生物多样性 ›› 2014, Vol. 22 ›› Issue (6): 717-724.doi: 10.3724/SP.J.1003.2014.14184

所属专题: 野生动物的红外相机监测

• • 上一篇    下一篇

吉林珲春自然保护区东北虎和东北豹及其有蹄类猎物的多度与分布

肖文宏, 冯利民, 赵小丹, 杨海涛, 窦海龙, 程艳超, 牟溥, 王天明(), 葛剑平   

  1. 北京师范大学生命科学学院, 北京 100875
  • 收稿日期:2014-08-30 接受日期:2014-11-12 出版日期:2014-11-20
  • 基金项目:
    国家自然科学基金(31270567, 31200410)和科技部基础性工作专项(2012FY112000)

Distribution and abundance of Amur tiger, Amur leopard and their ungulate prey in Hunchun National Nature Reserve, Jilin

Wenhong Xiao, Limin Feng, Xiaodan Zhao, Haitao Yang, Hailong Dou, Yanchao Cheng, Pu Mou, Tianming Wang*(), Jianping Ge   

  1. School of Life Sciences, Beijing Normal University, Beijing 100875
  • Received:2014-08-30 Accepted:2014-11-12 Online:2014-11-20
  • Contact: Wang Tianming E-mail:wangtianming@bnu.edu.cn

珲春国家级自然保护区是东北虎(Panthera tigris altaica)、东北豹(Panthera pardus orientalis)等濒危物种在中国的核心分布区。为了探究该区域野生动物的多度水平和空间分布, 了解人类干扰情况, 我们运用相对多度指数(relative abundance index, RAI)分析了2013年4-6月设置于此的83个红外相机位点的监测数据。红外相机的总捕获天数6,060 d, 共捕获10科18种野生哺乳动物, 其中鼬科4种, 猫科动物3种, 犬科、鹿科和松鼠科各2种, 猪科、熊科、麝科、猬科和兔科各1种。研究期间共拍摄到东北虎11只个体, 东北豹13只个体。从相对多度指数来看, 东北虎的相对多度(0.84)远高于东北豹(0.48), 它们的有蹄类猎物中梅花鹿(Cervus nippon)的相对多度最高(2.18), 其次为狍(Capreolus pygargus)(1.53)和野猪(Sus scrofa)(0.92)。人类活动和放牧的相对多度水平(分别为40.64和2.76)显著高于野生动物。在空间分布上, 东北虎和梅花鹿主要在保护区的核心区分布, 且与保护区社区共管区的多度水平差异显著, 而东北豹在不同功能区之间的分布差异不显著, 狍在保护区北部的多度水平较高, 但各功能区之间差异不显著, 野猪在社区共管区的多度水平显著高于核心区。可见, 核心区频繁的人类活动和放牧活动对野生动物的保护产生了影响, 未来应加强关于人类干扰对虎、豹种群及其有蹄类猎物的影响评估。

关键词: 红外相机, Panthera tigris altaica, Panthera pardus orientalis, 多度, 空间分布, 人类干扰

The Hunchun National Nature Reserve (HNNR) serves as core habitat for both Amur tiger (Panthera tigris altaica) and Amur leopard (Panthera pardus orientalis) in Northeast China. To investigate the relative abundance of wildlife and human disturbance within the reserve, we analyzed images from a monitoring network of 83 camera traps deployed between April and June of 2013 in HNNR. Among the 6,060 total trap nights, 18 species of mammals were detected from the images, including four Mustelids, three Felids, two species each from Canidae, Cervidae and Sciuridae, and one species each from Suidae, Ursidae, Moschidae, Erinaceidae and Leporidae, respectively. Cameras photographed 11 tigers and 13 leopards. Relative abundance index (RAI) of tigers (0.84) was higher than that of leopards (0.48). RAIs of ungulates, from high to low, were sika deer (Cervus nippon) (2.18), Siberian roe deer (Capreolus pygargus) (1.53) and wild boar (Sus scrofa) (0.92). RAI of human activities (40.64) and livestock grazing (2.76) were both significantly higher than animal species. The data also indicated that tigers and sika deer were mainly restricted to the core zone of HNNR and that their abundance was lower in the community-based natural resource management zone. In comparison, RAIs of Amur leopard were fairly similar among the three functional zones, Siberian roe deer tended to be more abundant in the northern section of HNNR but differences were not significant, and wild boar RAI was lower in the core zone. Frequent disturbance from human activities and livestock grazing throughout the core zone may be the most negative impact on wildlife in HNNR.

Key words: camera traps, Panthera tigris altaica, Panthera pardus orientalis, relative abundance, spatial distribution, human disturbance

图1

珲春保护区功能分区及相机位点分布图"

"

图2

珲春保护区虎、豹猎物的相对多度的空间分布"

图3

珲春保护区人类干扰相对多度的空间分布"

图4

珲春保护区不同功能分区下虎、豹、猎物和人类干扰的相对多度。不同字母表示显著性水平为0.05时差异显著。"

Table S1

红外相机捕获的物种和人类活动的独立事件数、相对多度指数以及捕获的相机位点数"

常用名
Common name
学名
Scientific name

Family
保护级别 Protection Level 独立事件数
Independent events
频率
% of all captures
相对多度指数
RAI
捕获相机位点数
No. of trap sites
相机捕获率
% of all trap sites
国家重点保护野生动物名录
China Key Protected Wild Animals List
IUCN濒危等级
IUCN status
CITES附录
CITES appendix
食肉目 Carnivora
东北虎 Amur tiger Panthera tigris altaica 猫科 Felidae I EN 附录I 51 1.49% 0.84 21 25%
东北豹 Amur leopard Panthera pardus orientalis 猫科 Felidae I CR 附录I 29 0.85% 0.48 15 18%
豹猫 Leopard cat Prionailurus bengalensis 猫科 Felidae LC 附录II 4 0.12% 0.07 2 2%
黑熊 Asian black bear Ursus thibetanus 熊科 Ursidae II VU 附录I 4 0.12% 0.07 4 5%
赤狐 Red fox Vulpes vulpes 犬科 Canidae LC 58 1.70% 0.96 26 31%
貉 Raccoon dog Nyctereutes procyonoides 犬科 Canidae LC 13 0.38% 0.21 6 7%
狗獾 Asian badger Meles leucurus 鼬科 Mustelidae LC 158 4.63% 2.61 39 47%
黄鼬 Siberian weasel Mustela sibirica 鼬科 Mustelidae LC 2 0.06% 0.03 2 2%
黄喉貂 Yellow-throated marten Martes flavigula 鼬科 Mustelidae II LC 17 0.50% 0.28 12 14%
水獭 Eurasian otter Lutra lutra 鼬科 Mustelidae II NT 附录I 1 0.03% 0.02 1 1%
偶蹄目 Artiodactyla
野猪 Wild boar Sus scrofa 猪科 Suidae LC 56 1.64% 0.92 31 37%
狍 Siberian roe deer Capreolus pygargus 鹿科 Cervidae LC 93 2.72% 1.53 45 54%
梅花鹿 Sika deer Cervus nippon 鹿科 Cervidae I LC 132 3.87% 2.18 37 45%
原麝 Siberian musk deer Moschus moschiferus 麝科 Moschidae I VU 附录II 4 0.12% 0.07 2 2%
啮齿目 Rodentia
松鼠 Eurasian red squirrel Sciurus vulgaris 松鼠科 Sciuridae LC 3 0.09% 0.05 3 4%
花鼠 Siberian chipmunk Tamias sibiricus 松鼠科 Sciuridae LC 57 1.67% 0.94 12 14%
猬形目 Erinaceomorpha
东北刺猬 Amur hedgehog Erinaceus amurensis 猬科 Erinaceidae LC 7 0.21% 0.12 6 7%
兔形目 Lagomorpha
东北兔 Manchurian hare Lepus mandshuricus 兔科 Leporidae LC 94 2.75% 1.55 16 19%
人类活动 Human activities 2,463 72.17% 40.64 82 99%
放牧 Livestock grazing 167 4.89% 2.76 14 17%
合计 Total 3,413 100% 56.33 83
[1] Aramilev VV (2009) Sika deer in Russia. In: Sika Deer: Biology and Management of Native and Introduced Populations (eds McCullough DR, Takatsuki S, Kaji K), pp. 475-499. Springer, Tokyo.
[2] Blanc L, Marboutin E, Gatti S, Gimenez O (2013) Abundance of rare and elusive species: empirical investigation of closed versus spatially explicit capture-recapture models with lynx as a case study.Journal of Wildlife Management, 77, 372-378.
[3] Chen JY (陈九屹), Nasen D (那顺得力格尔), Sun QH (孙全辉), Zhang LJ (张逦嘉), Tang JR (唐继荣), Lang JM (郎建民), Liu T (刘通), Liu KP (刘昆鹏), Xiao WH (肖文宏), Bao WD (鲍伟东) (2011) Amur tiger and prey in Jilin Hunchun National Nature Reserve, China.Chinese Journal of Zoology(动物学杂志), 46(2), 46-52. (in Chinese with English abstract)
[4] Datta A, Anand MO, Naniwadekar R (2008) Empty forests: large carnivore and prey abundance in Namdapha National Park, north-east India.Biological Conservation, 141, 1429-1435.
[5] Guthlin D, Storch I, Kuchenhoff H (2014) Toward reliable estimates of abundance: comparing index methods to assess the abundance of a mammalian predator.PLoS ONE, 9, e94537. DOI: 10.1371/journal.pone.0094537
[6] Han XD (韩晓东), Tong SZ (佟守正), Zhen JH (甄江河), Li ZH (李志宏) (2003) Scientific Survey Report of Hunchun Nature Reserve, Jilin (吉林珲春东北虎自然保护区综合科学考察报告). Jilin Forestry Survey and Design Institute, Changchun. (in Chinese)
[7] Harihar A, Pandav B, Goyal SP (2009a) Responses of tiger (Panthera tigris) and their prey to removal of anthropogenic influences in Rajaji National Park, India.European Journal of Wildlife Research, 55, 97-105.
[8] Harihar A, Prasad DL, Ri C, Pandav B, Goyal SP (2009b) Losing ground: tigers Panthera tigris in the north-western Shivalik landscape of India.Oryx, 43, 35.
[9] Hebblewhite M, Zimmermann F, Li Z, Miquelle DG, Zhang M, Sun H, Morschel F, Wu Z, Sheng L, Purekhovsky A, Chunquan Z (2012) Is there a future for Amur tigers in a restored tiger conservation landscape in Northeast China?Animal Conservation, 15, 579-592.
[10] He JF (赫俊峰), Yu XC (于孝臣), Shi YM (史玉明) (1997) Historical distribution changes and population dynamics of the Amur tiger.Forestry Science and Technology(林业科技), 22(1), 28-30. (in Chinese)
[11] Karanth KU (1995) Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models.Biological Conservation, 71, 333-338.
[12] Karanth KU, Gopalaswamy AM, Kumar NS, Vaidyanathan S, Nichols JD, MacKenzie DI (2011) Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys.Journal of Applied Ecology, 48, 1048-1056.
[13] Karanth KU, Nichols JD, Kumar NS, Hines JE (2006) Assessing tiger population dynamics using photographic capture-recapture sampling.Ecology, 87, 2925-2937.
[14] Kang AL, Xie Y, Tang JR, Sanderson EW, Ginsberg JR, Zhang ED (2010) Historic distribution and recent loss of tigers in China. Integrative Zoology, 5, 335-341.
[15] Li B (李冰) (2010) Status of Amur Tiger and Prey Population in Hunchun Nature Reserve, China and Conservation Research ( 珲春自然保护区东北虎及猎物种群现状及保护研究). PhD dissertation, East China Normal University, Shanghai. (in Chinese with English abstract)
[16] Li ZW (李钟汶), Wu JG (邬建国), Kou XJ (寇晓军), Tian Y (田瑜), Wang TM (王天明), Mou P (牟溥), Ge JP (葛剑平) (2009) Land use pattern and its dynamic changes in Amur tiger distribution region.Chinese Journal of Applied Ecology(应用生态学报), 20, 713-724. (in Chinese with English abstract)
[17] Lyra-Jorge MC, Ciocheti G, Pivello VR, Meirelles ST (2008) Comparing methods for sampling large- and medium-sized mammals: camera traps and track plots.European Journal of Wildlife Research, 54, 739-744.
[18] Makovkin LI (1999) Wild Sika Deer in the Lazovsky Zapoved- nik and Surrounding Areas. Almanac “Russki Ostrov.”, Dalpress, Vladivostok. (in Russian)
[19] McCallum J (2013) Changing use of camera traps in mammalian field research: habitats, taxa and study types.Mammal Review, 43, 196-206.
[20] Negroes N, Revilla E, Fonseca C, Soares A, Jacomo ATA, Silveira L (2011) Private forest reserves can aid in preserv- ing the community of medium and large-sized vertebrates in the Amazon arc of deforestation.Biodiversity and Conservation, 20, 505-518.
[21] O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: sumatran tiger and prey populations in a tropical forest landscape.Animal Conservation, 6, 131-139.
[22] O’Connell AF, Nichols JD, Karanth KU (2011) Camera Traps in Animal Ecology: Methods and Analyses. Springer, Tokyo.
[23] Ohashi H, Saito M, Horie R, Tsunoda H, Noba H, Ishii H, Kuwabara T, Hiroshige Y, Koike S, Hoshino Y, Toda H, Kaji K (2013) Differences in the activity pattern of the wild boar Sus scrofa related to human disturbance.European Journal of Wildlife Research, 59, 167-177.
[24] Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores.Science, 343, 1241484.
[25] Soh YH, Carrasco LR, Miquelle DG, Jiang JS, Yang J, Stokes EJ, Tang JR, Kang AL, Liu PQ, Rao M (2014) Spatial correlates of livestock depredation by Amur tigers in Hunchun, China: relevance of prey density and implications for protected area management.Biological Conservation, 169, 117-127.
[26] Surridge AK, Timmins RJ, Hewitt GM, Bell DJ (1999) Striped rabbits in Southeast Asia.Nature, 400, 726-726.
[27] Tian Y (田瑜), Wu JG (邬建国), Kou XJ (寇晓军), Li ZW (李钟汶), Wang TM (王天明), Mou P (牟溥), Ge JP (葛剑平) (2009) Spatiotemporal pattern and major causes of the Amur tiger population dynamics.Biodiversity Science(生物多样性), 17, 211-225. (in Chinese with English abstract)
[28] Weber W, Rabinowitz A (1996) A global perspective on large carnivore conservation.Conservation Biology, 10, 1046-1054.
[29] Xiao WH (肖文宏) (2014) Amur Tiger (Panthera tigris altaica) and Its Prey in Hunchun Nature Reserve, Jilin, China: Their Population Size, Distribution and Occupancy. ( 东北虎与猎物的种群分布、数量和占据研究.). PhD dissertation, Beijing Normal University, Beijing (in Chinese with English abstract)
[1] 穆君, 王娇娇, 张雷, 李云波, 李筑眉, 粟海军. 贵州习水国家级自然保护区红外相机鸟兽监测及活动节律分析[J]. 生物多样性, 2019, 27(6): 683-688.
[2] 王渊, 李晟, 刘务林, 朱雪林, 李炳章. 西藏雅鲁藏布大峡谷国家级自然保护区金猫的色型类别与活动节律[J]. 生物多样性, 2019, 27(6): 638-647.
[3] 肖治术,陈立军,宋相金,束祖飞,肖荣高,黄小群. 基于红外相机技术对广东车八岭国家级自然保护区大中型兽类与雉类的编目清查与评估[J]. 生物多样性, 2019, 27(3): 237-242.
[4] 陈立军,肖文宏,肖治术. 物种相对多度指数在红外相机数据分析中的应用及局限[J]. 生物多样性, 2019, 27(3): 243-248.
[5] 肖文宏,束祖飞,陈立军,姚武韬,马勇,张应明,肖治术. 占域模型的原理及在野生动物红外相机研究中的应用案例[J]. 生物多样性, 2019, 27(3): 249-256.
[6] 肖文宏,胡力,黄小群,肖治术. 基于标记-重捕模型开展野生动物红外相机种群监测的方法及案例[J]. 生物多样性, 2019, 27(3): 257-265.
[7] 陈立军,束祖飞,肖治术. 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例[J]. 生物多样性, 2019, 27(3): 266-272.
[8] 任鹏,余建平,陈小南,申小莉,宋虓,张田田,余永泉,丁平. 古田山国家级自然保护区白颈长尾雉的分布格局及其季节变化[J]. 生物多样性, 2019, 27(1): 13-23.
[9] 刘雪华, 武鹏峰, 何祥博, 赵翔宇. 红外相机技术在物种监测中的应用及数据挖掘[J]. 生物多样性, 2018, 26(8): 850-861.
[10] 房以好, 任国鹏, 高颖, 张淑霞, 王浩瀚, 李延鹏, 黄志旁, 崔亮伟, 肖文. 红外相机安放于地面和林冠层对野生动物监测结果的影响[J]. 生物多样性, 2018, 26(7): 717-726.
[11] 田成, 李俊清, 杨旭煜, 余鳞, 袁丹, 黎运喜. 利用红外相机技术对四川王朗国家级自然保护区野生动物物种多样性的初步调查[J]. 生物多样性, 2018, 26(6): 620-626.
[12] 张倩雯, 龚粤宁, 宋相金, 王新财, 杨昌腾, 束祖飞, 邹发生. 红外相机技术与其他几种森林鸟类多样性调查方法的比较[J]. 生物多样性, 2018, 26(3): 229-237.
[13] 胡茜茜, 郑维超, 李佳琦, 李晟, 杨晗, 陈星, 官天培. 四姑娘山国家级自然保护区鸟兽多样性初步调查[J]. 生物多样性, 2018, 26(12): 1325-1331.
[14] 周磊, 万雅琼, 洪欣, 张恒, 钱立富, 王陈成, 孔政, 赵凯, 李佳琦, 张保卫. 利用红外相机技术对安徽省鹞落坪国家级自然保护区大中型兽类及林下鸟类的调查[J]. 生物多样性, 2018, 26(12): 1338-1342.
[15] 李斌强, 李鹏映, 杨家伟, 字红军, 李兴权, 段锡焕, 罗旭. 运用红外相机调查云南巍山青华绿孔雀自然保护区的鸟兽多样性[J]. 生物多样性, 2018, 26(12): 1343-1347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed