生物多样性 ›› 2012, Vol. 20 ›› Issue (2): 159-167. DOI: 10.3724/SP.J.1003.2012.09242
谢玉彬1,2, 马遵平1,2, 杨庆松1,2, 方晓峰1,2, 张志国1,2, 阎恩荣1,2, 王希华1,2,*()
收稿日期:
2011-12-29
接受日期:
2012-03-13
出版日期:
2012-03-20
发布日期:
2012-04-09
通讯作者:
王希华
作者简介:
* E-mail: xhwang@des.ecnu.edu.cnYubin Xie1,2, Zunping Ma1,2, Qingsong Yang1,2, Xiaofeng Fang1,2, Zhiguo Zhang1,2, Enrong Yan1,2, Xihua Wang1,2,*()
Received:
2011-12-29
Accepted:
2012-03-13
Online:
2012-03-20
Published:
2012-04-09
Contact:
Xihua Wang
摘要:
位于亚热带的浙江天童和古田山常绿阔叶林大样地分布有较高比例的落叶树种, 那么它们与常绿树种的共存机制是什么? 常绿树种和落叶树种生态习性差异较大, 二者对生境的选择应有所不同, 我们推测生境分化可能是两类植物实现共存的主要机制。为检验该假设, 我们以天童20 ha动态样地调查数据为依托, 选择个体数≥20的55个常绿树种和42个落叶树种作为分析对象, 用典范对应分析(CCA)研究了地形因子对二者分布的影响差异, 用torus转换检验来分析常绿树种和落叶树种与各类地形生境的关联。结果如下: (1)CCA分析表明地形因子对常绿树种分布的解释量为19.2%, 对落叶树种分布的解释量为7.0%。(2)torus转换检验结果表明, 与沟谷成正关联的常绿树种和落叶树种的比例分别为16.4%和28.6%, 成负关联的比例分别为40%和7%; 与山脊成正关联的常绿树种和落叶树种的比例分别为41.8%和4.8%, 成负关联的比例分别为10.9%和47.6%; 与受干扰生境成正关联的常绿树种和落叶树种的比例分别为16.4%和42.9%。上述结果说明地形对常绿树种分布的影响大于落叶树种; 两个植物类群对生境的选择多呈现相反格局, 尤其是在沟谷生境和山脊生境, 这进一步表明生境分化是常绿树种和落叶树种共存的重要机制之一, 生态位理论在一定程度上能较好地解释亚热带常绿阔叶林物种多样性的维持。
谢玉彬, 马遵平, 杨庆松, 方晓峰, 张志国, 阎恩荣, 王希华 (2012) 基于地形因子的天童地区常绿树种和落叶树种共存机制研究. 生物多样性, 20, 159-167. DOI: 10.3724/SP.J.1003.2012.09242.
Yubin Xie, Zunping Ma, Qingsong Yang, Xiaofeng Fang, Zhiguo Zhang, Enrong Yan, Xihua Wang (2012) Coexistence mechanisms of evergreen and deciduous trees based on topographic factors in Tiantong region, Zhejiang Province, eastern China. Biodiversity Science, 20, 159-167. DOI: 10.3724/SP.J.1003.2012.09242.
生境类型 Habitat type | 海拔 Elevation (m) | 凸度 Convexity (m) | 总面积 Total area (ha) | 总多度 (密度) Total no. of stem (density, no./ha) |
---|---|---|---|---|
受干扰生境 Disturbed habitat | 所有 All | 所有 All | 1.6 | 4,099 (2,499.4) |
低海拔沟谷 Low valley | < 450 | [-5.8, -2.0) | 3.0 | 11,634 (3,930.4) |
高海拔沟谷 High valley | ≥ 450 | [-5.8, -2.0) | 2.0 | 8,954 (4,477.0) |
低海拔山脊 Low ridge | < 450 | (2.0, 6.9] | 1.7 | 8,365 (4,979.2) |
高海拔山脊 High ridge | ≥ 450 | (2.0, 6.9] | 1.8 | 9,862 (5,478.9) |
低海拔坡面 Low slope | < 450 | [-2.0, 2.0) | 6.2 | 32,555 (5,217.2) |
高海拔坡面 High slope | ≥ 450 | [-2.0, 2.0) | 3.7 | 19,134 (5,199.5) |
表1 天童20 ha常绿阔叶林动态样地7类生境地形因子表
Table 1 Topographic parameters of seven habitat types in the 20-ha evergreen broad-leaved forest dynamic plot in Tiantong
生境类型 Habitat type | 海拔 Elevation (m) | 凸度 Convexity (m) | 总面积 Total area (ha) | 总多度 (密度) Total no. of stem (density, no./ha) |
---|---|---|---|---|
受干扰生境 Disturbed habitat | 所有 All | 所有 All | 1.6 | 4,099 (2,499.4) |
低海拔沟谷 Low valley | < 450 | [-5.8, -2.0) | 3.0 | 11,634 (3,930.4) |
高海拔沟谷 High valley | ≥ 450 | [-5.8, -2.0) | 2.0 | 8,954 (4,477.0) |
低海拔山脊 Low ridge | < 450 | (2.0, 6.9] | 1.7 | 8,365 (4,979.2) |
高海拔山脊 High ridge | ≥ 450 | (2.0, 6.9] | 1.8 | 9,862 (5,478.9) |
低海拔坡面 Low slope | < 450 | [-2.0, 2.0) | 6.2 | 32,555 (5,217.2) |
高海拔坡面 High slope | ≥ 450 | [-2.0, 2.0) | 3.7 | 19,134 (5,199.5) |
植物类群 Plant group | 地形因子 Topographic factor | CCA1 | CCA2 | R2 | Pr(>r) | 显著性水平 Significance level |
---|---|---|---|---|---|---|
常绿树种 Evergreen trees | 海拔 Elevation | 0.97 | 0.25 | 0.72 | 0.001 | *** |
坡度 Slope | 0.47 | -0.88 | 0.17 | 0.001 | *** | |
凸度 Convexity | 0.94 | -0.34 | 0.40 | 0.001 | *** | |
落叶树种 Deciduous trees | 海拔 Elevation | 0.91 | -0.41 | 0.46 | 0.001 | *** |
坡度 Slope | 0.35 | 0.94 | 0.22 | 0.001 | *** | |
凸度 Convexity | 0.99 | 0.13 | 0.39 | 0.001 | *** |
表2 常绿树种和落叶树种的生境排序随机化排列检验
Table 2 Permutation test for habitats of evergreen and deciduous trees in the 20-ha plot in Tiantong
植物类群 Plant group | 地形因子 Topographic factor | CCA1 | CCA2 | R2 | Pr(>r) | 显著性水平 Significance level |
---|---|---|---|---|---|---|
常绿树种 Evergreen trees | 海拔 Elevation | 0.97 | 0.25 | 0.72 | 0.001 | *** |
坡度 Slope | 0.47 | -0.88 | 0.17 | 0.001 | *** | |
凸度 Convexity | 0.94 | -0.34 | 0.40 | 0.001 | *** | |
落叶树种 Deciduous trees | 海拔 Elevation | 0.91 | -0.41 | 0.46 | 0.001 | *** |
坡度 Slope | 0.35 | 0.94 | 0.22 | 0.001 | *** | |
凸度 Convexity | 0.99 | 0.13 | 0.39 | 0.001 | *** |
植物类群 Plant group | 限制性轴特征值 Eigenvalues for constrained axes | 非限制性轴特征值 Eigenvalues for unconstrained axes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CCA1 | CCA2 | CCA3 | CA1 | CA2 | CA3 | CA4 | CA5 | CA6 | CA7 | CA8 | |
常绿树种 Evergreen trees | 0.27 | 0.09 | 0.02 | 0.18 | 0.16 | 0.12 | 0.10 | 0.09 | 0.09 | 0.08 | 0.07 |
落叶树种 Deciduous trees | 0.24 | 0.13 | 0.04 | 0.42 | 0.34 | 0.33 | 0.26 | 0.23 | 0.19 | 0.19 | 0.17 |
能被生境因子解释的总变异 Variation explained by topographic factors | 未能被生境因子解释的总变异 Variation unexplained by topographic factors | ||||||||||
常绿树种 Evergreen trees | 0.39 (19.2%) | 1.64 (80.8%) | |||||||||
落叶树种 Deciduous trees | 0.41 (7.0%) | 5.22 (93.0%) |
表3 常绿树种和落叶树种CCA排序结果及其特征值
Table 3 Results of CCA and eigenvalues of evergreen and deciduous trees in the 20-ha plot in Tiantong
植物类群 Plant group | 限制性轴特征值 Eigenvalues for constrained axes | 非限制性轴特征值 Eigenvalues for unconstrained axes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CCA1 | CCA2 | CCA3 | CA1 | CA2 | CA3 | CA4 | CA5 | CA6 | CA7 | CA8 | |
常绿树种 Evergreen trees | 0.27 | 0.09 | 0.02 | 0.18 | 0.16 | 0.12 | 0.10 | 0.09 | 0.09 | 0.08 | 0.07 |
落叶树种 Deciduous trees | 0.24 | 0.13 | 0.04 | 0.42 | 0.34 | 0.33 | 0.26 | 0.23 | 0.19 | 0.19 | 0.17 |
能被生境因子解释的总变异 Variation explained by topographic factors | 未能被生境因子解释的总变异 Variation unexplained by topographic factors | ||||||||||
常绿树种 Evergreen trees | 0.39 (19.2%) | 1.64 (80.8%) | |||||||||
落叶树种 Deciduous trees | 0.41 (7.0%) | 5.22 (93.0%) |
受干扰生境 Disturbed habitat (%) | 低海拔沟谷 Low valley (%) | 高海拔沟谷 High valley (%) | 低海拔山脊 Low ridge (%) | 高海拔山脊 High ridge (%) | 低海拔坡面 Low slope (%) | 高海拔坡面 High slope (%) | |
---|---|---|---|---|---|---|---|
正关联 Positive association | |||||||
常绿树种 Evergreen trees | 16 | 9 | 4 | 18 | 27 | 7 | 7 |
落叶树种 Evergreen trees | 43 | 14 | 12 | 0 | 5 | 2 | 2 |
负关联 Negative association | |||||||
常绿树种 Evergreen trees | 18 | 42 | 4 | 5 | 11 | 29 | 29 |
落叶树种 Evergreen trees | 10 | 17 | 0 | 19 | 29 | 10 | 10 |
表4 天童样地常绿树种和落叶树种与各类生境关联的物种数占各自总物种数的比例(%)
Table 4 Habitat association of evergreen trees and deciduous trees within Tiantong plot (%)
受干扰生境 Disturbed habitat (%) | 低海拔沟谷 Low valley (%) | 高海拔沟谷 High valley (%) | 低海拔山脊 Low ridge (%) | 高海拔山脊 High ridge (%) | 低海拔坡面 Low slope (%) | 高海拔坡面 High slope (%) | |
---|---|---|---|---|---|---|---|
正关联 Positive association | |||||||
常绿树种 Evergreen trees | 16 | 9 | 4 | 18 | 27 | 7 | 7 |
落叶树种 Evergreen trees | 43 | 14 | 12 | 0 | 5 | 2 | 2 |
负关联 Negative association | |||||||
常绿树种 Evergreen trees | 18 | 42 | 4 | 5 | 11 | 29 | 29 |
落叶树种 Evergreen trees | 10 | 17 | 0 | 19 | 29 | 10 | 10 |
图4 天童样地常绿树种和落叶树种与合并高、低海拔后各类生境的关联。E: 常绿树种; D: 落叶树种。
Fig. 4 Association of evergreen and deciduous trees with different habitat types combined high and low elevation in the 20-ha plot in Tiantong. E, Evergreen trees; D, Deciduous trees.
沟谷 Valley (+) | 沟谷 Valley (N) | 沟谷 Valley (-) | 山脊 Ridge (+) | 山脊 Ridge (N) | 山脊 Ridge (-) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E | D | E | D | E | D | E | D | E | D | E | D | |||||||||
受干扰生境 Disturbed (+) | 1 | 2 | 4 | 16 | 4 | 0 | 沟谷 Valley (+) | 0 | 0 | 4 | 5 | 5 | 7 | |||||||
受干扰生境 Disturbed (N) | 5 | 8 | 16 | 9 | 15 | 3 | 沟谷 Valley (N) | 8 | 1 | 15 | 13 | 1 | 13 | |||||||
受干扰生境 Disturbed (-) | 3 | 2 | 4 | 2 | 3 | 0 | 沟谷 Valley (-) | 15 | 1 | 7 | 2 | 0 | 0 | |||||||
山脊 Ridge (+) | 山脊 Ridge (N) | 山脊 Ridge (-) | 坡面 Slope (+) | 坡面 Slope (N) | 坡面 Slope (-) | |||||||||||||||
E | D | E | D | E | D | E | D | E | D | E | D | |||||||||
受干扰生境 Disturbed (+) | 1 | 0 | 6 | 6 | 2 | 12 | 沟谷 Valley (+) | 0 | 0 | 4 | 9 | 5 | 3 | |||||||
受干扰生境 Disturbed (N) | 17 | 1 | 16 | 14 | 3 | 5 | 沟谷 Valley (N) | 1 | 0 | 21 | 19 | 2 | 8 | |||||||
受干扰生境 Disturbed (-) | 5 | 1 | 4 | 3 | 1 | 0 | 沟谷 Valley (-) | 1 | 0 | 18 | 3 | 3 | 0 | |||||||
坡面 Slope (+) | 坡面 Slope (N) | 坡面 Slope (-) | 坡面 Slope (+) | 坡面 Slope (N) | 坡面 Slope (-) | |||||||||||||||
E | D | E | D | E | D | E | D | E | D | E | D | |||||||||
受干扰生境 Disturbed (+) | 0 | 0 | 6 | 10 | 3 | 8 | 山脊 Ridge (+) | 0 | 0 | 20 | 2 | 3 | 0 | |||||||
受干扰生境 Disturbed (N) | 1 | 0 | 29 | 18 | 6 | 2 | 山脊 Ridge (N) | 2 | 0 | 21 | 18 | 3 | 2 | |||||||
受干扰生境 Disturbed (-) | 1 | 0 | 8 | 3 | 1 | 1 | 山脊 Ridge (-) | 0 | 0 | 2 | 11 | 4 | 9 |
表5 基于torus转换检验的与各类生境关联的物种数交叉表
Table 5 Cross-tabulations of habitat associations according to the torus-translation method
沟谷 Valley (+) | 沟谷 Valley (N) | 沟谷 Valley (-) | 山脊 Ridge (+) | 山脊 Ridge (N) | 山脊 Ridge (-) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E | D | E | D | E | D | E | D | E | D | E | D | |||||||||
受干扰生境 Disturbed (+) | 1 | 2 | 4 | 16 | 4 | 0 | 沟谷 Valley (+) | 0 | 0 | 4 | 5 | 5 | 7 | |||||||
受干扰生境 Disturbed (N) | 5 | 8 | 16 | 9 | 15 | 3 | 沟谷 Valley (N) | 8 | 1 | 15 | 13 | 1 | 13 | |||||||
受干扰生境 Disturbed (-) | 3 | 2 | 4 | 2 | 3 | 0 | 沟谷 Valley (-) | 15 | 1 | 7 | 2 | 0 | 0 | |||||||
山脊 Ridge (+) | 山脊 Ridge (N) | 山脊 Ridge (-) | 坡面 Slope (+) | 坡面 Slope (N) | 坡面 Slope (-) | |||||||||||||||
E | D | E | D | E | D | E | D | E | D | E | D | |||||||||
受干扰生境 Disturbed (+) | 1 | 0 | 6 | 6 | 2 | 12 | 沟谷 Valley (+) | 0 | 0 | 4 | 9 | 5 | 3 | |||||||
受干扰生境 Disturbed (N) | 17 | 1 | 16 | 14 | 3 | 5 | 沟谷 Valley (N) | 1 | 0 | 21 | 19 | 2 | 8 | |||||||
受干扰生境 Disturbed (-) | 5 | 1 | 4 | 3 | 1 | 0 | 沟谷 Valley (-) | 1 | 0 | 18 | 3 | 3 | 0 | |||||||
坡面 Slope (+) | 坡面 Slope (N) | 坡面 Slope (-) | 坡面 Slope (+) | 坡面 Slope (N) | 坡面 Slope (-) | |||||||||||||||
E | D | E | D | E | D | E | D | E | D | E | D | |||||||||
受干扰生境 Disturbed (+) | 0 | 0 | 6 | 10 | 3 | 8 | 山脊 Ridge (+) | 0 | 0 | 20 | 2 | 3 | 0 | |||||||
受干扰生境 Disturbed (N) | 1 | 0 | 29 | 18 | 6 | 2 | 山脊 Ridge (N) | 2 | 0 | 21 | 18 | 3 | 2 | |||||||
受干扰生境 Disturbed (-) | 1 | 0 | 8 | 3 | 1 | 1 | 山脊 Ridge (-) | 0 | 0 | 2 | 11 | 4 | 9 |
[1] |
Baker TR, Affum-Baffoe K, Burslem DFRP, Swaine MD (2002) Phenological differences in tree water use and the timing of tropical forest inventories: conclusions from patterns of dry season diameter change. Forest Ecology and Management, 171, 261-274.
DOI URL |
[2] | Burslem DFRP, Grubb PJ, Turner IM (1995) Responses to nutrient addition among shade-tolerant tree seedlings of lowland tropical rain forest in Singapore. Journal of Ecology, 83, 113-122. |
[3] | Chave J (2004) Neutral theory and community ecology. Ecology Letters, 7, 241-253. |
[4] |
Chiho K, Shimpei O, Takuya K, Kouki H (2010) Light interception in species with different functional groups coexisting in moorland plant communities. Oecologia, 164, 591-599.
URL PMID |
[5] |
Choat B, Ball M, Luly J, Holtum J (2003) Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiology, 131, 41-48.
URL PMID |
[6] | Clark JS, Silman M, Kern R, Macklin E, HilleRis-Lambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests. Ecology, 80, 1475-1494. |
[7] | Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer Verlag, Berlin. |
[8] |
Connell JH (1978) Diversity in tropical rain forest and coral reefs. Science, 199, 1302-1309.
URL PMID |
[9] | Dalling JW, Muller LHC, Wright SJ, Hubbell SP (2002) Role of dispersal in the recruitment limitation of neotropical pioneer species. Journal of Ecology, 90, 714-727. |
[10] | De'ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology, 83, 1105-1117. |
[11] | Diaz M, Granadillo E (2005) The significance of episodic rains for reproductive phenology and productivity of trees in semiarid regions of northwestern Venezuela. Trees―Stru- cture and Function, 19, 336-348. |
[12] | Enoki T, Kawaguchi H, Iwatsubo G (1997) Nutrient-uptake and nutrient-use efficiency of Pinus thunbergii Parl, along a topographical gradient of soil nutrient availability. Ecological Research, 12, 191-199. |
[13] | Fang JY (方精云) (2004) Exploring altitudinal pattern of plant diversity of China’s mountains. Biodiversity Science (生物多样性), 12, 1-4. (in Chinese with English abstract) |
[14] |
Foster JR (1988) Disturbance history, community organization and vegetation dynamics of the old-growth Pisgah forest, southwestern New Hampshire, U.S.A. Journal of Ecology, 76, 105-134.
DOI URL |
[15] |
Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959.
DOI URL |
[16] |
Hirobe M, Tokuchi N, Iwatsubo G (1998) Spatial variability of soil nitrogen transformation patterns along a forest slope in a Cryptomeria japonica D. Don plantation. European Journal of Soil Biology, 34, 123-131.
DOI URL |
[17] | Hou JH (侯继华), Ma KP (马克平) (2002) On mechanisms of species coexistence in plant communities. Acta Phytoecologica Sinica (植物生态学报), 26, 1-8. (in Chinese with English abstract) |
[18] |
Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler R, Wright SJ, de Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554-557.
URL PMID |
[19] | Hubbell SP, Foster RB (1983) Diversity of canopy trees in a neotropical forest and implications for conservation. In: Tropical Rain Forest: Ecology and Management (eds Sutton SJ, Whitmore TC, Chadwick AC), pp. 25-41. Blackwell Science, Oxford. |
[20] | Hubbell SP, Foster RB (1986a) Biology, chance, and history and the structure of tropical rain forest tree communities. In: Community Ecology (eds Diamond J, Case TJ), pp. 314-329. Harper Row, New York. |
[21] | Hunter JC, Parker VT (1993) The disturbance regime of an old-growth forest in coastal California. Journal of Vegetation Science, 4, 19-24. |
[22] | Kikuchi T, Miura O (1993) Vegetation patterns in relation to micro-scale landforms in hilly land regions. Vegetatio, 106, 147-154. |
[23] | Kilgore BM, Taylor D (1979) Fire history of a Sequoia-mixed conifer forest. Ecology, 60, 129-142. |
[24] |
Kubota Y (2006) Spatial pattern and regeneration dynamics in a temperate Abies-Tsuga forest in southwestern Japan. Journal of Forest Research, 11, 191-201
DOI URL |
[25] | Leigh EG Jr (1999) Tropical Forest Ecology: A View from Barro Colorado Island. Oxford University Press, Oxford. |
[26] | Losos EC (1995) Habitat specificity of two palm species: experimental transplantation in Amazonian successional forests. Ecology, 76, 2595-2606. |
[27] | Marod D, Kutintara U, Tanaka H, Nakashizuka T (2002) The effects of drought and fire on seed and seedling dynamics in a tropical seasonal forest in Thailand. Plant Ecology, 161, 41-57. |
[28] |
Nakashizuka T (2001) Species coexistence in temperate, mixed deciduous forests. Trends in Ecology and Evolution, 16, 205-210.
DOI URL PMID |
[29] |
Nee S (2005) The neutral theory of biodiversity: do the numbers add up? Functional Ecology, 19, 173-176.
DOI URL |
[30] | Ohsawa M (1987) Habitat differentiation and the ecological niche in vegetation. Physiological Ecology (Japan), 24, s15-s27. |
[31] | Pollmann W (2002) Effects of natural disturbance and selective logging on Nothofagus forests in south-central Chile. Journal of Biogeography, 29, 955-970. |
[32] | Pollmann W (2005) A long-term record of Nothofagus dominance in the southern Andes, Chile. Austral Ecology, 30, 91-102. |
[33] |
Poorter L (2009) Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist, 181, 890-900.
DOI URL PMID |
[34] | Primack RB, Miao SL (1992) Dispersal can limit local plant distribution. Conservation Biology, 6, 513-519. |
[35] |
Sakai A, Ohsawa M (1993) Vegetation pattern and microtopography on a landslide scar of Mt. Kiyosumi, central Japan. Ecological Research, 8, 47-56.
DOI URL |
[36] | Sakai A, Ohsawa M (1994) Topographical pattern of the forest vegetation on a river basin in a warm-temperate hilly region, central Japan. Ecological Research, 9, 269-280. |
[37] | Sato T, Ito S, Mitsuda Y, Soen N (2010) Impacts of land-use history on the diversity of a riparian forest landscape in warm-temperate Kyushu, southern Japan. Landscape and Ecological Engineering, 6, 89-98. |
[38] | Shen ZH, Tang YY, Lu N, Zhao J, Li DX, Wang GF (2007) Community dynamics of seed rain in mixed evergreen broad-leaved and deciduous forests in a subtropical mountain of central China. Journal of Integrative Plant Biology, 49, 1294-1303. |
[39] | Song YC (宋永昌) (2001) Vegetation Ecology (植被生态学). East China Normal University Press, Shanghai. (in Chinese) |
[40] | Song YC (宋永昌), Wang XR (王祥荣) (1995) Vegetation and Flora of Tiantong National Forest Park, Vegetation and Flora of Tiantong National Forest Park, Zhejiang Province (浙江天童国家森林公园的植被和区系). Shanghai Science and Technology Literature Press, Shanghai. (in Chinese with English summary) |
[41] | Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. Species Diversity in Ecological Communities (eds Ricklefs RE, Schluter D), pp. 13-25. University of Chicago Press, Chicago, Illinois. |
[42] | Valencia R, Foster R, Villa G, Condit R, Svenning JC, Hernandez C, Romoleroux K, Losos E, Magard E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: a large plot in eastern Ecuador. Journal of Ecology, 92, 214-229. |
[43] |
Wan Y, Cohen J, Guerra R (1997) A permutation test for the robust sib-pair linkage method. Annals of Human Genetics, 61, 79-87.
DOI URL PMID |
[44] | Wang BC, Smith TB (2002) Closing the seed dispersal loop. Trends in Ecology and Evolution, 17, 379-385. |
[45] |
Webb CO, Peart DR (2000) Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology, 88, 464-478.
DOI URL |
[46] |
Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1-14.
DOI URL PMID |
[47] | Wu ZY (吴征镒) (1980) Vegetation of China (中国植被). Science Press, Beijing. (in Chinese) |
[48] | Yamakura T, Kanzake M, Itoh A, Ohkubo T, Ogino K, Chai EOK, Lee HS, Ashton PS (1995) Topography of a large-scale research plot established within a tropical rain forest at Lambir, Sarawak. Tropics, 5, 41-56. |
[49] | Yang QS (杨庆松), Ma ZP (马遵平), Xie YB (谢玉彬), Zhang ZG (张志国), Wang ZH (王樟华), Liu HM (刘何铭), Li P (李萍), Zhang N (张娜), Wang DL (王达力), Yang HB (杨海波), Fang XF (方晓峰), Yan ER (阎恩荣), Wang XH (王希华) (2011) Community structure and species composition of an evergreen broad-leaved forest in Tiantong’s 20 ha dynamic plot, Zhejiang Province, eastern China. Biodiversity Science (生物多样性), 19, 215-223. (in Chinese with English abstract) |
[50] | Zak DR, Hairston A, Grigal DF (1991) Topographic influences on nitrogen cycling within an upland pin oak ecosystem. Forest Science, 37, 45-53. |
[51] | Zhu Y (祝燕), Zhao GF (赵谷风), Zhang LW (张俪文), Shen GC (沈国春), Mi XC (米湘成), Ren HB (任海保), Yu MJ (于明坚), Chen JH (陈建华), Chen SW (陈声文), Fang T (方腾), Ma KP (马克平) (2008) Community composition and structure of Gutianshan forest dynamic plot in a mid-subtropical evergreen broad-leaved forest, east China. Journal of Plant Ecology (植物生态学报), 32, 262-273. (in Chinese with English abstract) |
[1] | 张楚然, 李生发, 李逢昌, 唐志忠, 刘辉燕, 王丽红, 顾荣, 邓云, 张志明, 林露湘. 云南鸡足山亚热带半湿润常绿阔叶林20 ha动态监测样地木本植物生境关联与群落数量分类[J]. 生物多样性, 2024, 32(1): 23393-. |
[2] | 王明慧, 陈昭铨, 李帅锋, 黄小波, 郎学东, 胡子涵, 尚瑞广, 刘万德. 云南普洱季风常绿阔叶林不同种子扩散方式的优势种空间点格局分析[J]. 生物多样性, 2023, 31(9): 23147-. |
[3] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[4] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
[5] | 饶杰生, 杨涛, 田希, 刘文聪, 王晓凤, 钱恒君, 沈泽昊. 基于背包LiDAR的半湿润常绿阔叶林及其常见树种的垂直结构特征[J]. 生物多样性, 2023, 31(11): 23216-. |
[6] | 左艳洁, 彭明春, 王崇云, 沈泽昊, 李永萍, 周新茂, 周杰, 周光信, 任佳昕, 刘忠安. 滇中高原半湿润常绿阔叶林的岛屿化与物种多样性[J]. 生物多样性, 2023, 31(11): 23252-. |
[7] | 田希, 刘文聪, 饶杰生, 王晓凤, 杨涛, 陈稀, 张秋雨, 刘其明, 徐衍潇, 张旭, 沈泽昊. 云南鸡足山半湿润常绿阔叶林的林隙干扰格局与成因[J]. 生物多样性, 2023, 31(11): 23219-. |
[8] | 杨涛, 沈泽昊, 王晓凤, 饶杰生, 刘文聪, 田希, 陈稀, 张秋雨, 刘倩, 钱恒君, 解宇阳, 刘其明, 徐衍潇, 涂梦灵, 单子铭, 张玉坤, 侯波, 李建斌, 欧晓昆. 滇中高原亚热带半湿润常绿阔叶林植物群落多样性特征[J]. 生物多样性, 2023, 31(11): 23238-. |
[9] | 罗彩访, 杨涛, 张秋雨, 王馨培, 沈泽昊. 滇中半湿润常绿阔叶林木本植物的功能特征和功能多样性及其影响因子[J]. 生物多样性, 2023, 31(11): 23215-. |
[10] | 刘文聪, 田希, 杨涛, 饶杰生, 王晓凤, 钱恒君, 涂梦灵, 单子铭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林优势树种的种群结构与更新特征[J]. 生物多样性, 2023, 31(11): 23251-. |
[11] | 鲁梦珍, 曾馥平, 宋同清, 彭晚霞, 张浩, 苏樑, 刘坤平, 谭卫宁, 杜虎. 喀斯特常绿落叶阔叶林死亡个体空间分布格局及生境关联[J]. 生物多样性, 2022, 30(4): 21340-. |
[12] | 戴静, 陈威兆, 金露露, 黄亮. 云南宜良上新世栎属植物研究及其古环境指示意义[J]. 生物多样性, 2022, 30(11): 22553-. |
[13] | 张昭臣, 胡健波, 杨庆松, 练琚愉, 李步杭, 王希华, 叶万辉, 张健. 中国亚热带4个森林动态监测样地无人机可见光遥感影像数据集[J]. 生物多样性, 2021, 29(9): 1181-1185. |
[14] | 周润, 慈秀芹, 肖建华, 曹关龙, 李捷. 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估[J]. 生物多样性, 2021, 29(6): 697-711. |
[15] | 朱杰, 吴安驰, 邹顺, 熊鑫, 刘世忠, 褚国伟, 张倩媚, 刘菊秀, 唐旭利, 闫俊华, 张德强, 周国逸. 南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素[J]. 生物多样性, 2021, 29(11): 1435-1446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn