生物多样性 ›› 2024, Vol. 32 ›› Issue (3): 23407. DOI: 10.17520/biods.2023407
收稿日期:
2023-10-24
接受日期:
2024-01-02
出版日期:
2024-03-20
发布日期:
2024-01-16
通讯作者:
*E-mail: xugl@gzhu.edu.cn
基金资助:
Cao Hao1, Donghui Wu2,3, Lingzi Mo1, Guoliang Xu1,*()
Received:
2023-10-24
Accepted:
2024-01-02
Online:
2024-03-20
Published:
2024-01-16
Contact:
*E-mail: xugl@gzhu.edu.cn
摘要:
越冬是全球温带和寒带地区动物生活史和演化过程的重要阶段, 顺利越冬对于动物种群的繁衍与维持至关重要。肠道微生物与宿主长期共同进化并形成复杂的共生关系, 在动物生长发育、健康调控及恶劣环境适应等方面发挥着重要作用。越冬动物不仅在形态、生理和行为方面发生适应性变化, 其肠道微生物也发生改变, 这对宿主适应低温不可或缺。近些年越冬动物肠道微生物工作日渐受到重视, 鉴于肠道微生物的重要意义, 本文总结和评述了4个方面内容: (1)越冬动物肠道微生物领域的研究现状。该领域发文量近年来增长快速, 冬眠动物肠道微生物研究最多且更为深入。肠道微生物多样性、影响因素和群落构建机制以及肠道微生物对动物越冬的作用机制是该领域的研究热点; (2)越冬动物肠道微生物群落多样性、组成及其功能基因的变化。冬季动物肠道细菌群落以拟杆菌门、厚壁菌门和变形菌门为主, 且多样性较夏季更低。冬眠动物肠道细菌群落的功能基因以脂肪代谢为主; (3)影响冬季动物肠道微生物群落的主要因素。肠道微生物群落与越冬宿主肠道形态和生理、物种类别、食性、越冬策略及外界环境时空和气候变化密切联系; (4)肠道微生物在动物越冬方面发挥的重要功能。肠道微生物参与宿主营养获取和能量代谢、调节宿主产热、影响宿主抗冻性及免疫力。本研究可增加人们对非生长季动物肠道微生物多样性维持及其生态功能的认识, 并帮助深入思考肠道微生物及其与宿主互作机制在调控动物适应环境变化方面的潜在影响。
郝操, 吴东辉, 莫凌梓, 徐国良 (2024) 越冬动物肠道微生物多样性及功能研究进展. 生物多样性, 32, 23407. DOI: 10.17520/biods.2023407.
Cao Hao, Donghui Wu, Lingzi Mo, Guoliang Xu (2024) A review on gut microbial diversity and function of overwintering animals. Biodiversity Science, 32, 23407. DOI: 10.17520/biods.2023407.
图1 2000-2022年“越冬动物肠道微生物”领域SCI期刊发文量(A)和研究动物类群情况(B)
Fig. 1 Publication number (A) and taxa distribution (B) in SCI journals in the field of “gut microbiota of overwintering animals” during 2000-2022
宿主 Host | 越冬策略 Overwintering strategy | 越冬肠道细菌多样性 Gut bacterial diversity in winter | 越冬肠道优势细菌门 Gut dominating bacterial phylum in winter | 越冬肠道主要功能代谢 Gut main metabolic function in winter | 参考文献 References | |
---|---|---|---|---|---|---|
纲名 Class | 种名 Species | |||||
哺乳纲 Mammalia | 野牦牛 Bos mutus | 活跃 Active | Chao 1丰富度指数↑ Chao 1 index ↑ | 拟杆菌门、厚壁菌门 Bacteroidetes, Firmicutes | 脂肪细胞因子信号通路↑、脂肪酸降解↑ Adipocytokine signalling pathway ↑, fatty acid degradation ↑ | Fu et al, |
马铁菊头蝠 Rhinolophus ferrumequinum | 冬眠 Hibernate | Chao 1丰富度指数↓、Shannon多样性指数↓ Chao 1 index ↓, Shannon index ↓ | 变形菌门、厚壁菌门↓ Proteobacteria, Firmicutes ↓ | 碳水化合物代谢↓、脂肪 代谢↑ Carbohydrate metabolism ↓, lipid metabolism ↑ | Xiao et al, | |
鸟纲 Aves | 艾草松鸡 Centrocercus urophasianus | 活跃 Active | 物种数↓、Shannon多样性 指数↓ Observed species ↓, Shannon index ↓ | 欧陆森氏菌属↑, 巴斯德菌科↑ Olsenella ↑, Pasteurellaceae ↑ | - | Drovetski et al, |
白额雁 Anser albifrons | 活跃 Active | - | 厚壁菌门、变形菌门、 放线菌门 Firmicutes, Proteobacteria, Actinobacteri | 碳水化合物代谢、氨基酸 代谢 Carbohydrate metabolism, amino acid metabolism | Yang et al, | |
两栖纲 Amphibia | 东北林蛙 Rana dybowskii | 冬眠 Hibernate | 物种数↓、Chao 1丰富度指 数↓、Shannon多样性指数↓ Observed species ↓, Chao 1 index ↓, Shannon index ↓ | 厚壁菌门↓、弯曲菌门↑ Firmicutes ↓, Campylobacterota ↑ | - | Tong et al, |
扬子鳄 Alligator sinensis | 冬眠 Hibernate | 物种数↑、Chao 1丰富度指数↑、Shannon多样性指数 Observed species ↑, Chao 1 index ↑, Shannon index | 变形菌门、拟杆菌门↑ Proteobacteria, Bacteroidetes ↑ | 粘蛋白寡糖降解酶↑ Mucin oligosaccharide- degrading enzymes ↑ | Tang et al, | |
昆虫纲 Insecta | 西方蜜蜂 Apis mellifera | 滞育 Diapause | Chao 1丰富度指数↓、Shannon多样性指数↓ Chao 1 index ↓, Shannon index ↓ | 根瘤菌科↑、肠杆菌科↓ Rhizobiaceae ↑, Enterobacteriaceae↓ | - | Bleau et al, |
灰蟋蟀 Gryllus veletis | 滞育 Diapause | 物种数↓、Shannon多样性 指数↓ Observed species ↓, Shannon index ↓ | 厚壁菌门↓、变形菌门↑、 拟杆菌门 Firmicutes ↓, Proteobacteria ↑, Bacteroidetes | - | Ferguson et al, | |
弹尾纲 Collembola | Tomocerus cf jilinensis | 活跃 Active | - | 变形菌门、放线菌门、 蓝菌门 Proteobacteria, Actinobacteria, Cyanobacteria | 氨基酸代谢、碳水化合物 代谢 Amino acid metabolism, Carbohydrate metabolism | Hao et al, |
腹足纲 Gastropoda | 福寿螺 Pomacea canaliculata | 半休眠 Semi-dormancy | Chao 1丰富度指数↓、 ACE丰富度指数↓、 Shannon多样性指数↓ Chao 1 index ↓, ACE index ↓, Shannon index ↓ | 变形菌门、厚壁菌门↑、 梭杆菌门↑ Proteobacteria, Firmicutes ↑, Fusobacteria ↑ | - | Li et al, |
双壳纲 Bivalvia | 紫贻贝 Mytilus galloprovincialis | 半休眠 Semi-dormancy | - | 软壁菌门、假单胞菌门Mycoplasmatota, Pseudomonadota | - | Akter et al, |
表1 越冬动物肠道微生物群落多样性、组成和代谢功能的变化
Table 1 Changes in diversity, composition and metabolic function of gut microbiota in overwintering animals
宿主 Host | 越冬策略 Overwintering strategy | 越冬肠道细菌多样性 Gut bacterial diversity in winter | 越冬肠道优势细菌门 Gut dominating bacterial phylum in winter | 越冬肠道主要功能代谢 Gut main metabolic function in winter | 参考文献 References | |
---|---|---|---|---|---|---|
纲名 Class | 种名 Species | |||||
哺乳纲 Mammalia | 野牦牛 Bos mutus | 活跃 Active | Chao 1丰富度指数↑ Chao 1 index ↑ | 拟杆菌门、厚壁菌门 Bacteroidetes, Firmicutes | 脂肪细胞因子信号通路↑、脂肪酸降解↑ Adipocytokine signalling pathway ↑, fatty acid degradation ↑ | Fu et al, |
马铁菊头蝠 Rhinolophus ferrumequinum | 冬眠 Hibernate | Chao 1丰富度指数↓、Shannon多样性指数↓ Chao 1 index ↓, Shannon index ↓ | 变形菌门、厚壁菌门↓ Proteobacteria, Firmicutes ↓ | 碳水化合物代谢↓、脂肪 代谢↑ Carbohydrate metabolism ↓, lipid metabolism ↑ | Xiao et al, | |
鸟纲 Aves | 艾草松鸡 Centrocercus urophasianus | 活跃 Active | 物种数↓、Shannon多样性 指数↓ Observed species ↓, Shannon index ↓ | 欧陆森氏菌属↑, 巴斯德菌科↑ Olsenella ↑, Pasteurellaceae ↑ | - | Drovetski et al, |
白额雁 Anser albifrons | 活跃 Active | - | 厚壁菌门、变形菌门、 放线菌门 Firmicutes, Proteobacteria, Actinobacteri | 碳水化合物代谢、氨基酸 代谢 Carbohydrate metabolism, amino acid metabolism | Yang et al, | |
两栖纲 Amphibia | 东北林蛙 Rana dybowskii | 冬眠 Hibernate | 物种数↓、Chao 1丰富度指 数↓、Shannon多样性指数↓ Observed species ↓, Chao 1 index ↓, Shannon index ↓ | 厚壁菌门↓、弯曲菌门↑ Firmicutes ↓, Campylobacterota ↑ | - | Tong et al, |
扬子鳄 Alligator sinensis | 冬眠 Hibernate | 物种数↑、Chao 1丰富度指数↑、Shannon多样性指数 Observed species ↑, Chao 1 index ↑, Shannon index | 变形菌门、拟杆菌门↑ Proteobacteria, Bacteroidetes ↑ | 粘蛋白寡糖降解酶↑ Mucin oligosaccharide- degrading enzymes ↑ | Tang et al, | |
昆虫纲 Insecta | 西方蜜蜂 Apis mellifera | 滞育 Diapause | Chao 1丰富度指数↓、Shannon多样性指数↓ Chao 1 index ↓, Shannon index ↓ | 根瘤菌科↑、肠杆菌科↓ Rhizobiaceae ↑, Enterobacteriaceae↓ | - | Bleau et al, |
灰蟋蟀 Gryllus veletis | 滞育 Diapause | 物种数↓、Shannon多样性 指数↓ Observed species ↓, Shannon index ↓ | 厚壁菌门↓、变形菌门↑、 拟杆菌门 Firmicutes ↓, Proteobacteria ↑, Bacteroidetes | - | Ferguson et al, | |
弹尾纲 Collembola | Tomocerus cf jilinensis | 活跃 Active | - | 变形菌门、放线菌门、 蓝菌门 Proteobacteria, Actinobacteria, Cyanobacteria | 氨基酸代谢、碳水化合物 代谢 Amino acid metabolism, Carbohydrate metabolism | Hao et al, |
腹足纲 Gastropoda | 福寿螺 Pomacea canaliculata | 半休眠 Semi-dormancy | Chao 1丰富度指数↓、 ACE丰富度指数↓、 Shannon多样性指数↓ Chao 1 index ↓, ACE index ↓, Shannon index ↓ | 变形菌门、厚壁菌门↑、 梭杆菌门↑ Proteobacteria, Firmicutes ↑, Fusobacteria ↑ | - | Li et al, |
双壳纲 Bivalvia | 紫贻贝 Mytilus galloprovincialis | 半休眠 Semi-dormancy | - | 软壁菌门、假单胞菌门Mycoplasmatota, Pseudomonadota | - | Akter et al, |
[1] | Akter S, Wos-Oxley ML, Catalano SR, Hassan MM, Li XX, Qin JG, Oxley APA (2023) Host species and environment shape the gut microbiota of cohabiting marine bivalves. Microbial Ecology, 86, 1755-1772. |
[2] | Bleau N, Bouslama S, Giovenazzo P, Derome N (2020) Dynamics of the honeybee (Apis mellifera) gut microbiota throughout the overwintering period in Canada. Microorganisms, 8, 1146. |
[3] | Bo TB, Tang LQ, Xu XM, Liu M, Wen J, Lv JZ, Wang DH (2023) Role of gut microbiota in the postnatal thermoregulation of Brandt’s voles. Cell Reports, 42, 113021. |
[4] | Bo TB, Zhang XY, Wen J, Deng K, Qin XW, Wang DH (2019) The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt’s voles (Lasiopodomys brandtii). The ISME Journal, 13, 3037-3053. |
[5] | Bosmans L, Pozo MI, Verreth C, Crauwels S, Wäckers F, Jacquemyn H, Lievens B (2018) Hibernation leads to altered gut communities in bumblebee queens (Bombus terrestris). Insects, 9, 188. |
[6] | Brown AL, Sharp K, Apprill A (2022) Reshuffling of the coral microbiome during dormancy. Applied and Environmental Microbiology, 88, e0139122. |
[7] | Burns G, Thorne MAS, Hillyard G, Clark MS, Convey P, Worland MR (2010) Gene expression associated with changes in cold tolerance levels of the Antarctic springtail, Cryptopygus antarcticus. Insect Molecular Biology, 19, 113-120. |
[8] |
Cani PD, Van Hul M, Lefort C, Depommier C, Rastelli M, Everard A (2019) Microbial regulation of organismal energy homeostasis. Nature Metabolism, 1, 34-46.
DOI PMID |
[9] | Carey HV (1990) Seasonal changes in mucosal structure and function in ground squirrel intestine. American Journal of Physiology, 259, R385-R392. |
[10] |
Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews, 83, 1153-1181.
DOI PMID |
[11] |
Carey HV, Assadi-Porter FM (2017) The hibernator microbiome: Host-bacterial interactions in an extreme nutritional symbiosis. Annual Review of Nutrition, 37, 477-500.
DOI PMID |
[12] | Carey HV, Walters WA, Knight R (2013) Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle. American Journal of Physiology, 304, R33-R42. |
[13] | Chen CM (2004) Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences, 101, 5303-5310. |
[14] | Chen PC, Lin MS, Lin TC, Kang TW, Ruan JW (2023) The alteration of Akkermansiaceae/Lachnospiraceae ratio is a microbial feature of antibiotic-induced microbiota remodeling. Bioinformatics and Biology Insights, 17, 1-12. |
[15] |
Chevalier C, Stojanović O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanović A, Hagemann S, Montet X, Seimbille Y, Zamboni N, Hapfelmeier S, Trajkovski M (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell, 163, 1360-1374.
DOI PMID |
[16] |
Chiang E, Deblois CL, Carey HV, Suen G (2022) Characterization of captive and wild 13-lined ground squirrel cecal microbiotas using Illumina-based sequencing. Animal Microbiome, 4, 1.
DOI PMID |
[17] | Danks HV (2012) Insect adaptations to cold and changing environments. Canadian Entomologist, 138, 1-23. |
[18] | David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559-563. |
[19] | Didion EM, Sabree ZL, Kenyon L, Nine G, Hagan RW, Osman S, Benoit JB (2021) Microbiome reduction prevents lipid accumulation during early diapause in the northern house mosquito, Culex pipiens pipiens. Journal of Insect Physiology, 134, 104295. |
[20] |
Dill-McFarland KA, Neil KL, Zeng A, Sprenger RJ, Kurtz CC, Suen G, Carey HV (2014) Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Molecular Ecology, 23, 4658-4669.
DOI PMID |
[21] | Ding J, Zhu D, Li H, Ding K, Chen QL, Lassen SB, Ke X, O’Connor P, Zhu YG (2019) The gut microbiota of soil organisms show species-specific responses to liming. Science of the Total Environment, 659, 715-723. |
[22] | Dittmer J, Brucker RM (2021) When your host shuts down: Larval diapause impacts host-microbiome interactions in Nasonia vitripennis. Microbiome, 9, 85. |
[23] | Dong YQ, Xiang XJ, Zhao GH, Song YW, Zhou LZ (2019) Variations in gut bacterial communities of hooded crane (Grus monacha) over spatial-temporal scales. PeerJ, 7, e7045. |
[24] |
Drovetski SV, O’Mahoney MJV, Matterson KO, Schmidt BK, Graves GR (2019) Distinct microbiotas of anatomical gut regions display idiosyncratic seasonal variation in an avian folivore. Animal Microbiome, 1, 2.
DOI PMID |
[25] | Engel P, Moran NA (2013) The gut microbiota of insects-diversity in structure and function. FEMS Microbiology Reviews, 37, 699-735. |
[26] |
Fan C, Zhang LZ, Jia SG, Tang XJ, Fu HB, Li WJ, Liu CF, Zhang H, Cheng Q, Zhang YM (2022) Seasonal variations in the composition and functional profiles of gut microbiota reflect dietary changes in plateau pikas. Integrative Zoology, 17, 379-395.
DOI PMID |
[27] | Ferguson LV, Dhakal P, Lebenzon JE, Heinrichs DE, Bucking C, Sinclair BJ (2018) Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Functional Ecology, 32, 2357-2368. |
[28] |
Fontaine SS, Kohl KD (2020) Gut microbiota of invasive bullfrog tadpoles responds more rapidly to temperature than a noninvasive congener. Molecular Ecology, 29, 2449-2462.
DOI PMID |
[29] | Fraixedas S, Lehikoinen A, Lindén A (2015) Impacts of climate and land-use change on wintering bird populations in Finland. Journal of Avian Biology, 46, 63-72. |
[30] |
Fu HB, Zhang LZ, Fan C, Liu CF, Li WJ, Cheng Q, Zhao XQ, Jia SG, Zhang YM (2021) Environment and host species identity shape gut microbiota diversity in sympatric herbivorous mammals. Microbial Biotechnology, 14, 1300-1315.
DOI PMID |
[31] |
Guo N, Wu QF, Shi FY, Niu JH, Zhang T, Degen AA, Fang QG, Ding LM, Shang ZH, Zhang ZG, Long RJ (2021) Seasonal dynamics of diet-gut microbiota interaction in adaptation of yaks to life at high altitude. npj Biofilms and Microbiomes, 7, 38.
DOI PMID |
[32] | Hågvar S (2010) A review of Fennoscandian arthropods living on and in snow. European Journal of Entomology, 107, 281-298. |
[33] | Hao C, Chen T-W, Wu DH (2022) A review on gut microbial diversity of soil animals. Acta Ecologica Sinica, 42, 3093-3105. (in Chinese with English abstract) |
[ 郝操, Chen Ting-Wen, 吴东辉 (2022) 土壤动物肠道微生物多样性研究进展. 生态学报, 42, 3093-3105.] | |
[34] | Hao C, Chen T-W, Wu YG, Chang L, Wu DH (2020) Snow microhabitats provide food resources for winter-active Collembola. Soil Biology and Biochemistry, 143, 107731. |
[35] | Hao C, de Jonge N, Zhu D, Feng LC, Zhang B, Chen T-W, Wu DH, Nielsen JL (2022) Food origin influences microbiota and stable isotope enrichment profiles of cold-adapted Collembola (Desoria ruseki). Frontiers in Microbiology, 13, 1030429. |
[36] | Hou ZH, Dong YX, Shi FM, Xu YB, Ge SX, Tao J, Ren LL, Zong SX (2021) Seasonal shifts in cold tolerance and the composition of the gut microbiome of Dendroctonus valens LeConte occur concurrently. Forests, 12, 888. |
[37] |
Johnson HE, Sushinsky JR, Holland A, Bergman EJ, Balzer T, Garner J, Reed SE (2017) Increases in residential and energy development are associated with reductions in recruitment for a large ungulate. Global Change Biology, 23, 578-591.
DOI PMID |
[38] | Kashima T, Nakamura T, Tojo S (2006) Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause. Journal of Insect Physiology, 52, 816-825. |
[39] | Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P (2020) Gut microbiota structure differs between honeybees in winter and summer. The ISME Journal, 14, 801-814. |
[40] | Khakisahneh S, Zhang XY, Nouri Z, Wang DH (2020) Gut microbiota and host thermoregulation in response to ambient temperature fluctuations. mSystems, 5, e00514-20. |
[41] | Knapp BA, Podmirseg SM, Seeber J, Meyer E, Insam H (2009) Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Biology and Biochemistry, 41, 2299-2307. |
[42] | Kueneman JG, Bletz MC, McKenzie VJ, Becker CG, Joseph MB, Abarca JG, Archer H, Arellano AL, Bataille A, Becker M, Belden LK, Crottini A, Geffers R, Haddad CFB, Harris RN, Holden WM, Hughey M, Jarek M, Kearns PJ, Kerby JL, Kielgast J, Kurabayashi A, Longo AV, Loudon A, Medina D, Nuñez JJ, Bina Perl RG, Pinto-Tomás A, Rabemananjara FCE, Rebollar EA, Rodríguez A, Rollins-Smith L, Stevenson R, Tebbe CC, Vargas Asensio G, Waldman B, Walke JB, Whitfield SM, Zamudio KR, Zúñiga Chaves I, Woodhams DC, Vences M (2019) Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nature Ecology & Evolution, 3, 381-389. |
[43] | Kurtz CC, Otis JP, Regan MD, Carey HV (2021) How the gut and liver hibernate. Comparative Biochemistry and Physiology, Part A, 253, 110875. |
[44] | Lee RE Jr, Strong-Gunderson JM, Lee MR, Grove KS, Riga TJ (1991) Isolation of ice nucleating active bacteria from insects. Journal of Experimental Zoology, 257, 124-127. |
[45] | Lee WJ, Hase K (2014) Gut microbiota-generated metabolites in animal health and disease. Nature Chemical Biology, 10, 416-424. |
[46] |
Li BG, Li L, Li M, Lam SM, Wang GL, Wu YG, Zhang HL, Niu CQ, Zhang XY, Liu X, Hambly C, Jin WZ, Shui GH, Speakman JR (2019) Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Reports, 26, 2720-2737.
DOI PMID |
[47] |
Li C, Liu Y, Gong MH, Zheng CM, Zhang CL, Li HX, Wen WY, Wang YH, Liu G (2021) Diet-induced microbiome shifts of sympatric overwintering birds. Applied Microbiology and Biotechnology, 105, 5993-6005.
DOI PMID |
[48] | Li SX, Qian ZJ, Yang JN, Lin YF, Li H, Chen L (2022) Seasonal variation in structure and function of gut microbiota in Pomacea canaliculata. Ecology and Evolution, 12, e9162. |
[49] | Liu G, Xu N, Feng JH (2023) Metagenomic analysis of gut microbiota and antibiotic-resistant genes in Anser erythropus wintering at Shengjin and Caizi Lakes in China. Frontiers in Microbiology, 13, 1081468. |
[50] |
Liu P, Zhu YJ, Ye L, Shi TF, Li L, Cao HQ, Yu LS (2021) Overwintering honeybees maintained dynamic and stable intestinal bacteria. Scientific Reports, 11, 22233.
DOI PMID |
[51] |
Liu W, Li Y, Guo S, Yin H, Lei CL, Wang XP (2016) Association between gut microbiota and diapause preparation in the cabbage beetle: A new perspective for studying insect diapause. Scientific Reports, 6, 38900.
DOI PMID |
[52] | McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences, USA, 110, 3229-3236. |
[53] |
Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A (2015) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology, 24, 5284-5295.
DOI PMID |
[54] |
Moghadam NN, Thorshauge PM, Kristensen TN, de Jonge N, Bahrndorff S, Kjeldal H, Nielsen JL (2018) Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly, 12, 1-12.
DOI PMID |
[55] | Moreno-Navarrete JM, Fernandez-Real JM (2019) The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Reviews in Endocrine and Metabolic Disorders, 20, 387-397. |
[56] | Mushegian AA, Tougeron K (2019) Animal-microbe interactions in the context of diapause. Biological Bulletin, 237, 180-191. |
[57] |
Mushegian AA, Walser JC, Sullam KE, Ebert D (2018) The microbiota of diapause: How host-microbe associations are formed after dormancy in an aquatic crustacean. Journal of Animal Ecology, 87, 400-413.
DOI PMID |
[58] | Olsen TM, Duman JG (1997) Maintenance of the supercooled state in the gut fluid of overwintering pyrochroid beetle larvae, Dendroides canadensis: Role of ice nucleators and antifreeze proteins. Journal of Comparative Physiology B, 167, 114-122. |
[59] |
Palmer-Young EC, Ngor L, Nevarez RB, Rothman JA, Raffel TR, McFrederick QS (2019) Temperature dependence of parasitic infection and gut bacterial communities in bumble bees. Environmental Microbiology, 21, 4706-4723.
DOI PMID |
[60] | Qian L, Chen BJ, Deng P, Gui FR, Cao Y, Qin Y, Liao HJ (2023) TM7 (Saccharibacteria) regulates the synthesis of linolelaidic acid and tricosanoic acid, and alters the key metabolites in diapause Clanis bilineata tsingtauica. Frontiers in Physiology, 14, 1093713. |
[61] |
Rahimi-Kaldeh S, Ashouri A, Bandani A (2018) Does Wolbachia infection change the overwintering ability of Trichogramma brassicae (Hymenoptera: Trichogrammatidae)? Neotropical Entomology, 47, 583-590.
DOI PMID |
[62] |
Rahimi-Kaldeh S, Ashouri A, Bandani A, Tomioka K (2017) The effect of Wolbachia on diapause, fecundity, and clock gene expression in Trichogramma brassicae (Hymenoptera: Trichogrammatidae). Development Genes and Evolution, 227, 401-410.
DOI PMID |
[63] |
Regan MD, Chiang E, Liu YX, Tonelli M, Verdoorn KM, Gugel SR, Suen G, Carey HV, Assadi-Porter FM (2022) Nitrogen recycling via gut symbionts increases in ground squirrels over the hibernation season. Science, 375, 460-463.
DOI PMID |
[64] | San Juan PA, Hendershot JN, Daily GC, Fukami T (2020) Land-use change has host-specific influences on avian gut microbiomes. The ISME Journal, 14, 318-321. |
[65] | Sapkota R, Santos S, Farias P, Krogh PH, Winding A (2020) Insights into the earthworm gut multi-kingdom microbial communities. Science of the Total Environment, 727, 138301. |
[66] |
Schwartz C, Andrews MT (2013) Circannual transitions in gene expression: Lessons from seasonal adaptations. Current Topics in Developmental Biology, 105, 247-273.
DOI PMID |
[67] | Shapira M (2016) Gut microbiotas and host evolution: Scaling up symbiosis. Trends in Ecology & Evolution, 31, 539-549. |
[68] | Shen HY, Cai MX, Li JY, Luo YY (2022) High-throughput sequencing reveals the effect of feeding on overwintering Hirudo nipponia. Diversity, 14, 768. |
[69] | Sømme L (1999) The physiology of cold hardiness in terrestrial arthropods. European Journal of Entomology, 96, 1-10. |
[70] |
Sommer F, Ståhlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J, Newgard CB, Fröbert O, Bäckhed F (2016) The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Reports, 14, 1655-1661.
DOI PMID |
[71] |
Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science, 307, 1955-1959.
DOI PMID |
[72] |
Sonoyama K, Fujiwara R, Takemura N, Ogasawara T, Watanabe J, Ito H, Morita T (2009) Response of gut microbiota to fasting and hibernation in Syrian hamsters. Applied and Environmental Microbiology, 75, 6451-6456.
DOI PMID |
[73] |
Stevenson TJ, Duddleston KN, Buck CL (2014) Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota. Applied and Environmental Microbiology, 80, 5611-5622.
DOI PMID |
[74] | Su JH, Li LH, Wang YY, Ma XX, Ma ZR, Peppelenbosch MP, Pan QW, Bai X (2020) Seasonal analysis of the gut microbiota in adult and young captive Asian black bears in Northeast China. Animal Biology, 70, 109-119. |
[75] | Tang KY, Wang ZW, Wan QH, Fang SG (2019) Metagenomics reveals seasonal functional adaptation of the gut microbiome to host feeding and fasting in the Chinese alligator. Frontiers in Microbiology, 10, 2409. |
[76] | Tong Q, Dong WJ, Xu MD, Hu ZF, Guo P, Han XY, Cui LY (2023) Characteristics and a comparison of the gut microbiota in two frog species at the beginning and end of hibernation. Frontiers in Microbiology, 14, 1057398. |
[77] |
Tong Q, Hu ZF, Du XP, Bie J, Wang HB (2020) Effects of seasonal hibernation on the similarities between the skin microbiota and gut microbiota of an amphibian (Rana dybowskii). Microbial Ecology, 79, 898-909.
DOI PMID |
[78] | Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027-1031. |
[79] | Wang W, Wang F, Li LX, Wang AZ, Sharshov K, Druzyaka A, Lancuo ZM, Wang SY, Shi YT (2020a) Characterization of the gut microbiome of black-necked cranes (Grus nigricollis) in six wintering areas in China. Archives of Microbiology, 202, 983-993. |
[80] | Wang YJ, Zhou R, Yu QL, Feng TS, Li H (2020b) Gut microbiome adaptation to extreme cold winter in wild plateau pika (Ochotona curzoniae) on the Qinghai-Tibet Plateau. FEMS Microbiology Letters, 367, fnaa134. |
[81] | Watson SE, Hauffe HC, Bull MJ, Atwood TC, McKinney MA, Pindo M, Perkins SE (2019) Global change-driven use of onshore habitat impacts polar bear faecal microbiota. The ISME Journal, 13, 2916-2926. |
[82] | Weng FCH, Yang YJ, Wang DY (2016) Functional analysis for gut microbes of the brown tree frog (Polypedates megacephalus) in artificial hibernation. BMC Genomics, 17, 1024. |
[83] | Wiebler JM, Kohl KD, Lee RE, Costanzo JP (2018) Urea hydrolysis by gut bacteria in a hibernating frog:Evidence for urea-nitrogen recycling in Amphibia. Proceedings of the Royal Society B: Biological Sciences, 285, 20180241. |
[84] | Wong ACN, Vanhove AS, Watnick PI (2016) The interplay between intestinal bacteria and host metabolism in health and disease: Lessons from Drosophila melanogaster. Disease Models & Mechanisms, 9, 271-281. |
[85] |
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li HZ, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105-108.
DOI PMID |
[86] | Wu YG, Hao C, Chen T-W, Xie ZJ, Zhang YF, Guan PT, Wu DH, Scheu S (2023) Environmental distances are more important than geographic distances for predicting earthworm gut bacterial community composition. European Journal of Soil Biology, 118, 103520. |
[87] | Wu YN, Li ZH, Zhao JR, Chen Z, Xiang XJ (2022) Significant differences in intestinal fungal community of hooded cranes along the wintering periods. Frontiers in Microbiology, 13, 991998. |
[88] |
Xiao GH, Liu S, Xiao YH, Zhu Y, Zhao HB, Li AQ, Li ZL, Feng J (2019) Seasonal changes in gut microbiota diversity and composition in the greater horseshoe bat. Frontiers in Microbiology, 10, 2247.
DOI PMID |
[89] |
Yang YZ, Deng Y, Cao L (2016) Characterising the interspecific variations and convergence of gut microbiota in Anseriformes herbivores at wintering areas. Scientific Reports, 6, 32655.
DOI PMID |
[90] | Zhang B, Chang L, Ni Z, Callaham MA, Sun X, Wu DH (2014) Effects of land use changes on winter-active Collembola in Sanjiang Plain of China. Applied Soil Ecology, 83, 51-58. |
[91] | Zhang B, Ding XY, Jiang JP, Li LH, Yang DD (2022) Metagenomic analysis of Mangshan pit viper (Protobothrops mangshanensis) gut microbiota reveals differences among wild and captive individuals linked to hibernating behaviors. Asian Herpetological Research, 13, 251-268. |
[92] | Zhang XY, Sukhchuluun G, Bo TB, Chi QS, Yang JJ, Chen B, Zhang L, Wang DH (2018) Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure. Microbiome, 6, 103. |
[93] |
Zhang Y, Sun L, Zhu R, Zhang SY, Liu S, Wang Y, Wu YB, Xing SC, Liao XD, Mi JD (2022) Porcine gut microbiota in mediating host metabolic adaptation to cold stress. npj Biofilms and Microbiomes, 8, 18.
DOI PMID |
[94] | Zhao JS, Wang YJ, Zhang M, Yao YF, Tian H, Sang ZL, Wang L, Xu HL (2021) Structural changes in the gut microbiota community of the black-necked crane (Grus nigricollis) in the wintering period. Archives of Microbiology, 203, 6203-6214. |
[95] | Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences, USA, 114, 4775-4780. |
[96] | Zhou J, Wang MH, Yi XF (2022) Alteration of gut microbiota of a food-storing hibernator, Siberian chipmunk Tamias sibiricus. Microbial Ecology, 84, 603-612. |
[97] | Zhu D, Chen QL, Li H, Yang XR, Christie P, Ke X, Zhu YG (2018) Land use influences antibiotic resistance in the microbiome of soil collembolans Orchesellides sinensis. Environmental Science & Technology, 52, 14088-14098. |
[98] | Zhu YG, Xiong C, Wei Z, Chen QL, Ma B, Zhou SYD, Tan JQ, Zhang LM, Cui HL, Duan GL (2022) Impacts of global change on the phyllosphere microbiome. New Phytologist, 234, 1977-1986. |
[99] | Zhu ZL, Sun YW, Zhu F, Liu ZS, Pan RL, Teng LW, Guo ST (2020) Seasonal variation and sexual dimorphism of the microbiota in wild blue sheep (Pseudois nayaur). Frontiers in Microbiology, 11, 1260. |
[1] | 夏凡, 杨婧, 李建, 史洋, 盖立新, 黄文华, 张经纬, 杨南, 高福利, 韩莹莹, 鲍伟东. 北京地区四个豹猫亚种群肠道菌群的组成[J]. 生物多样性, 2022, 30(9): 22103-. |
[2] | 辛玉华, 周宇光, 东秀珠. 低温细菌与古菌的生物多样性及其冷适应机制[J]. 生物多样性, 2013, 21(4): 468-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn