生物多样性 ›› 2009, Vol. 17 ›› Issue (4): 378-384. DOI: 10.3724/SP.J.1003.2009.09077
所属专题: 保护生物学: 现状和挑战
收稿日期:
2009-03-31
接受日期:
2009-07-08
出版日期:
2009-07-20
发布日期:
2009-07-20
通讯作者:
宋莉英,彭少麟
作者简介:
liying_song@126.com基金资助:
Liying Song1,2,*(), Changlian Peng1, Shaolin Peng2,*(
)
Received:
2009-03-31
Accepted:
2009-07-08
Online:
2009-07-20
Published:
2009-07-20
Contact:
Liying Song,Shaolin Peng
摘要:
生物量建成成本作为衡量植物生物量建成所需能量的指标, 反映了植物的能量利用策略, 较低的建成成本可能会增加入侵种的竞争优势。本研究以华南地区3种危害严重的入侵植物薇甘菊(Mikania micrantha)、三裂叶蟛蜞菊(Wedelia trilobata)和五爪金龙(Ipomoea cairica)为研究对象, 选取与它们伴生或近缘的本地植物鸡矢藤(Paederia scandens)、蟛蜞菊(W.chinensis)和厚藤(I.pescaprae)作为对照, 比较了相同环境下培养的入侵植物和本地植物叶片建成成本的差异。结果表明, 这3种入侵植物的叶片单位质量建成成本(CCmass)和单位面积建成成本(CCarea)均低于它们的本地对照种。将3种入侵植物作为一组, 它们的叶片平均CCmass(1.17 g glucose/g)和CCarea(22.34 g glucose/m2)显著低于本地种的叶片平均CCmass(1.32 g glucose/g)和CCarea(36.93 g glucose/m2)。本研究结果进一步证实, 入侵植物与本地植物相比具有较低的叶片建成成本, 这可能是它们入侵成功的原因之一。同时, 本研究通过分析叶片建成成本与叶片碳浓度、氮浓度、灰分含量(Ash)以及去灰分热值(Hc)的相互关系, 探讨了影响入侵种和本地种叶片建成成本的可能因素。结果显示, 入侵植物具有较低的叶片建成成本是与其较低的碳浓度和氮浓度以及较高的灰分含量相联系的。
宋莉英, 彭长连, 彭少麟 (2009) 华南地区3种入侵植物与本地植物叶片建成成本的比较. 生物多样性, 17, 378-384. DOI: 10.3724/SP.J.1003.2009.09077.
Liying Song, Changlian Peng, Shaolin Peng (2009) Comparison of leaf construction costs between three invasive species and three native species in South China. Biodiversity Science, 17, 378-384. DOI: 10.3724/SP.J.1003.2009.09077.
图1 华南地区3种入侵植物与其本地对照植物叶片单位质量建成成本(A)和单位面积建成成本(B)的比较。1: 薇甘菊; 2: 鸡矢藤; 3: 三裂叶蟛蜞菊; 4: 蟛蜞菊; 5: 五爪金龙; 6: 厚藤。不同小写字母表示在0.05水平上经LSD检验差异显著。
Fig. 1 Leaf construction cost per unit mass (CCmass) (A) and per unit area (CCarea) (B) in three invasive species and the native species in South China. 1, Mikania micrantha; 2, Paederia scandens; 3, Wedelia trilobata; 4, W. chinensis; 5, Ipomoea cairica; 6, I.pescaprae. Different lowercase letters show significant difference at P= 0.05.
来源 Origin | 物种 Species | 比叶面积 SLA (m2/kg) | 碳浓度 Carbon content (%) | 氮浓度 Nitrogen content (%) | 灰分含量 Ash (%) | 去灰分热值 Hc(kJ/g) |
---|---|---|---|---|---|---|
入侵种 Invasive | 薇甘菊 Mikania micrantha | 65.98±0.64b | 33.23±0.51e | 4.49±0.15a | 22.29±0.15b | 18.97±0.04b |
三裂叶蟛蜞菊 Wedelia trilobata | 32.44±5.79c | 33.69±0.53e | 3.27±0.10b | 26.22±0.37a | 19.64±0.09b | |
五爪金龙 Ipomoea cairica | 83.47±1.57a | 36.03±0.48d | 4.73±0.31a | 16.90±0.76c | 18.94±0.20b | |
本地种 Native | 鸡矢藤 Paederia scandens | 40.22±0.81c | 41.73±0.39a | 4.13±0.39a | 13.66±0.09d | 20.22±0.09ab |
蟛蜞菊 Wedelia chinensis | 34.59±0.80c | 37.78±0.07c | 4.53±0.03a | 21.35±1.71b | 21.02±0.94a | |
厚藤 Ipomoea pescaprae | 33.62±0.38c | 39.80±0.46b | 4.88±0.16a | 18.21±1.57c | 20.14±0.26ab |
表1 华南地区3种入侵植物与其本地对照植物比叶面积、碳浓度、氮浓度、灰分含量和去灰分热值的比较
Table 1 Specific leaf area (SLA), carbon content, nitrogen content, ash content (Ash) and ash-free heat of combustion (Hc) of three invasive species and three native species in South China
来源 Origin | 物种 Species | 比叶面积 SLA (m2/kg) | 碳浓度 Carbon content (%) | 氮浓度 Nitrogen content (%) | 灰分含量 Ash (%) | 去灰分热值 Hc(kJ/g) |
---|---|---|---|---|---|---|
入侵种 Invasive | 薇甘菊 Mikania micrantha | 65.98±0.64b | 33.23±0.51e | 4.49±0.15a | 22.29±0.15b | 18.97±0.04b |
三裂叶蟛蜞菊 Wedelia trilobata | 32.44±5.79c | 33.69±0.53e | 3.27±0.10b | 26.22±0.37a | 19.64±0.09b | |
五爪金龙 Ipomoea cairica | 83.47±1.57a | 36.03±0.48d | 4.73±0.31a | 16.90±0.76c | 18.94±0.20b | |
本地种 Native | 鸡矢藤 Paederia scandens | 40.22±0.81c | 41.73±0.39a | 4.13±0.39a | 13.66±0.09d | 20.22±0.09ab |
蟛蜞菊 Wedelia chinensis | 34.59±0.80c | 37.78±0.07c | 4.53±0.03a | 21.35±1.71b | 21.02±0.94a | |
厚藤 Ipomoea pescaprae | 33.62±0.38c | 39.80±0.46b | 4.88±0.16a | 18.21±1.57c | 20.14±0.26ab |
变量 Variable | 入侵种 Invasive species | 本地种 Native species | F值 F-value |
---|---|---|---|
叶片单位质量建成成本 CCmass(g glucose/g) | 1.17±0.02 | 1.32±0.01 | 47.604** |
叶片单位面积建成成本 CCarea(g glucose/m2) | 22.34±3.16 | 36.93±1.25 | 16.776** |
比叶面积 SLA (m2/kg) | 60.52±7.49 | 35.89±1.25 | 9.330** |
碳浓度 Carbon content (%) | 34.32±0.50 | 40.02±0.61 | 52.529** |
氮浓度 Nitrogen content (%) | 4.16±0.25 | 4.51±0.18 | 1.250NS |
灰分含量 Ash (%) | 21.80±1.37 | 17.29±1.31 | 5.593* |
去灰分热值 Hc (kJ/g) | 19.18±0.13 | 20.39±0.24 | 20.432** |
表2 入侵种和本地种平均叶片建成成本、比叶面积、碳浓度、氮浓度、灰分含量和去灰分热值的比较
Table 2 Average leaf construction cost per unit mass (CCmass) and per unit area (CCarea), specific leaf area (SLA), carbon content, nitrogen content, ash content (Ash) and ash-free heat of combustion (Hc) of three invasive species and three native species in South China
变量 Variable | 入侵种 Invasive species | 本地种 Native species | F值 F-value |
---|---|---|---|
叶片单位质量建成成本 CCmass(g glucose/g) | 1.17±0.02 | 1.32±0.01 | 47.604** |
叶片单位面积建成成本 CCarea(g glucose/m2) | 22.34±3.16 | 36.93±1.25 | 16.776** |
比叶面积 SLA (m2/kg) | 60.52±7.49 | 35.89±1.25 | 9.330** |
碳浓度 Carbon content (%) | 34.32±0.50 | 40.02±0.61 | 52.529** |
氮浓度 Nitrogen content (%) | 4.16±0.25 | 4.51±0.18 | 1.250NS |
灰分含量 Ash (%) | 21.80±1.37 | 17.29±1.31 | 5.593* |
去灰分热值 Hc (kJ/g) | 19.18±0.13 | 20.39±0.24 | 20.432** |
图2 叶片建成成本与叶片碳浓度(A)、氮浓度(B)、灰分含量(C)和去灰分热值(D)的相关性。实线表示具有显著相关性, 虚线表示相关性不显著。
Fig. 2 The correlations between leaf construction cost per unit mass (Leaf CCmass) and carbon content (A), nitrogen content (B), ash content (Ash) (C), ash-free heat of combustion (Hc) (D), respectively. Solid lines represent significant correlations, and dashed lines insignificant correlations.
[1] |
Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia, 121,183-192.
DOI URL PMID |
[2] | Baruch Z, Gómez JA (1996) Dynamics of energy and nutrient concentration and construction cost in a native and two alien C 4 grasses from two neotropical savannas. Plant and Soil, 181,175-184. |
[3] |
Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science, 290,521-523.
URL PMID |
[4] | Daehler CC (1998) Variation in self-fertility and the reproductive advantage of self-fertility for an invading plant (Spartina alterniflora). Evolutionary Ecology, 12,553-568. |
[5] | Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology, Evolution, and Systematics, 34,183-211. |
[6] | Deng X, Ye WH, Feng HL, Yang QH, Cao HL, Xu KY, Zhang Y (2004) Gas exchange characteristics of the invasive species Mikania micrantha and its indigenous congener M. cordata (Asteraceae) in South China. Botanical Bulletin of Academia Sinica, 45,213-220. |
[7] |
Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends in Ecology and Evolution, 14,135-139.
DOI URL PMID |
[8] | Ewe SML, Sternberg LSL (2005) Growth and gas exchange responses of Brazilian pepper (Schinus terebinthifolius) and native South Florida species to salinity. Trees (Berlin), 19,119-128. |
[9] | Griffin KL (1994) Calorimetric estimates of CC and their use in ecological studies. Functional Ecology, 8,551-562. |
[10] | Hertling UM, Lubke RA (2000) Assessing the potential for biological invasion—the case of Ammophila arenarian. South African Journal of Science, 96,520-527. |
[11] | Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 23,188-261. |
[12] | Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology global consequences and control. Ecological Applications, 10,689-710. |
[13] | Martínez F, Lazo YO, Fernández-Galiano RM, Merino JA (2002) Chemical composition and construction cost for roots of Mediterranean trees, shrub species and grassland communities. Plant, Cell and Environment, 25,601-608. |
[14] |
McDowell SCL (2002) Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). American Journal of Botany, 89,1431-1438.
URL PMID |
[15] |
Nagel JM, Griffin KL (2001) Construction cost and invasive potential: comparing Lythrum salcaria (Lythraceae) with co-occurring native species along pond banks. American Journal of Botany, 88,2252-2258.
URL PMID |
[16] | Nagel JM, Huxman TE, Griffin KL, Smith SD (2004) CO2 enrichment reduces the energetic cost of biomass construction in an invasive desert grass. Ecology, 85,100-106. |
[17] |
Penning de Vries FWT, Brunsting AHM, Van Laar HH (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. Journal of Theoretical Biology, 45,339-377.
URL PMID |
[18] | Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of non-indigenous species in the United States. BioScience, 50,53-65. |
[19] |
Poorter H, Pepin S, Rijkers T, de Jong Y, Evans JR, Körner C (2006) Construction costs, chemical composition and payback time of high and low-irradiance leaves. Journal of Experimental Botany, 57,355-371.
URL PMID |
[20] | Poorter H, Van Berkel Y, Baxter R, Den Hertog J, Dijkstra P, Gifford RM, Griffin KL, Roumet C, Roy J, Wong SC (1997) The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant, Cell and Environment, 20,472-482. |
[21] | Poorter H, Villar R (1997) The fate of acquired carbon in plants:chemical composition and construction costs. In: Plant Resource Allocation (eds Bazzaz FA, Grace J),pp.39-72. Academic Press, New York. |
[22] | Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences, USA, 94,13730-13734. |
[23] | Song LY, Ni GY, Chen BM, Peng SL (2007) Energetic cost of leaf construction in the invasive weed Mikania micrantha H.B.K. and its co-occurring species: implications for invasiveness. Botanical Studies, 48,331-338. |
[24] | Tsialtas JT, Kassioumi M, Veresoglou DS (2002) Leaf construction cost of the most abundant species in an upland grassland area of northern Greece. Russian Journal of Plant Physiology, 3,360-363. |
[25] | Villar R, Merino J (2001) Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytologist, 151,213-226. |
[26] | Williams K, Percival F, Merino J, Mooney HA (1987) Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant, Cell and Environment, 10,725-734. |
[27] | Wu JR (吴锦容), Peng SL (彭少麟) (2005) Allelopathy: “novel weapons” of exotic invasive plants. Acta Ecologica Sinica (生态学报), 25,3093-3097. (in Chinese with English abstract) |
[28] | Xu RM (徐汝梅), Ye WH (叶万辉) (2003) Biological Invasions: Theory and Practice (生物入侵:理论与实践). Science Press, Beijing. (in Chinese) |
[29] | Zha TS, Wang KY, Ryyppo A, Kellomaki S (2002) Needle dark respiration in relation to within-crown position in Scots pine trees grown in long-term elevation of CO2 concentration and temperature. New Phytologist, 156,33-41. |
[1] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[2] | 肖俞, 李宇然, 段禾祥, 任正涛, 冯圣碧, 姜志诚, 李家华, 张品, 胡金明, 耿宇鹏. 高黎贡山外来植物入侵现状及管控建议[J]. 生物多样性, 2023, 31(5): 23011-. |
[3] | 孙尧初, 潘远飞, 刘木, 潘晓云. 专食性-广食性天敌比例影响入侵植物喜旱莲子草生长防御策略[J]. 生物多样性, 2023, 31(4): 22632-. |
[4] | 崔夏, 刘全儒, 吴超然, 何宇飞, 马金双. 京津冀外来入侵植物[J]. 生物多样性, 2022, 30(8): 21497-. |
[5] | 林秦文, 肖翠, 马金双. 中国外来植物数据集[J]. 生物多样性, 2022, 30(5): 22127-. |
[6] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
[7] | 郭朝丹, 朱金方, 柳晓燕, 赵彩云, 李俊生. 贵州典型自然保护区内外外来入侵草本植物的比较[J]. 生物多样性, 2021, 29(5): 596-604. |
[8] | 王亚, 王玮倩, 王钦克, 李晓霞, 刘延, 黄乔乔. 土壤养分对菊科一年生入侵种和本地种繁殖性状的影响[J]. 生物多样性, 2021, 29(1): 1-9. |
[9] | 韩雪, 苏锦权, 姚娜娜, 陈宝明. 外来入侵植物的根系觅养行为研究进展[J]. 生物多样性, 2020, 28(6): 727-733. |
[10] | 邓亨宁, 鞠文彬, 高云东, 张君议, 李诗琦, 高信芬, 徐波. 新建川藏铁路(雅安-昌都段)沿线外来入侵植物种类及分布特征[J]. 生物多样性, 2020, 28(10): 1174-1181. |
[11] | 土艳丽,王力平,王喜龙,王林林,段元文. 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位[J]. 生物多样性, 2019, 27(3): 306-313. |
[12] | 薛晨阳, 许玉凤, 曲波. 不同氮水平下瘤突苍耳、苍耳及其杂交种形态、光合及生长特征比较[J]. 生物多样性, 2018, 26(6): 554-563. |
[13] | 孙士国, 卢斌, 卢新民, 黄双全. 入侵植物的繁殖策略以及对本土植物繁殖的影响[J]. 生物多样性, 2018, 26(5): 457-467. |
[14] | 陈宏, 冼晓青, 邱荣洲, 池美香, 赵健. 基于GIS的外来入侵植物调查规划与外业实施[J]. 生物多样性, 2018, 26(1): 44-52. |
[15] | 付伟, 王宁, 庞芳, 黄玉龙, 吴俊, 祁珊珊, 戴志聪, 杜道林. 土壤微生物与植物入侵: 研究现状与展望[J]. 生物多样性, 2017, 25(12): 1295-1302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn