野生动物的红外相机监测
华北豹(Panthera pardus japonesis)是中国特有的豹亚种。由于长期缺乏有效的科学调查, 目前对其分布、种群及动态、行为、猎物现状等基础信息不清。在2007-2014年期间, 本研究应用红外相机技术(camera trap)对山西晋中庆城林场的华北豹种群开展了长达7年的连续监测。先后监测到14只华北豹, 其中成年个体11只(3♀, 8♂), 幼体3只, 成年雌雄比例为0.375; 在其间出现了2次繁殖。该区域主要的有蹄类猎物为野猪(Sus scrofa)和西伯利亚狍(Capreolus pygargus), 其相对密度分别为4.16和3.48, 绝对密度分别为1.35只/km2和3.61只/km2。
结果与分析
青海湖地区是目前已知的狗獾分布海拔最高点。为了解狗獾在青藏高原严酷生态环境下的生活史特点, 并验证是否人类干扰造成了狗獾夜行性的假说, 我们利用红外相机技术, 结合无线电遥测和野外调查研究了青海湖湖东地区亚洲狗獾(Meles leucurus)的种群密度、洞穴口的行为及活动节律。结果表明: (1)研究地区狗獾的平均种群密度为1.2 ± 0.6只/km2, 其分布受食物丰富度的影响; (2)狗獾基本在夜间活动, 出洞时间集中在20:00-23:00之间, 而回洞时间则集中在清晨4:00-7:00之间, 23:00-4:00之间是狗獾的活动高峰; (3)狗獾离洞前行为主要是警戒行为, 回洞穴时的行为主要是嬉戏行为, 其他行为较少见, 表达具有特定的时间性; (4)人类活动对于狗獾活动没有显著性影响(P < 0.05)。
红外相机的应用获得了海量野生动物物种分布和行为的数据信息。然而, 如何存贮和管理这些图像数据, 并及时提供给研究者、管理决策部门和公众, 已成为野生动物监测所面临的新问题。为此, 中国科学院动物研究所组织研发了图像数据管理系统CameraData (http://cameradata.ioz.ac.cn)。这是一个开放的网络交互式平台, 用于收集和管理通过红外相机所拍摄的野生动物图像数据, 集成了野生动物图像数据规范存贮、标准化分析和共享功能。该系统的目标在于促进野生动物图像数据的快速分析和充分利用, 为野生动物研究、保护和管理等提供服务。本文对其功能模块、主要构成和使用注意事项等进行了简要介绍。
20年来, 红外相机技术在国内外野生动物研究、监测与保护中得到了广泛应用。基于红外相机技术, 我国在野生动物生态学研究、动物行为学研究、稀有物种的探测与记录、动物本底资源调查、生物多样性监测及保护地管理与保护评价等领域取得了众多成果。目前, 数学模型、统计分析方法和新的概念正在促进红外相机技术在野生动物监测研究与保护管理中的发展和推广应用。同时, 随着红外相机技术的成熟、成本降低和应用普及, 这一技术也将会被更多的野生动物研究人员、管理人员和自然保护区管理者所采用, 并成为全国各级保护地和区域生物多样性监测研究的关键技术和方法。今后, 建立并完善系统化的监测网络和数据共享平台、开发新一代的数据分析方法与模型, 将是此项技术进一步发展和应用的主要方向。
蒙古野驴(Equus hemionus)主要分布在亚洲中部的荒漠、半荒漠和荒漠草原地区, 是我国I级重点保护野生动物。因其奔跑速度快、警惕性高、分布区域偏僻, 迄今为止对其活动节律仅有半散养条件下昼间的研究。我们于2013年4-11月在新疆卡拉麦里山有蹄类自然保护区选取13处水源地, 布设28台红外相机, 对其在荒漠水源地的全天候活动节律进行了调查。结果表明: (1)蒙古野驴在春、夏、秋季的有效照片数量分别为294张、1,990张、2,679张, 其活动频率为秋季>夏季>春季。(2)蒙古野驴昼间集群平均数量大于夜间。(3)蒙古野驴在水源地具有稳定的日活动节律, 时间分配上呈典型的“U”型, 其活动在0:00-1:00达到高峰, 7:00-9:00间快速下降, 12:00-13:00和16:00-17:00是一天中的两个低谷, 在21:00-22:00间快速上升。研究水源地周围蒙古野驴的活动节律可为卡拉麦里山有蹄类自然保护区乃至新疆北部荒漠有蹄类的监测及有效保护管理提供依据, 并能对同域生存的普氏野马(Equus przewalskii)的野化工作起借鉴作用。
野骆驼(Camelus ferus)生性机警, 且栖息于远离人迹、自然条件极端恶劣的荒漠、半荒漠地区, 其种群动态和行为生态学研究一直较为缺乏。本研究通过在库姆塔格沙漠地区进行不同季节的野外观测和连续水源地红外相机监测, 对野骆驼的集群行为进行了研究。2011-2013年, 在库姆塔格沙漠地区进行了8次野外调查, 共记录野骆驼64群, 个体430峰。非繁殖季节野骆驼集群大小平均为2.94±0.67峰; 而繁殖季节野骆驼集群大小平均为10.74±3.08峰。野外观测数据证明了野骆驼集群行为存在季节性差异, 倾向于冬季繁殖季节的集群。并于2012年10月至2013年9月期间, 在11个水源地设置11台红外相机, 共记录野骆驼281群745峰。与野外调查结果相比, 红外相机数据表明繁殖期间和非繁殖期间野骆驼集群大小没有显著差异(t = 0.322, P = 0.748)。水源地的地形因素、红外相机监测视角和监测时间的限制可能是造成这一差异的原因。但是两种方法的结果均表明野骆驼在阿尔金山北麓比西湖地区容易形成较大的集群; 同时, 繁殖季节野骆驼最大集群的规模要大于非繁殖季节。尽管利用红外相机进行动物集群行为研究存在一定的局限性, 但与传统基于野外调查的方法相比, 无论是经济上还是实用性方面, 利用红外相机都为我们开展动物行为学研究提供了新的手段。
野生动物多样性是生物多样性监测与保护管理评价的关键指标, 因此对野生动物进行长期监测是中国森林生物多样性监测网络(CForBio)等大尺度生物多样性监测研究计划的一个重要组成部分。2011年以来, CForBio网络陆续在多个森林动态监测样地开展以红外相机来监测野生动物多样性。随着我国野生动物红外相机监测网络的初步形成, 亟待建立和执行基于红外相机技术的统一监测规范。基于3年来在我国森林动态监测样地红外相机监测的进展情况, 以及热带生态评价与监测网络针对陆生脊椎动物(兽类和鸟类)所提出的红外相机监测规范, 本文从监测规范和监测注意事项等方面探讨了我国森林野生动物红外相机监测的现状和未来。
珲春国家级自然保护区是东北虎(Panthera tigris altaica)、东北豹(Panthera pardus orientalis)等濒危物种在中国的核心分布区。为了探究该区域野生动物的多度水平和空间分布, 了解人类干扰情况, 我们运用相对多度指数(relative abundance index, RAI)分析了2013年4-6月设置于此的83个红外相机位点的监测数据。红外相机的总捕获天数6,060 d, 共捕获10科18种野生哺乳动物, 其中鼬科4种, 猫科动物3种, 犬科、鹿科和松鼠科各2种, 猪科、熊科、麝科、猬科和兔科各1种。研究期间共拍摄到东北虎11只个体, 东北豹13只个体。从相对多度指数来看, 东北虎的相对多度(0.84)远高于东北豹(0.48), 它们的有蹄类猎物中梅花鹿(Cervus nippon)的相对多度最高(2.18), 其次为狍(Capreolus pygargus)(1.53)和野猪(Sus scrofa)(0.92)。人类活动和放牧的相对多度水平(分别为40.64和2.76)显著高于野生动物。在空间分布上, 东北虎和梅花鹿主要在保护区的核心区分布, 且与保护区社区共管区的多度水平差异显著, 而东北豹在不同功能区之间的分布差异不显著, 狍在保护区北部的多度水平较高, 但各功能区之间差异不显著, 野猪在社区共管区的多度水平显著高于核心区。可见, 核心区频繁的人类活动和放牧活动对野生动物的保护产生了影响, 未来应加强关于人类干扰对虎、豹种群及其有蹄类猎物的影响评估。
红外相机技术的发展促进了对东北虎(Panthera tigris altaica)、东北豹(Panthera pardus orientalis)及其猎物种群的研究。本研究以珲春保护区春化和马滴达两个区域的监测结果为例, 介绍利用该技术对我国长白山区东北虎、东北豹及其猎物的种群评估方法, 包括监测位点的选择、相机的架设方式及参数设置、数据筛选、东北虎和东北豹体侧花纹个体识别方法、物种相对丰富度的计算以及捕食者与猎物丰富度关系模型的构建。最后就东北虎、东北豹体侧花纹个体识别技术的适用性、红外相机监测与传统调查方法的差异, 相机监测的误差进行了讨论。研究表明, 利用红外相机技术进行密度预测以及东北虎、东北豹个体自动识别技术还需继续完善。1对/25 km2的相机架设密度基本上满足对于珲春保护区春化至马滴达区域虎豹的监测强度要求, 但对于有蹄类则需要另外的监测方案。
红外相机(camera traps)作为对野生动物进行“非损伤”性采样的技术, 已成为研究动物多样性、种群生态学及行为学的常用手段之一。其发展和普及为中国野生动物多样性和物种保育研究带来了诸多机会。如今, 国内大多数自然保护区都在运用红外相机技术开展物种监测工作。本文结合20年来已发表的相关研究, 从内容、实验设计以及发展趋势方面, 总结了目前红外相机技术在应用过程中出现的共性问题; 并就相机对动物的干扰性、影像识别、研究的适用范围及安全保障四个方面, 对该项技术在实践中存在的限制进行了探讨。最后结合红外相机技术未来的发展方向, 提出了建立技术规范、数据集成和共享、影像数据版权维护、提高监测效率等问题。
2009年8月至2013年4月期间, 在陕西观音山自然保护区, 利用18台红外相机收集到羚牛(Budorcas taxicolor)、川西斑羚(Naemorhedus griseus)、中华鬣羚(Capricornis milneedwardsii)、毛冠鹿(Elaphodus cephalophus)、小麂(Muntiacus reevesi)、林麝(Moschus berezovskii) 6种有蹄类动物的照片数据, 通过相对丰富度指数分析了它们的活动规律及季节性差异。结果表明: (1)6种有蹄类动物在研究区域总丰富度达到了58.71%, 其中羚牛的相对丰富度是28.02%, 川西斑羚13.24%, 毛冠鹿10.08%, 中华鬣羚4.21%, 小麂2.26%, 林麝0.90%。(2)6种有蹄类动物的月相对丰富度反映了其年活动格局, 其中羚牛、川西斑羚、毛冠鹿、中华鬣羚、小麂表现出一致性, 即夏季活动最为频繁, 秋季减弱, 冬季达到活动低谷, 春季逐渐回升; 而林麝则在冬季活动最为频繁, 夏季最弱。(3)日时间段相对丰富度反映了动物全年的日活动规律, 其中川西斑羚和羚牛相似, 主要以白天活动为主; 毛冠鹿、小麂、林麝具有明显的晨昏活动习性; 中华鬣羚活动高峰出现在02:00-06:00和20:00-22:00, 以夜间活动为主。(4)分析不同季节6种有蹄类动物日活动规律, 羚牛在春季出现一定的差异, 活动高峰出现在16:00-20:00; 川西斑羚、毛冠鹿、中华鬣羚在冬季表现出一定的差异, 活动高峰相对延迟或者提前; 小麂春季表现出差异, 活动主要集中在00:00-10:00和18:00-20:00; 林麝由于数据相对较少, 在4个季节表现出不同的活动规律。(5)夜行性分析得到中华鬣羚具有较强的夜间活动能力, 夜间相对丰富度达到了65.81%。这些研究结果有助于监测有蹄类动物种群的变化, 为保护区有效保护管理提供了数据支持。
作为典型的陆桥岛屿, 千岛湖成为检验栖息地片段化理论的自然研究平台。2011年5月1日至2014年3月31日, 我们在千岛湖32个岛屿和1个大陆对照样点布设了60台红外相机, 对千岛湖体型较大的地栖兽类及其最小监测时长进行了监测和研究。在27,798个相机日的监测中, 共获得动物影像照片23,639张, 照片清晰、可进行物种鉴定的有2,414张, 占照片总数的10.2%; 其中体型较大的地栖兽类独立照片988张, 识别为9个物种: 穿山甲(Manis pentadactyla)、黄麂(Muntiacus reevesi)、野猪(Sus scrofa)、华南兔(Lepus sinensis)、马来豪猪(Hystrix brachyuran)、猪獾(Arctonyx collaris)、鼬獾(Melogale moschata)、花面狸(Paguma larvata)和豹猫(Prionailurus bengalensis), 平均独立照片拍摄率为40.9%。种-面积曲线研究表明, 岛屿上的地栖兽类物种丰富度随着岛屿面积的增大而增大, 曲线的z值为0.27。大岛(>10 ha)中, 最小监测时长随面积增加而增加, 而小岛没有明显趋势; 最小监测时长随隔离度增加而减小, 但关系不显著(d.f. = 20, F = 3.067, P = 0.095), 表明建湖后栖息地的片段化与岛屿化导致了一些对面积或栖息地较为敏感的大型兽类在小岛屿上的局部灭绝。因此, 我们建议对于面积较大的片段化栖息地, 红外相机应保证较长的最小监测时长, 而面积较小的片段化栖息地在监测中应根据隔离度、基质性质、物种种类适时调整调查强度, 以完整反映当地物种实际情况。
主办单位
中国科学院生物多样性委员会
中国植物学会
中国科学院植物研究所
中国科学院动物研究所
中国科学院微生物研究所
中国知网
万方数据知识服务平台
维普期刊资源整合服务平台