生物多样性 ›› 2019, Vol. 27 ›› Issue (3): 306-313. DOI: 10.17520/biods.2018269
土艳丽1,王力平2,3,王喜龙1,王林林2,3,*(),段元文2
收稿日期:
2018-10-11
接受日期:
2019-03-02
出版日期:
2019-03-20
发布日期:
2019-03-20
通讯作者:
王林林
基金资助:
Tu Yanli1,Wang Liping2,3,Wang Xilong1,Wang Linlin2,3,*(),Duan Yuanwen2
Received:
2018-10-11
Accepted:
2019-03-02
Online:
2019-03-20
Published:
2019-03-20
Contact:
Wang Linlin
摘要:
入侵植物在新生境中成功定殖后, 通过利用当地传粉昆虫促进繁殖可以更好地保证种群的扩张, 但是入侵植物在当地传粉网络中的角色和地位仍不是很清楚。本文利用西藏近年发现的入侵植物印加孔雀草(Tagetes minuta), 分析其访花昆虫所携带的植物花粉种类, 构建了植物花粉-传粉者网络, 探讨印加孔雀草快速入侵和扩张的可能机制。结果表明印加孔雀草为泛化传粉系统, 共有13种昆虫访花, 其中12种携带有印加孔雀草花粉, 所有花粉中印加孔雀草花粉数量占比为89.89%。12种印加孔雀草传粉昆虫中, 4种泛化传粉昆虫(1种蜂、2种食蚜蝇和1种蝇)是其主要传粉昆虫。本研究揭示印加孔雀草在较短时间内已经成功利用多种当地泛化传粉昆虫为其授粉, 已顺利融入当地的传粉网络, 今后需要更加重视对印加孔雀草的防控。
土艳丽,王力平,王喜龙,王林林,段元文 (2019) 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位. 生物多样性, 27, 306-313. DOI: 10.17520/biods.2018269.
Tu Yanli,Wang Liping,Wang Xilong,Wang Linlin,Duan Yuanwen (2019) Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators. Biodiversity Science, 27, 306-313. DOI: 10.17520/biods.2018269.
图1 西藏印加孔雀草种群与传粉昆虫。(A)印加孔雀草种群; (B)膜翅目分舌蜂科一种; (C)双翅目蝇类花蝇科一种; (D)双翅目蝇类丽蝇科一种; (E)鳞翅目红灰蝶; (F)鞘翅目拟步甲科一种。
Fig. 1 Population of Tagetes minuta in Tibet and its pollinators. (A) T. minuta population; (B) Colletidae sp.; (C) Anthomyiidae sp.; (D) Calliphoridae sp.; (E) Lycaena phlaeas; (F) Tenebrionidae sp.
特征 Traits | 网络参数 Parameters |
---|---|
植物种类数 No. of plant species | 12 |
访花昆虫种类数 No. of visiting species | 13 |
植物与昆虫的连接数量 No. of interactions | 63 |
连接度 Connectance | 0.404 |
嵌套度 Nestedness temperature | 14.57 |
加权嵌套度 Weighted nestedness | 0.683 |
特化水平 Specialization level (H°2) | 0.147 |
表1 印加孔雀草种群的传粉网络的群落水平参数
Table 1 Community level parameters of pollination network of Tagetes minuta population
特征 Traits | 网络参数 Parameters |
---|---|
植物种类数 No. of plant species | 12 |
访花昆虫种类数 No. of visiting species | 13 |
植物与昆虫的连接数量 No. of interactions | 63 |
连接度 Connectance | 0.404 |
嵌套度 Nestedness temperature | 14.57 |
加权嵌套度 Weighted nestedness | 0.683 |
特化水平 Specialization level (H°2) | 0.147 |
代码 Codes | 植物 Plant species | 传粉者种类 Degree | 传粉昆虫比例 Normalised degree | 物种强度 Species strength | 特化水平 Specialization level (d°) |
---|---|---|---|---|---|
A | 印加孔雀草 Tagetes minuta | 12 | 0.923 | 10.312 | 0.034 |
B | 狭叶荆芥 Nepeta souliei | 8 | 0.615 | 0.85 | 0.095 |
C | 无心菜 Arenaria serphyllifolia | 5 | 0.385 | 0.086 | 0.11 |
D | 马先蒿属一种 Pedicularis sp. | 6 | 0.462 | 0.054 | 0.085 |
E | 龙胆属一种 Gentiana sp. | 4 | 0.308 | 0.779 | 0.467 |
F | 紫草科一种 Boraginaceae sp. | 6 | 0.462 | 0.107 | 0.046 |
G | 蓝钟花属一种 Cyananthus sp. | 5 | 0.385 | 0.328 | 0.289 |
H | 唇形科一种 Lamiaceae sp. | 4 | 0.308 | 0.197 | 0.099 |
I | 唇形科一种 Lamiaceae sp. | 1 | 0.077 | 0.002 | 0.045 |
J | 唇形科一种 Lamiaceae sp. | 3 | 0.231 | 0.037 | 0.332 |
K | 百合科一种 Liliaceae sp. | 3 | 0.231 | 0.352 | 0.563 |
L | 甘青老鹳草 Geranium pylzowianum | 6 | 0.462 | 0.063 | 0.117 |
表2 印加孔雀草种群的传粉网络中植物物种水平的几个参数
Table 2 Several parameters of plants at the species levels in the pollination network of Tagetes minuta population
代码 Codes | 植物 Plant species | 传粉者种类 Degree | 传粉昆虫比例 Normalised degree | 物种强度 Species strength | 特化水平 Specialization level (d°) |
---|---|---|---|---|---|
A | 印加孔雀草 Tagetes minuta | 12 | 0.923 | 10.312 | 0.034 |
B | 狭叶荆芥 Nepeta souliei | 8 | 0.615 | 0.85 | 0.095 |
C | 无心菜 Arenaria serphyllifolia | 5 | 0.385 | 0.086 | 0.11 |
D | 马先蒿属一种 Pedicularis sp. | 6 | 0.462 | 0.054 | 0.085 |
E | 龙胆属一种 Gentiana sp. | 4 | 0.308 | 0.779 | 0.467 |
F | 紫草科一种 Boraginaceae sp. | 6 | 0.462 | 0.107 | 0.046 |
G | 蓝钟花属一种 Cyananthus sp. | 5 | 0.385 | 0.328 | 0.289 |
H | 唇形科一种 Lamiaceae sp. | 4 | 0.308 | 0.197 | 0.099 |
I | 唇形科一种 Lamiaceae sp. | 1 | 0.077 | 0.002 | 0.045 |
J | 唇形科一种 Lamiaceae sp. | 3 | 0.231 | 0.037 | 0.332 |
K | 百合科一种 Liliaceae sp. | 3 | 0.231 | 0.352 | 0.563 |
L | 甘青老鹳草 Geranium pylzowianum | 6 | 0.462 | 0.063 | 0.117 |
图2 印加孔雀草的传粉昆虫所携带的花粉扫描图。(A)印加孔雀草; (B)狭叶荆芥; (C)无心菜; (D)马先蒿属一种; (E)龙胆属一种; (F)紫草科一种; (G)蓝钟花属一种; (H-J)唇形科; (K)百合科一种; (L)甘青老鹳草。
Fig. 2 A scan of pollens carried by pollinators of Tagetes minuta. (A) Tagetes minuta; (B) Nepeta souliei; (C) Arenaria serphyllifolia; (D) Pedicularis sp.; (E) Gentiana sp.; (F) Boraginaceae sp.; (G) Cyananthus sp.; (H-J) Lamiaceae spp.; (K) Liliaceae sp.; (L) Geranium pylzowianum.
图3 印加孔雀草的所有访花昆虫携带的花粉网络。上部每个矩形框表示一种传粉者, 下部每个矩形框表示一种植物, 框的宽度与花粉数量成正比。灰线表示植物与传粉者之间的连接。植物及传粉者各编号代表的物种见表2和表3。
Fig. 3 Pollen network carried by pollinators of Tagetes minuta. Upper bars represent insect species and lower bars represent plant species. Bar width is proportional to the frequency of interactions. Lines are relative to the interaction between plants and insects. The codes of species are shown in Table 2 and Table 3.
代码 Codes | 传粉者 Pollinators | 昆虫数量 Samples | 植物物种 Degree | 植物物种比例 Normalised degree | 物种强度 Species strength | 特化水平 d° |
---|---|---|---|---|---|---|
Bee sp. | 分舌花蜂科Colletidae | 32 | 11 | 0.917 | 1.611 | 0.006 |
Syr sp.1 | 长尾管蚜蝇Eristalis tenax | 5 | 10 | 0.833 | 2.194 | 0.102 |
Syr sp.2 | 黑带蚜蝇属Episyrpus | 3 | 7 | 0.583 | 0.64 | 0.024 |
Syr sp.3 | 黑带蚜蝇属Episyrpus | 3 | 7 | 0.583 | 1.319 | 0.012 |
Syr sp.4 | 食蚜蝇科Syrphidae | 1 | 2 | 0.167 | 0.013 | 0 |
Fly sp.1 | 丽蝇科Calliphoridae | 2 | 8 | 0.667 | 4.072 | 0.016 |
Fly sp.2 | 丽蝇科Calliphoridae | 1 | 2 | 0.167 | 0.299 | 0.139 |
Fly sp.3 | 蝇科Muscidae | 1 | 1 | 0.083 | 0.014 | 0.017 |
Fly sp.4 | 花蝇科Anthomyiidae | 1 | 4 | 0.333 | 0.303 | 0.034 |
Sar sp. | 麻蝇科Sarcophadidae | 2 | 4 | 0.333 | 0.823 | 0.056 |
Pier sp.1 | 东方菜粉蝶Pieris canidia | 1 | 2 | 0.167 | 0.501 | 0.803 |
Pier sp.2 | 红灰蝶Lycaena phlaeas | 2 | 1 | 0.083 | 0.003 | 0.005 |
Col sp. | 拟步甲科Tenebrionidae | 1 | 4 | 0.333 | 0.229 | 0.119 |
表3 印加孔雀草种群的传粉网络中传粉昆虫物种水平的几个参数
Table 3 Several parameters of pollinators at the species level in the pollination network of the Tagetes minuta population
代码 Codes | 传粉者 Pollinators | 昆虫数量 Samples | 植物物种 Degree | 植物物种比例 Normalised degree | 物种强度 Species strength | 特化水平 d° |
---|---|---|---|---|---|---|
Bee sp. | 分舌花蜂科Colletidae | 32 | 11 | 0.917 | 1.611 | 0.006 |
Syr sp.1 | 长尾管蚜蝇Eristalis tenax | 5 | 10 | 0.833 | 2.194 | 0.102 |
Syr sp.2 | 黑带蚜蝇属Episyrpus | 3 | 7 | 0.583 | 0.64 | 0.024 |
Syr sp.3 | 黑带蚜蝇属Episyrpus | 3 | 7 | 0.583 | 1.319 | 0.012 |
Syr sp.4 | 食蚜蝇科Syrphidae | 1 | 2 | 0.167 | 0.013 | 0 |
Fly sp.1 | 丽蝇科Calliphoridae | 2 | 8 | 0.667 | 4.072 | 0.016 |
Fly sp.2 | 丽蝇科Calliphoridae | 1 | 2 | 0.167 | 0.299 | 0.139 |
Fly sp.3 | 蝇科Muscidae | 1 | 1 | 0.083 | 0.014 | 0.017 |
Fly sp.4 | 花蝇科Anthomyiidae | 1 | 4 | 0.333 | 0.303 | 0.034 |
Sar sp. | 麻蝇科Sarcophadidae | 2 | 4 | 0.333 | 0.823 | 0.056 |
Pier sp.1 | 东方菜粉蝶Pieris canidia | 1 | 2 | 0.167 | 0.501 | 0.803 |
Pier sp.2 | 红灰蝶Lycaena phlaeas | 2 | 1 | 0.083 | 0.003 | 0.005 |
Col sp. | 拟步甲科Tenebrionidae | 1 | 4 | 0.333 | 0.229 | 0.119 |
1 |
Arceo-Gómez G, Ashman TL ( 2016) Invasion status and phylogenetic relatedness predict cost of heterospecific pollen receipt: Implications for native biodiversity decline. Journal of Ecology, 104, 1003-1008.
DOI URL |
2 |
Bascompte J, Jordano P, Melián CJ, Olesen JM ( 2003) The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences, USA, 100, 9383-9387.
DOI URL PMID |
3 |
Bascompte J, Jordano P, Olesen JM ( 2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431-433.
DOI URL PMID |
4 |
Bluthgen N, Menzel F, Bluthgen N ( 2006) Measuring specialization in species interaction networks. BMC Ecology, 6, 9.
DOI URL PMID |
5 |
Brennan AC, Harris SA, Hiscock SJ ( 2005) Modes and rates of selfing and associated inbreeding depression in the self-incompatible plant Senecio squalidus (Asteraceae): A successful colonizing species in the British Isles. New Phytologist, 168, 475-486.
DOI URL PMID |
6 |
Campbell LG, Husband BC ( 2007) Small populations are mate-poor but pollinator-rich in a rare, self-incompatible plant, Hymenoxys herbacea (Asteraceae). New Phytologist, 174, 915-925.
DOI URL PMID |
7 |
Dong ZG, Liu QX, Hu J, Deng MB, Xiong YN ( 2013) New records of naturalized plants from the Chinese Mainland. Guihaia, 33, 432-434. (in Chinese with English abstract)
DOI URL |
[ 董振国, 刘启新, 胡君, 邓懋彬, 熊豫宁 ( 2013) 中国大陆归化植物新记录. 广西植物, 33, 432-434.]
DOI URL |
|
8 |
Eviner VT, Garbach K, Baty JH, Hoskinson SA ( 2012) Measuring the effects of invasive plants on ecosystem services: Challenges and prospects. Invasive Plant Science and Management, 5, 125-136.
DOI URL |
9 |
Fang Q, Huang SQ ( 2012) Progress in pollination networks: Network structure and dynamics. Biodiversity Science, 20, 300-307. (in Chinese with English abstract)
DOI URL |
[ 方强, 黄双全 ( 2012) 传粉网络的研究进展: 网络的结构和动态. 生物多样性, 20, 300-307.]
DOI URL |
|
10 |
Flanagan RJ, Mitchell RJ, Karron JD ( 2010) Increased relative abundance of an invasive competitor for pollination, Lythrum salicaria, reduces seed number in Mimulus ringens. Oecologia, 164, 445-454.
DOI URL PMID |
11 |
Goodell K, Parker IM ( 2017) Invasion of a dominant floral resource: Effects on the floral community and pollination of native plants. Ecology, 98, 57-69.
DOI URL PMID |
12 |
Hao J, Sheng Q, Thomas C, Mark VK, Liu Q ( 2011) A test of baker’s law: Breeding systems of invasive species of Asteraceae in China. Biological Invasions, 13, 571-580.
DOI URL |
13 |
Jeschke JM, Bacher S, Blackburn TM, Dick JTA, Essl F, Evans T, Gaertner M, Hulme PE, Kühn I, Mrugała A ( 2015) Defining the impact of non-native species. Conservation Biology, 28, 1188-1194.
DOI PMID |
14 |
Ju RT, Li H, Shi CJ, Li B ( 2012) Progress of biological invasions research in China over the last decade. Biodiversity Science, 20, 581-611. (in Chinese with English abstract)
DOI URL |
[ 鞠瑞亭, 李慧, 石正人, 李博 ( 2012) 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
DOI URL |
|
15 |
Kaiser-Bunbury CN, Mougal J, Whittington AE, Valentin T, Gabriel R, Olesen JM, Bluthgen N ( 2017) Ecosystem restoration strengthens pollination network resilience and function. Nature, 542, 223-227.
DOI URL PMID |
16 |
Kearns CA, Inouye DW, Waser NM ( 1998) Endangered mutualisms: The conservation of plant-pollinator interactions. Annual Review of Ecology & Systematics, 29, 83-112.
DOI URL |
17 |
Lang DD, Tang M, Zhou X ( 2018) Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective. Biodiversity Science, 26, 445-456. (in Chinese with English abstract)
DOI URL |
[ 郎丹丹, 唐敏, 周欣 ( 2018) 传粉网络构建的定性定量分子研究: 应用与展望. 生物多样性, 26, 445-456.]
DOI URL |
|
18 |
Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J ( 2007) The impact of an alien plant on a native plant-pollinator network: An experimental approach. Ecology Letters, 10, 539-550.
DOI URL PMID |
19 |
McKinney AM, Goodell K ( 2011) Plant-pollinator interactions between an invasive and native plant vary between sites with different flowering phenology. Plant Ecology, 212, 1025-1035.
DOI URL |
20 | Millennium Ecosystem Assessment ( 2005) Ecosystems and Human Well- Being: Synthesis. Island Press, Washington, DC. |
21 |
Olesen JM, Bascompte J, Dupont YL, Jordano P ( 2007) The modularity of pollination networks. Proceedings of the National Academy of Sciences, USA, 104, 19891-19896.
DOI URL PMID |
22 |
Padrón B, Traveset A, Biedenweg T, Díaz D, Nogales M, Olesen JM ( 2009) Impact of alien plant invaders on pollination networks in two archipelagos. PLoS ONE, 4, e6275.
DOI URL PMID |
23 |
Potts SG, Imperatrizfonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J ( 2016) Safeguarding pollinators and their values to human well-being. Nature, 540, 220-229.
DOI URL PMID |
24 |
Powell KI, Krakos KN, Knight TM ( 2011) Comparing the reproductive success and pollination biology of an invasive plant to its rare and common native congeners: A case study in the genus Cirsium (Asteraceae). Biological Invasions, 13, 905-917.
DOI URL |
25 |
Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM ( 2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in Plant Sciences, 3, 235-250.
DOI URL PMID |
26 | Schemske DW ( 1983) Limits to Specialization and Coevolution in Plant-Animal Mutualisms. Chicago University Press, Chicago. |
27 |
Sun SG, Lu B, Lu XM, Huang SQ ( 2018) On reproductive strategies of invasive plants and their impacts on native plants. Biodiversity Science, 26, 457-467. (in Chinese with English abstract)
DOI URL |
[ 孙士国, 卢斌, 卢新民, 黄双全 ( 2018) 入侵植物的繁殖策略以及对本土植物繁殖的影响. 生物多样性, 26, 457-467.]
DOI URL |
|
28 |
Wan FH, Guo JY, Wang DH ( 2002) Alien invasive species in China: Their damages and management strategies. Biodiversity Science, 10, 119-125. (in Chinese with English abstract)
DOI URL |
[ 万方浩, 郭建英, 王德辉 ( 2002) 中国外来入侵生物的危害与管理对策. 生物多样性, 10, 119-125.]
DOI URL |
|
29 |
Wang H, Cao GX, Wang LL, Yang YP, Zhang ZQ, Duan YW ( 2017) Evaluation of pollinator effectiveness based on pollen deposition and seed production in a gynodieocious alpine plant, Cyananthus delavayi. Ecology and Evolution, 7, 8156-8160.
DOI URL |
30 |
Weber E, Li B ( 2008) Plant invasions in China: What is to be expected in the wake of economic development? BioScience, 58, 437-444.
DOI URL |
31 |
Weber E, Sun SG, Li B ( 2008) Invasive alien plants in China: Diversity and ecological insights. Biological Invasions, 10, 1411-1429.
DOI URL |
32 |
Xie Y, Li ZY, Gregg WP, Dianmo L ( 2001) Invasive species in China—An overview. Biodiversity and Conservation, 10, 1317-1341.
DOI URL |
33 |
Xu M, Tashi T ( 2015) A newly naturalized plant in Qinghai-Tibet Plateau. Guihaia, 35, 554-555. (in Chinese with English abstract)
DOI URL |
[ 许敏, 扎西次仁 ( 2015) 青藏高原一新归化种. 广西植物, 35, 554-555.]
DOI URL |
|
34 | Zhang JL, Lü YF, Bian Y, Liu RS, Jiang L ( 2014) A new kind of invasive plant from mainland China—Tagetes minuta L. Plant Quarantine, 28(2), 65-67. (in Chinese with English abstract) |
[ 张劲林, 吕玉峰, 边勇, 刘若思, 江璐 ( 2014) 中国境内(内地)一种新的入侵植物——印加孔雀草. 植物检疫, 28(2), 65-67.] | |
35 |
Zhu SX, Qin HN, Chen YL ( 2005) Alien species of Compositae in China. Guihaia, 25, 69-76. (in Chinese with English abstract)
DOI URL |
[ 朱世新, 覃海宁, 陈艺林 ( 2005) 中国菊科植物外来种概述. 广西植物, 25, 69-76.]
DOI URL |
[1] | 崔夏, 刘全儒, 吴超然, 何宇飞, 马金双. 京津冀外来入侵植物[J]. 生物多样性, 2022, 30(8): 21497-. |
[2] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[3] | 林秦文, 肖翠, 马金双. 中国外来植物数据集[J]. 生物多样性, 2022, 30(5): 22127-. |
[4] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
[5] | 赵仁生, 许诗嘉, 宋鹏飞, 周翔, 张亚洲, 袁燕. 青藏高原药用植物分布格局及保护优先区[J]. 生物多样性, 2022, 30(4): 21385-. |
[6] | 沈国平, 韩睿, 缪增强, 邢江娃, 李永臻, 王嵘, 朱德锐. 青藏高原4类典型水化学特征湖泊的细菌多样性差异及影响因素[J]. 生物多样性, 2022, 30(4): 21420-. |
[7] | 秦乐, 朱彦鹏, 任月恒, 李博炎, 付梦娣, 李俊生. 青藏高原国家级自然保护区管理能力差异及其对保护成效的影响[J]. 生物多样性, 2022, 30(11): 22419-. |
[8] | 胡德美, 姚仁秀, 陈燕, 游贤松, 王顺雨, 汤晓辛, 王晓月. 青篱柴通过促进亲和花粉生长而提高传粉精确性[J]. 生物多样性, 2021, 29(7): 887-896. |
[9] | 张丛林, 褚梦真, 张慧智, 乔海娟, 黄宝荣. 青藏高原国家公园群游憩可持续性管理评估指标体系[J]. 生物多样性, 2021, 29(6): 780-789. |
[10] | 郭朝丹, 朱金方, 柳晓燕, 赵彩云, 李俊生. 贵州典型自然保护区内外外来入侵草本植物的比较[J]. 生物多样性, 2021, 29(5): 596-604. |
[11] | 张军, 彭焕文, 夏富才, 王伟. 青藏高原高山区和泛北极地区种子植物多倍体比较[J]. 生物多样性, 2021, 29(11): 1470-1480. |
[12] | 都业勤, 张迪, 王赛, 王磊, 闫兴富, 唐占辉. 湿地植物大花百合种群的性系统特征[J]. 生物多样性, 2021, 29(10): 1321-1335. |
[13] | 王亚, 王玮倩, 王钦克, 李晓霞, 刘延, 黄乔乔. 土壤养分对菊科一年生入侵种和本地种繁殖性状的影响[J]. 生物多样性, 2021, 29(1): 1-9. |
[14] | 韩雪, 苏锦权, 姚娜娜, 陈宝明. 外来入侵植物的根系觅养行为研究进展[J]. 生物多样性, 2020, 28(6): 727-733. |
[15] | 刘旻霞,李全弟,蒋晓轩,夏素娟,南笑宁,张娅娅,李博文. 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献[J]. 生物多样性, 2020, 28(2): 107-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn