生物多样性 ›› 2016, Vol. 24 ›› Issue (2): 157-165. DOI: 10.17520/biods.2015217
李晓静1,2, 周政权1,2, 陈琳琳1, 李宝泉1,,A;*()
收稿日期:
2015-08-05
接受日期:
2015-11-16
出版日期:
2016-02-20
发布日期:
2016-03-03
通讯作者:
李宝泉
基金资助:
Xiaojing Li1,2, Zhengquan Zhou1,2, Linlin Chen1, Baoquan Li1,*()
Received:
2015-08-05
Accepted:
2015-11-16
Online:
2016-02-20
Published:
2016-03-03
Contact:
Li Baoquan
摘要:
为了解烟台大沽夹河河口及邻近海域大型底栖动物群落特征及受干扰情况, 于2012年9月在上述区域设置12个采样点进行大型底栖动物群落调查和分析。对采集的生物样品进行物种鉴定、计数和称重, 利用生物统计软件PRIMER计算优势度指数(Y)、Shannon-Wiener多样性指数(H')、Margalef丰富度指数(D)和Pielou均匀度指数(J), 并进行等级聚类(CLUSTER)、非度量多维标度排序(non-metric multi-dimensional scaling, MDS)及丰度/生物量曲线(abundance and biomass curves, ABC)分析。共采集和鉴定大型底栖动物89种, 优势类群为多毛类。总平均生物量为18.02 g/m², 软体动物贡献率最高; 总平均丰度为2,165 ind./m², 甲壳类贡献率最高。丰富度指数(D)、均匀度指数(J)和Shannon-Wiener多样性指数(H')分别为2.620 ± 1.324、0.585 ± 0.294和2.398 ± 1.351。CLUSTER聚类和MDS标序结果表明, 在30%的相似性水平, 不同站位可分为5组, 且不同组间差异显著。环境因子与群落分布特征相关性较大, 其中最能解释群落丰度和生物量空间分布特征的环境因子为水温、盐度和总磷含量。ABC曲线表明该区域超过80%的采样点其大型底栖动物已受到中等到严重程度的扰动。结合历史资料发现, 调查区域大型底栖动物群落物种呈小型化变动趋势, 尤其是大沽夹河入海口处, 物种组成单一, 小型甲壳类占绝对优势。
李晓静, 周政权, 陈琳琳, 李宝泉 (2016) 山东烟台大沽夹河河口及邻近海域大型底栖动物群落特征. 生物多样性, 24, 157-165. DOI: 10.17520/biods.2015217.
Xiaojing Li, Zhengquan Zhou, Linlin Chen, Baoquan Li (2016) Characteristics of macrobenthic communities in the estuary of Dagujia River and its adjacent water areas in Yantai, Shandong. Biodiversity Science, 24, 157-165. DOI: 10.17520/biods.2015217.
刚鳃虫 Chaetozone setosa | 日本大螯蜚 Grandidierella japonica | 丝异蚓虫 Heteromastus filiforms | 不倒翁虫 Sternaspis sculata | |
---|---|---|---|---|
N1 | + | + | + | + |
N2 | ||||
N3 | + | + | + | |
N4 | + | + | ||
N5 | + | + | + | |
N6 | + | + | + | + |
N7 | + | + | + | |
N8 | + | + | + | |
N9 | + | + | + | |
N10 | + | + | + | + |
N11 | + | + | ||
N12 | + | + | + |
表1 群落优势种在各站位的分布(+表示分布在该站位)
Table 1 Spatial distribution of dominant species in the sampling stations (+ means the species were recorded in the station)
刚鳃虫 Chaetozone setosa | 日本大螯蜚 Grandidierella japonica | 丝异蚓虫 Heteromastus filiforms | 不倒翁虫 Sternaspis sculata | |
---|---|---|---|---|
N1 | + | + | + | + |
N2 | ||||
N3 | + | + | + | |
N4 | + | + | ||
N5 | + | + | + | |
N6 | + | + | + | + |
N7 | + | + | + | |
N8 | + | + | + | |
N9 | + | + | + | |
N10 | + | + | + | + |
N11 | + | + | ||
N12 | + | + | + |
站位 Station | 丰富度指数 Species richness index (D) | 均匀度指数 Evenness index (J') | Shannon-Wiener多样性指数 Shannon-Wiener index (H') |
---|---|---|---|
N1 | 2.864 | 0.914 | 3.737 |
N2 | 0.813 | 0.896 | 1.792 |
N3 | 2.469 | 0.583 | 2.521 |
N4 | 1.798 | 0.602 | 2.084 |
N5 | 2.510 | 0.699 | 2.855 |
N6 | 3.365 | 0.412 | 1.960 |
N7 | 3.434 | 0.646 | 3.071 |
N8 | 3.275 | 0.290 | 1.395 |
N9 | 4.803 | 0.842 | 4.319 |
N10 | 4.291 | 0.906 | 4.356 |
N11 | 0.604 | 0.144 | 0.373 |
N12 | 1.209 | 0.087 | 0.313 |
平均值±标准差 Mean ± SD | 2.620 ± 1.324 | 0.585 ± 0.294 | 2.398 ± 1.351 |
表2 大沽夹河河口及邻近海域大型底栖动物群落的物种多样性指数
Table 2 Species biodiversity indices of macrobenthic communities in the estuary of Dagujia River and its adjacent water areas
站位 Station | 丰富度指数 Species richness index (D) | 均匀度指数 Evenness index (J') | Shannon-Wiener多样性指数 Shannon-Wiener index (H') |
---|---|---|---|
N1 | 2.864 | 0.914 | 3.737 |
N2 | 0.813 | 0.896 | 1.792 |
N3 | 2.469 | 0.583 | 2.521 |
N4 | 1.798 | 0.602 | 2.084 |
N5 | 2.510 | 0.699 | 2.855 |
N6 | 3.365 | 0.412 | 1.960 |
N7 | 3.434 | 0.646 | 3.071 |
N8 | 3.275 | 0.290 | 1.395 |
N9 | 4.803 | 0.842 | 4.319 |
N10 | 4.291 | 0.906 | 4.356 |
N11 | 0.604 | 0.144 | 0.373 |
N12 | 1.209 | 0.087 | 0.313 |
平均值±标准差 Mean ± SD | 2.620 ± 1.324 | 0.585 ± 0.294 | 2.398 ± 1.351 |
图5 调查站位环境因子主成分分析排序图。A: 水深; B: 水温; C: 盐度; D: 溶解氧; E: pH; F: 磷酸-磷; G: 总磷; H: 铵盐-氮; I: 亚硝酸-氮; J: 硝酸-氮; K: 总氮; L: 硅酸-硅。
Fig. 5 Ordination of sampling stations by Principal Component Analysis on environmental factors. A, Water depth; B, Water temperature; C, Salinity; D, Dissolved oxygen; E, pH; F, Phosphoric acid-phosphorus; G, Total phosphorus; H, Ammonium salt-nitrogen; I, Nitrous acid-nitrogen; J, Nitric acid-nitrogen; K, Total nitrogen; L, Silicic acid-silicon.
丰富度指数 Species richness index (D) | 均匀度指数 Evenness index (J) | Shannon-Wiener多样性指数 Shannon-Wiener index (H') | |
---|---|---|---|
水深 Water depth | 0.747** | 0.478 | 0.719** |
水温 Water temperature | 0.687* | 0.038 | 0.404 |
盐度 Salinity | 0.402 | 0.537 | 0.521 |
溶解氧 Dissolved oxygen (DO) | -0.201 | -0.523 | -0.399 |
pH | 0.364 | 0.315 | 0.459 |
磷酸-磷 Phosphoric acid - phosphorus (PO43--P) | 0.533 | 0.273 | 0.477 |
总磷 Total phosphorus (TP) | -0.108 | -0.074 | -0.002 |
铵盐-氮 Ammonium salt - nitrogen (NH4+-N) | 0.400 | 0.040 | 0.276 |
亚硝酸盐-氮 Nitrous acid - nitrogen (NO2--N) | 0.467 | 0.170 | 0.419 |
硝酸盐-氮 Nitric acid - nitrogen (NO3--N) | -0.160 | -0.063 | -0.012 |
总氮 Total nitrogen (TN) | -0.039 | -0.020 | 0.029 |
硅酸-硅 Silicic acid - silicon (SiO3-Si) | -0.350 | -0.381 | -0.315 |
表3 生物多样性指数与环境因子的Pearson相关分析
Table 3 Pearson correlation between environmental factors and species biodiversity indices
丰富度指数 Species richness index (D) | 均匀度指数 Evenness index (J) | Shannon-Wiener多样性指数 Shannon-Wiener index (H') | |
---|---|---|---|
水深 Water depth | 0.747** | 0.478 | 0.719** |
水温 Water temperature | 0.687* | 0.038 | 0.404 |
盐度 Salinity | 0.402 | 0.537 | 0.521 |
溶解氧 Dissolved oxygen (DO) | -0.201 | -0.523 | -0.399 |
pH | 0.364 | 0.315 | 0.459 |
磷酸-磷 Phosphoric acid - phosphorus (PO43--P) | 0.533 | 0.273 | 0.477 |
总磷 Total phosphorus (TP) | -0.108 | -0.074 | -0.002 |
铵盐-氮 Ammonium salt - nitrogen (NH4+-N) | 0.400 | 0.040 | 0.276 |
亚硝酸盐-氮 Nitrous acid - nitrogen (NO2--N) | 0.467 | 0.170 | 0.419 |
硝酸盐-氮 Nitric acid - nitrogen (NO3--N) | -0.160 | -0.063 | -0.012 |
总氮 Total nitrogen (TN) | -0.039 | -0.020 | 0.029 |
硅酸-硅 Silicic acid - silicon (SiO3-Si) | -0.350 | -0.381 | -0.315 |
1 | Chen JY, Chen SL (2007) China estuarine research for 50 years: retrospect and prospective. Oceanologia et Limnologia Sinica, 38, 481-486. (in Chinese with English abstract) |
[陈吉余, 陈沈良 (2007) 中国河口研究五十年: 回顾与展望. 海洋与湖沼, 38, 481-486.] | |
2 | Chen YQ, Xu ZL, Wang YL, Hu FX, Hu H, Gu GC (1995) An ecological study on zooplankton in plume front zone of Changjiang (Yangtze) River Estuarine Area. I. Biomass distribution of dominant species. Journal of Fishery Sciences of China, 2, 49-58. (in Chinese with English abstract) |
[陈亚瞿, 徐兆礼, 王云龙, 胡方西, 胡辉, 谷国传 (1995) 长江口河口锋区浮游动物生态研究. I. 生物量及优势种的平面分布. 中国水产科学, 2, 49-58.] | |
3 | Clarke K, Green R (1988) Statistical design and analysis for a biological effects study. Marine Ecology Progress Series, 46, 213-226. |
4 | Clarke KR, Warwick RM (1994) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn. PRIMER-E Ltd., Plymouth. |
5 | Guo XJ (2005) Water environment assessment and protection measures of Dagujia River valley. Journal of Yantai University (Natural Science and Engineering Edition), 18, 308-312. (in Chinese with English abstract) |
[郭献军 (2005) 大沽夹河流域水环境评价及污染防治对策. 烟台大学学报(自然科学与工程版), 18, 308-312.] | |
6 | Holland AF (1985) Long-term variation of macrobenthos in a mesohaline region of Chesapeake Bay. Estuaries, 8, 93-113. |
7 | Li BQ, Keesing JK, Liu DY, Han QX, Wang YJ, Dong ZJ, Chen Q (2013) Anthropogenic impacts on hyperbenthos in the coastal waters of Sishili Bay, Yellow Sea. Chinese Journal of Oceanology and Limnology, 31, 1257-1267. |
8 | Li RQ, Meng FP (2012) Emergy appraisal on the loss of ecosystem service caused by marine reclamation: a case study in the Taozi Bay. Acta Ecologica Sinica, 32, 5825-5835. (in Chinese with English abstract) |
[李睿倩, 孟范平 (2012) 填海造地导致海湾生态系统服务损失的能值评估——以套子湾为例. 生态学报, 32, 5825-5835.] | |
9 | Li XZ (2011) An overview of studies on marine macrobenthic biodiversity from Chinese waters: principally from the Yellow Sea. Biodiversity Science, 19, 676-684. (in Chinese with English abstract) |
[李新正 (2011) 我国海洋大型底栖生物多样性研究及展望: 以黄海为例. 生物多样性, 19, 676-684.] | |
10 | Liu FF (2008) Current situation of ocean environment in Taozi Bay. Ocean Development and Management, 25(6), 96-98. (in Chinese) |
[刘风非 (2008) 套子湾海洋环境现状浅析. 海洋开发与管理, 25(6), 96-98.] | |
11 | Liu LS, Zheng BH, Li BQ, Cai WQ, Han QX, Lin KX (2012) Long-term trends of macrobenthos in Changjiang Estuary, China in relation to environmental changes. Acta Oceanologica Sinica (Chinese version), 34, 134-145. (in Chinese with English abstract) |
[刘录三, 郑丙辉, 李宝泉, 蔡文倩, 韩庆喜, 林岿璇 (2012) 长江口大型底栖动物群落的演变过程及原因探讨. 海洋学报(中文版), 34, 134-145.] | |
12 | Liu XS, Fan Y, Shi SJ, Hua E, Zhang ZN (2014) Studies on the species composition and community structure of macrofauna in the Bohai Sea, China. Acta Oceanologica Sinica (Chinese version), 36, 53-66. (in Chinese with English abstract) |
[刘晓收, 范颖, 史书杰, 华尔, 张志南 (2014) 渤海大型底栖动物种类组成与群落结构研究. 海洋学报(中文版), 36, 53-66.] | |
13 | Luo XZ, Guo XJ, Zhang XL, Wu GF, Han YM, Li H (2008a) Estimation of tolerance values for benthic macroinvertebrates in Dagujia River. Acta Ecologica Sinica, 28, 5706-5713. (in Chinese with English abstract) |
[罗新正, 郭献军, 张晓龙, 吴广芬, 韩玉梅, 李环 (2008a) 大沽夹河底栖大型无脊椎动物耐受值估算. 生态学报, 28, 5706-5713.] | |
14 | Luo XZ, Zhang XL, Guo XJ, Li H, Han YM, Wu GF (2008b) Ecological health bioassessment based on benthic macroinvertebrate in Dagujia River. Research of Environmental Science, 21, 88-93. (in Chinese with English abstract) |
[罗新正, 张晓龙, 郭献军, 李环, 韩玉梅, 吴广芬 (2008b) 大沽夹河生态健康的生物学评价. 环境科学研究, 21, 88-93.] | |
15 | Mao JX, Yan QL, Wang LJ (2011) Changes trend of species number, biomass and density of zoobenthos in typical estuaries of China. Marine Environment Science, 30, 37-40. (in Chinese with English abstract) |
[毛婕昕, 闫启仑, 王立俊 (2011) 典型河口底栖动物种类数、生物量及种群密度变化趋势的研究. 海洋环境科学, 30, 37-40.] | |
16 | Margalef R (1968) Perspectives in Ecological Theory. University of Chicago Press, Chicago. |
17 | Peng SY (2013) Characteristics of Macrobenthic Community Structure in the Yellow Sea and East China Sea. PhD dissertation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. (in Chinese with English abstract) |
[彭松耀 (2013) 黄东海大型底栖动物群落结构特征. 博士学位论文, 中国科学院海洋研究所, 青岛.] | |
18 | Pielou EC (1975) Ecology Diversity. Wiley-Inters, New York. |
19 | Shannon CE, Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbanna. |
20 | Smith CR, Austen MC, Boucher G, Heip C, Hutchings PA, King GM, Koike I, Lambshead PJD, Snelgrove P (2000) Global change and biodiversity of marine sediments: impacts and linkages across the sediment-water interface. BioScience, 50, 1108-1120. |
21 | Tian SY, Yu ZS, Liu XS, Zhang ZN, Lin KX, Liu TZ (2006) Abundance/biomass curves for detecting pollution effects on marine macrobenthic communities. Marine Science Bulletin, 25, 92-96. (in Chinese with English abstract) |
[田胜艳, 于子山, 刘晓收, 张志南, 林岿璇, 刘廷志 (2006) 丰度/生物量比较曲线法监测大型底栖动物群落受污染扰动的研究. 海洋通报, 25, 92-96.] | |
22 | Wang QC, Li BQ (2013) Community structure of macrobenthos in coastal water of Yantai, East China. Oceanologia et Limnologia Sinica, 44, 1667-1680. (in Chinese with English abstract) |
[王全超, 李宝泉 (2013) 烟台近海大型底栖动物群落特征. 海洋与湖沼, 44, 1667-1680.] | |
23 | Wang XE, Xu ZF, Zhou XJ (1995) Benthic animal survey in Yantai Inshore. Chinese Journal of Ecology, 14, 6-10. (in Chinese with English abstract) |
[王绪峨, 徐宗法, 周学家 (1995) 烟台近海底栖动物调查报告. 生态学杂志, 14, 6-10.] | |
24 | Wu YQ, Zhang B (1994) Ecological environment charac- teristics of macrobenthos in Yantai Zhifu Bay waters. Marine Environmental Science, 13, 1-6. (in Chinese with English abstract) |
[吴耀泉, 张波 (1994) 烟台芝罘湾水域底栖动物生态环境特征. 海洋环境科学, 13, 1-6.] | |
25 | Zhou H, Zhang ZN (2003) Rationale of the multivariate statistical software PRIMER and its application in benthic community ecology. Journal of Ocean University of Qingdao (Natural Science), 33, 58-64. (in Chinese with English abstract) |
[周红, 张志南 (2003) 大型多元统计软件PRIMER的方法原理及其在底栖群落生态学中的应用. 青岛海洋大学学报(自然科学版), 33, 58-64.] |
[1] | 杨润明, 中村彰宏. 巢居蚂蚁更倾向于在人造光源附近定居繁殖[J]. 生物多样性, 2022, 30(8): 22067-. |
[2] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[3] | 汪婷, 周立志. 合肥市小微湿地鸟类多样性的时空格局及其影响因素[J]. 生物多样性, 2022, 30(7): 21445-. |
[4] | 杨清, 张鹏, 安瑞志, 乔楠茜, 达珍, 巴桑. 拉萨河中下游纤毛虫群落时空分布模式及其驱动机制[J]. 生物多样性, 2022, 30(6): 22012-. |
[5] | 薛文凯, 孟华旦尚, 王艳红, 朱攀, 德吉, 郭小芳. 纳木措可培养丝状真菌多样性及其与理化因子关系[J]. 生物多样性, 2022, 30(6): 21473-. |
[6] | 董建宇, 孙昕, 詹启鹏, 张宇洋, 张秀梅. 莱州湾东岸潮下带大型底栖动物群落beta多样性格局及其驱动因素[J]. 生物多样性, 2022, 30(3): 21388-. |
[7] | 陈燕南, 梁铖, 陈军. 亚热带不同树种组成森林中土壤甲螨群落结构特征:以江西新岗山为例[J]. 生物多样性, 2022, 30(12): 22334-. |
[8] | 吴墨栩, 安明态, 田力, 刘锋. 茂兰喀斯特森林木本植物性系统数量特征及其与环境因子的关系[J]. 生物多样性, 2022, 30(11): 22025-. |
[9] | 易浪, 董亚坤, 苗白鸽, 彭艳琼. 云南高黎贡山地区蝴蝶群落多样性[J]. 生物多样性, 2021, 29(7): 950-959. |
[10] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
[11] | 易祖盛, 黄元骏, 易晖, 张新旺, 李文俊. 广东车八岭国家级自然保护区大型底栖动物多样性[J]. 生物多样性, 2021, 29(5): 680-687. |
[12] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[13] | 吴二焕, 李东海, 杨小波, 左永令, 李龙, 张培春, 陈琳, 田路嘉, 李晨笛. 海南苏铁种群结构与森林群落郁闭度的关系[J]. 生物多样性, 2021, 29(11): 1461-1469. |
[14] | 余宏昌, 毕宝帅, 唐文乔, 张亚, 郭弘艺. 上海苏州河治理中鱼类多样性及群落结构变化[J]. 生物多样性, 2021, 29(1): 32-42. |
[15] | 尚素琴, 吴兴波, 王召龙, 彭鹤年, 周惠丽, 张红勇, 白映禄. 兴隆山国家级自然保护区不同生境的蝴蝶群落结构与种-多度分布[J]. 生物多样性, 2020, 28(8): 983-992. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn