生物多样性 ›› 2023, Vol. 31 ›› Issue (4): 22585. DOI: 10.17520/biods.2022585
所属专题: 土壤生物与土壤健康
肖媛媛1, 冯薇1,2, 乔艳桂1, 张宇清1,2,*(), 秦树高1,2
收稿日期:
2022-10-18
接受日期:
2022-12-08
出版日期:
2023-04-20
发布日期:
2023-04-20
通讯作者:
*E-mail: 基金资助:
Yuanyuan Xiao1, Wei Feng1,2, Yangui Qiao1, Yuqing Zhang1,2,*(), Shugao Qin1,2
Received:
2022-10-18
Accepted:
2022-12-08
Online:
2023-04-20
Published:
2023-04-20
Contact:
*E-mail: 摘要:
过去30年, 毛乌素沙地采取飞播、禁牧等一系列生态恢复措施进行荒漠化治理, 在改善区域生态环境方面取得了显著成效; 然而, 植被恢复后, 土壤多功能性的变化情况仍不明晰, 尤其是土壤微生物对土壤多功能性的影响缺乏深入认识。本文以毛乌素沙地同期建植的黑沙蒿(Artemisia ordosica)、北沙柳(Salix psammophila)和柠条锦鸡儿(Caragana korshinskii) 3种固沙灌木林地土壤为研究对象, 使用高通量测序技术测定了土壤微生物群落结构, 采用平均值法量化了林地土壤多功能性并分析二者关系。研究结果显示: (1) 3种固沙灌木林地土壤有机碳、全氮、全磷、微生物量碳、微生物量氮存在显著差异(黑沙蒿林地 > 北沙柳林地 > 柠条锦鸡儿林地), 黑沙蒿和北沙柳林地土壤蔗糖酶、碱性磷酸酶、土壤多功能性无显著差异, 但高于柠条锦鸡儿林地; (2) 黑沙蒿林地土壤微生物Chao 1指数、物种数、Shannon指数显著高于柠条锦鸡儿林地, 柠条锦鸡儿林地土壤净种间亲缘关系指数显著低于其他两类林地, 3种林地土壤微生物Shannon指数、系统发育多样性、网络拓扑性质(节点、边、边密度)及柠条锦鸡儿林地土壤净种间亲缘关系指数均与土壤多功能性呈正相关; (3)微生物参数对土壤多功能性的解释度从高到低依次为网络拓扑性质(24.46%)、物种多样性(19.72%)、谱系多样性(5.92%), 土壤微生物多样性通过促进网络结构间接地对土壤多功能性产生正向影响。研究结果表明, 不同灌木林地对土壤微生物参数和土壤多功能性影响不同, 土壤微生物多样性通过正向调控微生物种间关系影响土壤生态系统功能。结果有助于从土壤微生物视角, 理解以不同固沙灌木为优势种组成的植被群落对土壤功能的影响, 并可为荒漠化防治植物种的选择提供理论依据。
肖媛媛, 冯薇, 乔艳桂, 张宇清, 秦树高 (2023) 固沙灌木林地土壤微生物群落特征对土壤多功能性的影响. 生物多样性, 31, 22585. DOI: 10.17520/biods.2022585.
Yuanyuan Xiao, Wei Feng, Yangui Qiao, Yuqing Zhang, Shugao Qin (2023) Effects of soil microbial community characteristics on soil multifunctionality in sand-fixation shrublands. Biodiversity Science, 31, 22585. DOI: 10.17520/biods.2022585.
样地 Sampling site | 黑沙蒿林地 Artemisia ordosica shrubland | 北沙柳林地 Salix psammophila shrubland | 柠条锦鸡儿林地 Caragana korshinskii shrubland |
---|---|---|---|
植被盖度 Vegetation coverage (%) | 58 | 65 | 62 |
优势种 Dominant species | 黑沙蒿 A. ordosica | 北沙柳 S. psammophila | 柠条锦鸡儿 C. korshinskii |
灌木平均高度 Mean shrub height (m) | 0.61 | 2.60 | 2.99 |
平均冠幅 Mean shrub canopy area (m2) | 0.85 | 6.41 | 6.19 |
主要伴生植物 Main associated herbaceous plants | 赖草、狗尾草、地梢瓜、阿尔泰狗娃花、中华苦荬菜 Leymus secalinus, Setaria viridis, Cynanchum thesioides, Aster altaicus, Ixeris chinensis | 中华苦荬菜、兴安胡枝子、拂子 茅 Ixeris chinensis, Lespedeza davurica, Calamagrostis epigeios | 软毛虫实、拂子茅、猪毛菜、狗尾草 Corispermum puberulum, Calamagrostis epigeios, Kali collinum, Setaria viridis |
表1 研究样地灌木基本情况表
Table 1 Basic information of the sampled shrublands in the study sites
样地 Sampling site | 黑沙蒿林地 Artemisia ordosica shrubland | 北沙柳林地 Salix psammophila shrubland | 柠条锦鸡儿林地 Caragana korshinskii shrubland |
---|---|---|---|
植被盖度 Vegetation coverage (%) | 58 | 65 | 62 |
优势种 Dominant species | 黑沙蒿 A. ordosica | 北沙柳 S. psammophila | 柠条锦鸡儿 C. korshinskii |
灌木平均高度 Mean shrub height (m) | 0.61 | 2.60 | 2.99 |
平均冠幅 Mean shrub canopy area (m2) | 0.85 | 6.41 | 6.19 |
主要伴生植物 Main associated herbaceous plants | 赖草、狗尾草、地梢瓜、阿尔泰狗娃花、中华苦荬菜 Leymus secalinus, Setaria viridis, Cynanchum thesioides, Aster altaicus, Ixeris chinensis | 中华苦荬菜、兴安胡枝子、拂子 茅 Ixeris chinensis, Lespedeza davurica, Calamagrostis epigeios | 软毛虫实、拂子茅、猪毛菜、狗尾草 Corispermum puberulum, Calamagrostis epigeios, Kali collinum, Setaria viridis |
图1 土壤样品采集点布设图。a: 黑沙蒿林地取样小样方; b: 北沙柳林地取样小样方; c: 柠条锦鸡儿林地取样小样方。
Fig. 1 Distribution of soil sampling sites. a, Sampling plot in Artemisia ordosica shrublands; b, Sampling plot in Salix psammophila shrublands; c, Sampling plot in Caragana korshinskii shrublands.
图2 不同灌木林地土壤性质和多功能性。不同的字母表示样地间的显著差异(P < 0.05), 数据为平均值 ± 标准误差; Aro: 黑沙蒿林地; Sap: 北沙柳林地; Cam: 柠条锦鸡儿林地。
Fig. 2 Soil properties and multifunctionality in different shrublands. Different lowercase letters indicate significant differences (P < 0.05), data are shown as mean ± SE; Aro, Artemisia ordosica shrubland; Sap, Salix psammophila shrubland; Cam, Caragana korshinskii shrubland.
图3 不同灌木林地土壤微生物物种多样性(a)和谱系多样性(b)。不同的字母表示样地间存在显著差异(P < 0.05), 数据为平均值 ± 标准误差。Aro: 黑沙蒿林地; Sap: 北沙柳林地; Cam: 柠条锦鸡儿林地; PD: 系统发育多样性; NRI: 净种间亲缘关系指数; NTI: 净最近种间亲缘关系指数。
Fig. 3 Soil microbial species diversity (a) and phylogenetic diversity (b) in different shrublands. Different lowercase letters indicate significant differences (P < 0.05), data are shown as mean values ± SE. Aro, Artemisia ordosica shrubland; Sap, Salix psammophila shrubland; Cam, Caragana korshinskii shrubland. PD, Faith’s phylogenetic diversity index; NRI, Net relatedness index; NTI, Net nearest taxa index.
图5 土壤多功能性与土壤微生物多样性及网络拓扑性质的关系。灰色部分表示95%置信区间。Aro: 黑沙蒿林地; Sap: 北沙柳林地; Cam: 柠条锦鸡儿林地; PD: 系统发育多样性; NRI: 净种间亲缘关系指数; NTI: 净最近种间亲缘关系指数。R2: 决定系数; * P < 0.05; ** P < 0.01。
Fig. 5 Relationship between soil multifunctionality (Z-score) and soil microbial diversity, network topological properties. Grey regions indicate 95% confidence intervals around the regressions; Aro, Artemisia ordosica shrubland; Sap, Salix psammophila shrubland; Cam, Caragana korshinskii shrubland; PD, Faith’s phylogenetic diversity index; NRI, Net relatedness index; NTI, Net nearest taxa index; R2, Coefficient of determination; * P < 0.05; ** P < 0.01.
图6 微生物多样性和网络拓扑性质对土壤多功能性的解释度(方差分解分析)。实心黑色圆圈代表相邻两因子交互作用, 实线长方形代表三因子交互作用; 蓝色虚线代表一类微生物参数对土壤多功能性的解释度; Nodes: 节点; Edges: 边; Linkage density: 边密度; PD: 系统发育多样性指数; NRI: 净种间亲缘关系指数; NTI: 净最近种间亲缘关系指数; Observed species: 物种数; Chao 1: Chao 1指数; Shannon: Shannon指数。
Fig. 6 Percentage explanation of microbial diversity and network topological properties on soil multifunctionality (variance partition analysis). Solid black circles represent adjacent two-factor interactions, and solid rectangles represent three-factor interactions; Blue dashed line represents the percentage of explanation of soil multifunctionality by one category of microbial parameters; Nodes, Number of nodes; Edges, Number of edges; Linkage density, Linkage density; PD, Faith’s phylogenetic diversity index; NRI, Net relatedness index; NTI, Net nearest taxa index; Observed species, Observed species number; Chao 1, Chao 1 index; Shannon, Shannon index.
图7 微生物参数对土壤多功能性影响的结构方程模型(a)和标准化总效应(b)。箭头代表正相关关系, 箭头粗细表示路径系数大小, 箭头上数值为标准化路径系数和相关性程度, R2 代表模型对该变量的解释度; NRI: 净种间亲缘关系指数; GFI: 拟合优度指数; CFI: 比较拟合指数; NFI: 规范拟合指数; * P < 0.05; ** P < 0.01; *** P < 0.001。
Fig. 7 Structural equation modeling (a) and standardized total effect (b) of microbial parameters on soil multifunctionality. Arrows represent positive correlations, the thickness of the arrow indicates the size of the path coefficient, the value on the arrow is the standardized path coefficient and the degree of correlation, and R2 represents the degree of explanation of the model for the variable; NRI, Net relatedness index; GFI, Goodness fit index; CFI, Comparative fit index; NFI, Normed fit index; * P < 0.05; ** P < 0.01; *** P < 0.001.
[1] |
Banerjee S, Schlaeppi K, van der Heijden MGA, (2018) Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16, 567-576.
DOI PMID |
[2] |
Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, Keller T, Charles R, van der Heijden MGA (2019) Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal, 13, 1722-1736.
DOI |
[3] |
Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343-351.
DOI |
[4] |
Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
DOI |
[5] |
Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández- Clemente R, Zhao YC, Gaitán JJ, Gross N, Saiz H, Maire V, Lehmann A, Rillig MC, Solé RV, Maestre FT (2020) Global ecosystem thresholds driven by aridity. Science, 367, 787-790.
DOI PMID |
[6] |
Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Duffy LE (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions. Methods in Ecology and Evolution, 5, 111-124.
DOI URL |
[7] |
Cadotte MW, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology, 93, S223-S233.
DOI URL |
[8] | Cai Y, Lü GH, He XM, Jiang LM, Wang HF, Teng DX (2019) Study on the multifunctionality and species diversity of grassland ecosystem under different land-uses. Agricultural Research in the Arid Areas, 37, 200-210. (in Chinese with English abstract) |
[ 蔡艳, 吕光辉, 何学敏, 蒋腊梅, 王恒方, 滕德雄 (2019) 不同利用方式下草地生态系统的多功能性与物种多样性. 干旱地区农业研究, 37, 200-210.] | |
[9] |
Canarini A, Schmidt H, Fuchslueger L, Martin V, Herbold CW, Zezula D, Gündler P, Hasibeder R, Jecmenica M, Bahn M, Richter A (2021) Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nature Communications, 12, 5308.
DOI PMID |
[10] | Chen KL, Zhou HK, Lu BB, Wu Y, Wang J, Zhao ZW, Li YZ, Wang M, Zhang Y, Chen WJ, Liu GB, Xue S (2021) Single- species artificial grasslands decrease soil multifunctionality in a temperate steppe on the Qinghai-Tibet Plateau. Agronomy, 11, 2092. |
[11] | Chen YZ, Ma KM, Zhang YX, Zhang S, Niu SK (2015) Network structure of plant diversity of Dongling Mountain, Beijing. Acta Ecologica Sinica, 35, 3702-3709. (in Chinese with English abstract) |
[ 陈禹舟, 马克明, 张育新, 张霜, 牛树奎 (2015) 北京东灵山森林植物多样性的网络结构特征. 生态学报, 35, 3702-3709.] | |
[12] | Chu HY, Feng MM, Liu X, Shi Y, Yang T, Gao GF (2020) Soil microbial biogeography: Recent advances in China and research frontiers in the world. Acta Pedologica Sinica, 57, 515-529. (in Chinese with English abstract) |
[ 褚海燕, 冯毛毛, 柳旭, 时玉, 杨腾, 高贵锋 (2020) 土壤微生物生物地理学: 国内进展与国际前沿. 土壤学报, 57, 515-529.] | |
[13] |
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD (2018) Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9, 3033.
DOI PMID |
[14] | Delgado-Baquerizo M, Doulcier G, Eldridge DJ, Stouffer DB, Maestre FT, Wang JT, Powell JR, Jeffries TC, Singh BK (2020a) Increases in aridity lead to drastic shifts in the assembly of dryland complex microbial networks. Land Degradation & Development, 31, 346-355. |
[15] |
Delgado-Baquerizo M, Eldridge DJ, Ochoa V, Gozalo B, Singh BK, Maestre FT (2017a) Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 20, 1295-1305.
DOI URL |
[16] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.
DOI PMID |
[17] | Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020b) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4, 210-220. |
[18] |
Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, Singh BK (2017b) Microbial richness and composition independently drive soil multifunctionality. Functional Ecology, 31, 2330-2343.
DOI URL |
[19] |
Dini-Andreote F, de Cássia Pereira e Silva M, Triadó-Margarit X, Casamayor EO, van Elsas JD, Salles JF (2014) Dynamics of bacterial community succession in a salt marsh chronosequence: Evidences for temporal niche partitioning. The ISME Journal, 8, 1989-2001.
DOI |
[20] |
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194-2200.
DOI PMID |
[21] |
Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
DOI URL |
[22] | Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, USA, 109, 21390-21395. |
[23] |
Goberna M, García C, Verdú M (2014) A role for biotic filtering in driving phylogenetic clustering in soil bacterial communities. Global Ecology and Biogeography, 23, 1346-1355.
DOI URL |
[24] |
Guseva K, Darcy S, Simon E, Alteio LV, Montesinos-Navarro A, Kaiser C (2022) From diversity to complexity: Microbial networks in soils. Soil Biology and Biochemistry, 169, 108604.
DOI URL |
[25] |
Hu WG, Ran JZ, Dong LW, Du QJ, Ji MF, Yao SR, Sun Y, Gong CM, Hou QQ, Gong HY, Chen RF, Lu JL, Xie SB, Wang ZQ, Huang H, Li XW, Xiong JL, Xia R, Wei MH, Zhao DM, Zhang YH, Li JH, Yang HX, Wang XT, Deng Y, Sun Y, Li HL, Zhang L, Chu QP, Li XW, Aqeel M, Manan A, Akram MA, Liu XH, Li R, Li F, Hou C, Liu JQ, He JS, An LZ, Bardgett RD, Schmid B, Deng JM (2021) Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350.
DOI PMID |
[26] |
Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nature Climate Change, 6, 166-171.
DOI |
[27] |
Huang XB, Lang XD, Li SF, Liu WD, Su JR (2021) Indicator selection and driving factors of ecosystem multifunctionality: Research status and perspectives. Biodiversity Science, 29, 1673-1686. (in Chinese with English abstract)
DOI |
[ 黄小波, 郎学东, 李帅锋, 刘万德, 苏建荣 (2021) 生态系统多功能性的指标选择与驱动因子: 研究现状与展望. 生物多样性, 29, 1673-1686 ]
DOI |
|
[28] |
Jiang XY, Gao SJ, Jiang Y, Tian Y, Jia X, Zha TS (2022) Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland. Biodiversity Science, 30, 21387. (in Chinese with English abstract)
DOI |
[ 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山 (2022) 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性. 生物多样性, 30, 21387.]
DOI |
|
[29] | Lankau RA, George I, Miao M (2022) Crop performance is predicted by soil microbial diversity across phylogenetic scales. Ecosphere, 13, e4029. |
[30] | Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT (2019) Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 116, 8419-8424. |
[31] |
Li HD, Wu XW, Xiao ZS (2021) Assembly, ecosystem functions, and stability in species interaction networks. Chinese Journal of Plant Ecology, 45, 1049-1063.
DOI URL |
[32] |
Li Z, Liu XW, Zhang MH, Xing F (2022) Plant diversity and fungal richness regulate the changes in soil multifunctionality in a semi-arid grassland. Biology, 11, 870.
DOI URL |
[33] |
Liu DJ, Chang PHS, Power SA, Bell JNB, Manning P (2021) Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems. New Phytologist, 232, 1238-1249.
DOI PMID |
[34] | Liu J, Yuan Q, Zhang LX, Dai XR, Liu XY, Ding R, Ye LN (2021) Soil quality assessment in different artificial shrub plantations in northern margin of Kubuqi Desert, China. Journal of Northwest Forestry University, 36(2), 46-53. (in Chinese with English abstract) |
[ 刘江, 袁勤, 张立欣, 代香荣, 刘向阳, 丁茹, 叶丽娜 (2021) 库布齐沙漠北缘不同人工灌木林地土壤肥力质量状况. 西北林学院学报, 36(2), 46-53.] | |
[35] |
Liu L, Bai YX, She WW, Qiao YG, Qin SG, Zhang YQ (2021) A nurse shrub species helps associated herbaceous plants by preventing shade-induced evaporation in a desert ecosystem. Land Degradation & Development, 32, 1796-1808.
DOI URL |
[36] |
Liu MX, Zhang GJ, Yin FL, Wang YF, Li L (2022) Relationship between biodiversity and ecosystem multifunctionality along the elevation gradient in alpine meadows on the eastern Qinghai-Tibetan Plateau. Ecological Indicators, 141, 109097.
DOI URL |
[37] |
Liu QF, Zhang Q, Yan YZ, Zhang XF, Niu JM, Svenning JC (2020) Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). Journal of Cleaner Production, 268, 122241.
DOI URL |
[38] | Liu XD, Chen L, Yang XG, Zhao W, Li XB (2016) “Fertile Island” Effect of soil nutrients occurring in Caragana korshinskii and Artemisia ordosica shrubs in desert steppe. Journal of Northwest Forestry University, 31(4), 26-32, 92. (in Chinese with English abstract) |
[ 刘学东, 陈林, 杨新国, 赵伟, 李学斌 (2016) 荒漠草原2种柠条(Caragana korshinskii)和油蒿(Artemisia ordosica)灌丛土壤养分“肥岛”效应. 西北林学院学报, 31(4), 26-32, 92.] | |
[39] |
Ma B, Wang HZ, Dsouza M, Lou J, He Y, Dai ZM, Brookes PC, Xu JM, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in Eastern China. The ISME Journal, 10, 1891-1901.
DOI |
[40] | Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018) Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2, 427-436. |
[41] |
Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. The ISME Journal, 7, 830-838.
DOI |
[42] | Pérez-Valera E, Goberna M, Verdú M (2015) Phylogenetic structure of soil bacterial communities predicts ecosystem functioning. FEMS Microbiology Ecology, 91, fiv031. |
[43] |
Qiu LP, Zhang Q, Zhu HS, Reich PB, Banerjee S, van der Heijden MGA, Sadowsky MJ, Ishii S, Jia XX, Shao MG, Liu BY, Jiao H, Li HQ, Wei XR (2021) Erosion reduces soil microbial diversity, network complexity and multifunctionality. The ISME Journal, 15, 2474-2489.
DOI |
[44] |
Saghaï A, Wittorf L, Philippot L, Hallin S (2022) Loss in soil microbial diversity constrains microbiome selection and alters the abundance of N-cycling guilds in barley rhizosphere. Applied Soil Ecology, 169, 104224.
DOI URL |
[45] |
Severin I, Östman Ö, Lindström ES (2013) Variable effects of dispersal on productivity of bacterial communities due to changes in functional trait composition. PLoS ONE, 8, e80825.
DOI URL |
[46] |
Siefert A, Ravenscroft C, Althoff D, Alvarez-Yépiz JC, Carter BE, Glennon KL, Heberling JM, Jo IS, Pontes A, Sauer A, Willis A, Fridley JD, Acosta A (2012) Scale dependence of vegetation-environment relationships: A meta-analysis of multivariate data. Journal of Vegetation Science, 23, 942-951.
DOI URL |
[47] |
Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 15, 637-648.
DOI PMID |
[48] |
Sun YF, Zhang YQ, Feng W, Qin SG, Liu Z, Bai YX, Yan R, Fa KY (2017) Effects of xeric shrubs on soil microbial communities in a desert in Northern China. Plant and Soil, 414, 281-294.
DOI URL |
[49] | Sun YT, Yue YP, Cheng L, Pang YJ, Zhao HJ, Fei BQ, Xiu XM, Wu B, Zhao YX, Shi L, He JJ, Jia XH (2022) Responses of growth and biomass allocation of Artemisia ordosica to desertification in Mu Us Sandyland. Journal of Desert Research, 42, 123-133. (in Chinese with English abstract) |
[ 孙迎涛, 岳艳鹏, 成龙, 庞营军, 赵河聚, 费兵强, 修晓敏, 吴波, 赵雨兴, 石麟, 何金军, 贾晓红 (2022) 毛乌素沙地油蒿(Artemisia ordosica)生长及生物量分配对沙漠化的响应. 中国沙漠, 42, 123-133.]
DOI |
|
[50] |
Tang Q, Xia YQ, Ti CP, Shan J, Zhou W, Li CL, Yan X, Yan XY (2022) Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity. Pedosphere, 32, 1-20.
DOI URL |
[51] |
Venail P, Gross K, Oakley TH, Narwani A, Allan E, Flombaum P, Isbell F, Joshi J, Reich PB, Tilman D, van Ruijven J, Cardinale BJ (2015) Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 29, 615-626.
DOI URL |
[52] |
Venail PA, Vives MJ (2013) Phylogenetic distance and species richness interactively affect the productivity of bacterial communities. Ecology, 94, 2529-2536.
PMID |
[53] |
Vries FT, Wallenstein MD (2017) Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. Journal of Ecology, 105, 913-920.
DOI URL |
[54] | Wagg C, Bender SF, Widmer F, van der Heijden MGA, (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270. |
[55] |
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA, (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10, 4841.
DOI PMID |
[56] |
Webb CO (2000) Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. The American Naturalist, 156, 145-155.
DOI PMID |
[57] |
Xu P, Rong XY, Liu CH, Du F, Yin BF, Tao Y, Zhang YM (2022) Effects of extreme drought on community and ecological network of soil fungi in a temperate desert. Biodiversity Science, 30, 21327. (in Chinese with English abstract)
DOI |
[ 徐鹏, 荣晓莹, 刘朝红, 杜芳, 尹本丰, 陶冶, 张元明 (2022) 极端干旱对温带荒漠土壤真菌群落和生态网络的影响. 生物多样性, 30, 21327.]
DOI |
|
[58] |
Xu W, Jing X, Ma ZY, He JS (2016b) A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84. (in Chinese with English abstract)
DOI URL |
[ 徐炜, 井新, 马志远, 贺金生 (2016b) 生态系统多功能性的测度方法. 生物多样性, 24, 72-84.] | |
[59] |
Xu W, Ma ZY, Jing X, He JS (2016a) Biodiversity and ecosystem multifunctionality: Advances and perspectives. Biodiversity Science, 24, 55-71. (in Chinese with English abstract)
DOI URL |
[ 徐炜, 马志远, 井新, 贺金生 (2016a) 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.] | |
[60] |
Yan YZ, Zhang Q, Buyantuev A, Liu QF, Niu JM (2020) Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality. Science of the Total Environment, 726, 138529.
DOI URL |
[61] |
Yang XL, Deng SQ, De Philippis R, Chen LZ, Hu CZ, Zhang WH (2012) Chemical composition of volatile oil from Artemisia ordosica and its allelopathic effects on desert soil microalgae, Palmellococcus miniatus. Plant Physiology and Biochemistry, 51, 153-158.
DOI URL |
[62] |
Yang Y, Hasi, Sun BP, Du HS, Zhao Y, Zhong XJ (2012) Effects of different vegetation restoration types on soil nutrients in southern edge of Mu Us Sandy Land. Chinese Agricultural Science Bulletin, 28(10), 37-42. (in Chinese with English abstract)
DOI |
[ 杨越, 哈斯, 孙保平, 杜会石, 赵岩, 钟晓娟 (2012) 毛乌素沙地南缘不同植被恢复类型的土壤养分效应. 中国农学通报, 28(10), 37-42.] | |
[63] |
Yuan MM, Guo X, Wu LW, Zhang Y, Xiao NJ, Ning DL, Shi Z, Zhou XS, Wu LY, Yang YF, Tiedje JM, Zhou JZ (2021) Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343-348.
DOI |
[64] | Yuan XQ, Liu SQ, Ai F, Zhang Z, Li Q, Jiang JY, Shi CC (2022) Wind erosion resistance of litter of Salix psammophila community in the southeast edge of Mu Us Sandy Land, China. Journal of Desert Research, 42, 134-138. (in Chinese with English abstract) |
[ 袁小琴, 刘生权, 艾峰, 张正, 李强, 蒋晋豫, 石长春 (2022) 毛乌素沙地东南缘沙柳(Salix psammophila)群落枯落物抗风蚀特征. 中国沙漠, 42, 134-138.]
DOI |
|
[65] |
Zhang B, Zhang J, Liu Y, Shi P, Wei G (2018) Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology and Biochemistry, 118, 178-186.
DOI URL |
[66] | Zhang JH, Wang JY, Meng ZX, He J, Dong ZH, Liu KQ, Chen WQ (2022) Soil microbial richness predicts ecosystem multifunctionality through co-occurrence network complexity in alpine meadow. Acta Ecologica Sinica, 42, 2542-2558. (in Chinese with English abstract) |
[ 张君红, 王健宇, 孟泽昕, 何佳, 董政宏, 刘凯茜, 陈文青 (2022) 土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性. 生态学报, 42, 2542-2558.] | |
[67] |
Zhang X, Huang YT, Liu SR, Fu SL, Ming AG, Li XZ, Yao MJ, Li H, Tian C (2019) Mixture of tree species enhances stability of the soil bacterial community through phylogenetic diversity. European Journal of Soil Science, 70, 644-654.
DOI |
[68] |
Zheng Q, Hu YT, Zhang SS, Noll L, Böckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W (2019) Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry, 136, 107521.
DOI URL |
[1] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[2] | 张世航, 陶冶, 陈玉森, 郭浩, 陆永兴, 郭星, 刘朝红, 周晓兵, 张元明. 准噶尔荒漠土壤多功能性的空间变异特征及其驱动因素[J]. 生物多样性, 2022, 30(8): 22097-. |
[3] | 杨清, 张鹏, 安瑞志, 乔楠茜, 达珍, 巴桑. 拉萨河中下游纤毛虫群落时空分布模式及其驱动机制[J]. 生物多样性, 2022, 30(6): 22012-. |
[4] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[5] | 王雅婷, 张定海, 张志山. 古尔班通古特沙漠固定沙丘上白梭梭和梭梭的空间分布及种间关联性[J]. 生物多样性, 2022, 30(3): 21280-. |
[6] | 钱伟华, 贺学礼. 荒漠生境油蒿根围AM真菌多样性[J]. 生物多样性, 2009, 17(5): 506-511. |
[7] | 蒙艳华, 徐环李, 陈轩, 蔡青年. 塔落岩黄芪主要传粉蜂的传粉效率研究[J]. 生物多样性, 2007, 15(6): 633-638. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn