生物多样性 ›› 2023, Vol. 31 ›› Issue (8): 23081.  DOI: 10.17520/biods.2023081

• 综述 • 上一篇    下一篇

苔藓-蓝藻共生体多样性及固氮潜力研究现状

吴娇娇1,2, 郭冠廷1,2, 陈栋1,2, 赵鑫1,2, 龙明忠3, 王登富4, 李晓娜1,2,*()   

  1. 1.贵州师范大学喀斯特研究院, 贵阳 550001
    2.国家喀斯特石漠化防治工程技术研究中心, 贵阳 550001
    3.贵州民族大学生态环境工程学院, 贵阳 550025
    4.贵州省山地环境信息系统与生态环境保护重点实验室, 贵阳 550001
  • 收稿日期:2023-03-19 接受日期:2023-07-17 出版日期:2023-08-20 发布日期:2023-09-05
  • 通讯作者: *E-mail: maidoulxn413@163.com
  • 基金资助:
    国家自然科学基金(31960262);国家自然科学基金(32260313);贵州省基础研究计划项目(黔科合基础-ZK[2023]一般147);贵州省教育厅普通高等学校青年科技成长项目(黔教合KY字[2019] 224)

Review of diversity and nitrogen fixation potential of bryophyte-cyanobacteria associations

Jiaojiao Wu1,2, Guanting Guo1,2, Dong Chen1,2, Xin Zhao1,2, Mingzhong Long3, Dengfu Wang4, Xiaona Li1,2,*()   

  1. 1. School of Karst Science, Guizhou Normal University, Guiyang 550001
    2. State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001
    3. College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025
    4. Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001
  • Received:2023-03-19 Accepted:2023-07-17 Online:2023-08-20 Published:2023-09-05
  • Contact: *E-mail: maidoulxn413@163.com

摘要:

苔藓与固氮蓝藻形成的共生体是许多受氮限制的天然陆地生态系统氮的主要来源, 在全球氮循环中发挥着重要作用。不同生态系统的苔藓-蓝藻共生体物种组成及生长环境不同, 固氮能力差异巨大。目前苔藓-蓝藻共生体的研究集中在北半球高纬度生态系统中, 其他生态系统报道较少且零散。本文统计了已报道的苔藓-蓝藻共生体在全球生态系统中的分布、物种组成、蓝藻定殖率、蓝藻丰度及固氮潜力。统计发现, 全球目前共发现参与苔藓-蓝藻共生的苔藓植物41科58属110种, 蓝藻9科17属(≥ 26种); 不同生态系统苔藓-蓝藻共生体的苔藓物种组成差异大, 例如在北方森林中, 赤茎藓(Pleurozium schreberi)-蓝藻为优势共生体, 泥炭藓(Sphagnum spp.)-蓝藻是湿地生态系统中的优势共生体, 而念珠藻(Nostoc)类以其独特的生理特性和强大的生态适应能力成为多数生态系统中的优势蓝藻类群; 不同生态系统中蓝藻在苔藓植物上的定殖率、丰度及固氮能力具有较大差异; 在全球生态系统中, 北极苔原及北方森林生态系统的固氮量均较高, 最高的固氮量发生在北极苔原生态系统(1.3-24.6 kg N·ha-1·yr-1), 最低发生在温带草原生态系统(0.008-0.124 kg N·ha-1·yr-1)。最后, 本文展望了苔藓-蓝藻共生体多样性及固氮研究的前景和亟待加强的研究方向。本文将为苔藓-蓝藻共生固氮的相关研究提供理论依据, 并为进一步探讨其在全球氮循环中的地位提供数据和理论支撑。

关键词: 苔藓-蓝藻共生体, 生态系统, 多样性, 分布, 固氮

Abstract

Background & Aim: As a significant nitrogen source in many natural terrestrial ecosystems where nitrogen is limited, associations formed by bryophytes and nitrogen-fixing cyanobacteria play an essential role in the global nitrogen cycle. Species composition and habitat of bryophyte-cyanobacteria associations result in contrasting nitrogen fixation capacities in different ecosystems. However, the current studies on bryophyte-cyanobacteria associations are predominately conducted in high-latitude ecosystems of the Northern Hemisphere, with few and scattered reports in other ecosystems. Therefore, we summarized the distribution, species composition, cyanobacterial colonization rate, cyanobacterial abundance, and nitrogen fixation potential of reported bryophyte-cyanobacteria associations worldwide, aiming to provide a reference for further study on the diversity and nitrogen fixation capacity of bryophyte- cyanobacteria associations in various ecosystems globally.
Progress: According to our analysis and summarization, a total of 110 bryophyte species from 58 genera in 41 families and more than 26 cyanobacteria species from 17 genera in 9 families, were identified to be involved in bryophyte-cyanobacteria symbiotic associations. The associated bryophyte species varied among diverse ecosystems. For example, Pleurozium schreberi-cyanobacteria associations are dominate in the understory of boreal forests, while Sphagnum spp.-cyanobacteria associations dominate wetland ecosystems. Nostoc species are the dominant cyanobacteria in most ecosystems due to their unique physiological characteristics and strong ecological adaptability. Among different ecosystems the colonization rate, abundance, and nitrogen fixation capacity of cyanobacteria on bryophytes differed significantly. Nitrogen fixation was highest in Arctic tundra ecosystems (1.3-24.6 kg N·ha-1·yr-1), followed by boreal forests (0.04-11.53 kg N·ha-1·yr-1), and was the lowest in temperate grasslands (0.008-0.124 kg N·ha-1·yr-1).
Perspective: We emphasized that the research on species composition and the capacity for nitrogen fixation was quite inadequate. We also highlighted four research perspectives: (1) Employing techniques such as metagenomics and establishing observation and research stations to explore and study the colonization characteristics and nitrogen fixation ability of cyanobacteria associated with bryophytes. (2) Conducting further and systematic research on bryophyte-cyanobacteria associations in all types of ecosystems. (3) Unifying the measurement and estimation methods of nitrogen fixation rate in different ecosystems. (4) Determining the key influencing factors and regulatory pathways of the diversity, distribution, colonization rate, cyanobacteria abundance, and nitrogen fixation rate of bryophyte- cyanobacteria associations.

Key words: bryophyte-cyanobacteria associations, ecosystem, diversity, distribution, nitrogen fixation