improves tropical forest resilience: Insights from a long-term virtual experiment. Journal of Ecology, 108, 831-843.
DOI URL |
[59] | Shi LJ, Wang HM, Fu XL, Kou L, Meng SW, Dai XQ (2020) Soil enzyme activities and their stoichiometry of typical plantations in mid-subtropical China. Chinese Journal of Applied Ecology, 31, 1980-1988. (in Chinese with English abstract) |
[ 史丽娟, 王辉民, 付晓莉, 寇亮, 孟盛旺, 戴晓琴 (2020) 中亚热带典型人工林土壤酶活性及其化学计量特征. 应用生态学报, 31, 1980-1988.] | |
[60] |
Tan XP, Machmuller MB, Cotrufo MF, Shen WJ (2020) Shifts in fungal biomass and activities of hydrolase and oxidative enzymes explain different responses of litter decomposition to nitrogen addition. Biology and Fertility of Soils, 56, 423-438.
DOI URL |
[61] | Tilman D (1999) The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455-1474. |
[62] |
Tsujiyama SI, Minami M (2005) Production of phenol-oxidizing enzymes in the interaction between white-rot fungi. Mycoscience, 46, 268-271.
DOI URL |
[63] |
Ushio M, Kitayama K, Balser TC (2010) Tree species effects on soil enzyme activities through effects on soil physicochemical and microbial properties in a tropical montane forest on Mt. Kinabalu, Borneo. Pedobiologia, 53, 227-233.
DOI URL |
[64] |
Valone TJ, Balaban-Feld J (2019) An experimental investigation of top-down effects of consumer diversity on producer temporal stability. Journal of Ecology, 107, 806-813.
DOI URL |
[65] |
Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7, 477-486.
DOI URL |
[66] |
Wang BT, Hu S, Yu XY, Jin L, Zhu YJ, Jin FJ (2020) Studies of cellulose and starch utilization and the regulatory mechanisms of related enzymes in fungi. Polymers, 12, 530.
DOI URL |
[67] |
Wang MQ, Li Y, Chesters D, Bruelheide H, Ma KP, Guo PF, Zhou QS, Staab M, Zhu CD, Schuldt A (2020) Host functional and phylogenetic composition rather than host diversity structure plant-herbivore networks. Molecular Ecology, 29, 2747-2762.
DOI URL |
[68] |
Waring BG (2013) Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biology and Biochemistry, 64, 89-95.
DOI URL |
[69] |
Wei CC, Liu XF, Lin CF, Li XF, Li Y, Zheng YX (2018) Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China. Chinese Journal of Plant Ecology, 42, 692-702. (in Chinese with English abstract)
DOI URL |
[ 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄 (2018) 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 42, 692-702.]
DOI |
|
[70] | Xu ZJ, Wan XH, Liang YF, Shi XZ (2021) Effects of root growth on leaf litter decomposition and enzyme activity in litter layer. Chinese Journal of Applied Ecology, 32, 31-38. (in Chinese with English abstract) |
[ 许子君, 万晓华, 梁艺凡, 施秀珍 (2021) 根系在凋落物层生长对凋落叶分解及酶活性的影响. 应用生态学报, 32, 31-38.] | |
[71] |
Zeng XQ, Durka W, Fischer M (2017) Species-specific effects of genetic diversity and species diversity of experimental communities on early tree performance. Journal of Plant Ecology, 10, 252-258.
DOI URL |
[72] |
Zhang NL, Bruelheide H, Li YN, Liang Y, Wubet T, Trogisch S, Ma KP (2020) Community and neighbourhood tree species richness effects on fungal species in leaf litter. Fungal Ecology, 47, 100961.
DOI URL |
[73] |
Zhang NL, Li YN, Wubet T, Bruelheide H, Liang Y, Purahong W, Buscot F, Ma KP (2018) Tree species richness and fungi in freshly fallen leaf litter: Unique patterns of fungal species composition and their implications for enzymatic decomposition. Soil Biology and Biochemistry, 127, 120-126.
DOI URL |
[74] |
Zheng LT, Chen HYH, Biswas SR, Bao DF, Fang XC, Abdullah M, Yan ER (2021) Diversity and identity of economics traits determine the extent of tree mixture effects on ecosystem productivity. Journal of Ecology, 109, 1898-1908.
DOI URL |
[75] |
Zilliox C, Gosselin F (2014) Tree species diversity and abundance as indicators of understory diversity in French mountain forests: Variations of the relationship in geographical and ecological space. Forest Ecology and Management, 321, 105-116.
DOI URL |
[1] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[2] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
[3] | 陈星, 涂淑雯, 戴尊, 高爽, 王幼芳, 邢诗晨, 魏博嘉, 唐录艳, 师瑞萍, 王晓蕊, 刘永英, 赵东平, 唐霞, 姚雪, 赵明水, 吴晗星, 祁祥斌, 张健, 李敏, 王健. 浙江天目山国家级自然保护区苔藓植物多样性[J]. 生物多样性, 2023, 31(4): 22649-. |
[4] | 薛玉洁, 程安鹏, 李珊, 刘晓娟, 李景文. 亚热带森林中环境和物种多样性对灌木存活的影响[J]. 生物多样性, 2023, 31(3): 22443-. |
[5] | 商晓凡, 张健, 高浩杰, 库伟鹏, 毕玉科, 李修鹏, 阎恩荣. 岛屿面积与气候共同影响舟山群岛种子植物丰富度格局[J]. 生物多样性, 2023, 31(12): 23392-. |
[6] | 吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋. 南亚热带森林演替过程中土壤线虫群落结构变化[J]. 生物多样性, 2022, 30(12): 22205-. |
[7] | 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. 古田山10种主要森林群落类型的α和β多样性格局及影响因素[J]. 生物多样性, 2019, 27(1): 33-41. |
[8] | 李通,李俊凝,魏玉莲. 古田山国家级自然保护区木腐真菌物种多样性及分布[J]. 生物多样性, 2019, 27(1): 81-87. |
[9] | 袁春明, 耿云芬, 柴勇, 郝佳波, 吴涛. 哀牢山中山湿性常绿阔叶林木质藤本对边缘效应的响应[J]. 生物多样性, 2016, 24(1): 40-47. |
[10] | 李娟, 郭聪, 肖治术. 都江堰亚热带森林常见木本植物果实组成与种子扩散策略[J]. 生物多样性, 2013, 21(5): 572-581. |
[11] | 童跃伟, 项文化, 王正文, Walter Durka, Markus Fischer. 地形、邻株植物及自身大小对红楠幼树生长与存活的影响[J]. 生物多样性, 2013, 21(3): 269-277. |
[12] | 巩合德, 杨国平, 鲁志云, 刘玉洪. 哀牢山常绿阔叶林树种多样性及空间分布格局[J]. 生物多样性, 2011, 19(2): 143-150. |
[13] | 朱彪, 陈安平, 刘增力, 方精云. 南岭东西段植物群落物种组成及其树种多样性垂直格局的比较[J]. 生物多样性, 2004, 12(1): 53-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn