生物多样性 ›› 2014, Vol. 22 ›› Issue (4): 438-448.doi: 10.3724/SP.J.1003.2014.14011

• • 上一篇    下一篇

沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构

卢孟孟1, 2, , A;*, 黄小翠1, 2, , A;*, 慈秀芹1, 2, 杨国平1, 李捷1, , A;, A;*()   

  1. 1 .中国科学院西双版纳热带植物园 植物系统发育与保护生物学实验室, 昆明 650223
    2 .中国科学院大学, 北京 100049
  • 收稿日期:2014-01-10 接受日期:2014-05-09 出版日期:2014-07-20
  • 通讯作者: 卢孟孟,黄小翠,李捷 E-mail:jieli@xtbg.ac.cn
  • 基金项目:
    中国科学技术基础性工作专项(2012FY110400, 2011FY120200)和中国科学院热带森林生态学重点实验室的支持

Phylogenetic community structure of subtropical forests along elevational gradients in Ailao Mountains of southwest China

Mengmeng Lu1, 2, *, Xiaocui Huang1, 2, *, Xiuqin Ci1, 2, Guoping Yang1, Jie Li1, **()   

  1. 1. Laboratory of Plant Phylogenetics and Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223
    2. University of the Chinese Academy of Sciences, Beijing 100049
  • Received:2014-01-10 Accepted:2014-05-09 Online:2014-07-20
  • Contact: Lu Mengmeng,Huang Xiaocui,Li Jie E-mail:jieli@xtbg.ac.cn

为揭示森林群落系统发育结构在海拔梯度上的变化及其驱动因素, 本研究以云南哀牢山西坡的亚热带森林群落为研究对象, 以APG III系统为基础框架, 结合DNA条形码序列信息解决末端分类单元亲缘关系的方法, 构建了哀牢山森林群落系统发育进化树, 采用净亲缘指数(net relatedness index, NRI)和最近亲缘指数(nearest taxon index, NTI), 探讨了不同植被类型的森林群落系统发育结构和沿海拔梯度的变化规律。结果表明, 从整体的海拔变化趋势上来看, 哀牢山森林群落系统发育结构随海拔上升由系统发育聚集(phylogenetic clustering)走向发散(phylogenetic overdispersion)或聚集程度降低。在低海拔地区, 群落表现为系统发育聚集, 表明生态位理论中的生境过滤作用在群落构建和生物多样性的维持中起着主导作用; 在中海拔地区, 出现了聚集与发散两种群落系统发育结构并存的现象, 推测可能是生境过滤和竞争排斥两种生态过程共同作用的结果; 在高海拔地区, 群落的系统发育结构因选择的指数不同而出现相反的结果, NRI表现出系统发育聚集, 而NTI却表现为随机或发散, 考虑到高海拔地区的环境胁迫可能促使植物发生趋同进化, 推测其群落构建的生态学过程需要更为综合的研究。本研究揭示群落系统发育结构沿海拔梯度确实存在显著的变化, 证明在生态群落的构建过程中非随机过程起到促进乃至关键作用。

关键词: 群落系统发育, DNA条形码, 海拔梯度, 哀牢山

Understanding the maintenance of biodiversity and community assembly is a central issue in community ecology. Here, we examined patterns of the community phylogenetic structure of subtropical forests along an elevational gradient in the Ailao Mountains of southwest China. We surveyed all trees with diameter at breast height ≥1 cm in 16 plots, and constructed a community phylogeny from DNA barcode sequence data with a constraint tree based on Angiosperm Phylogeny Group (APG) III. We found that the community structure changed from phylogenetically clustered to phylogenetically overdispersed with increasing elevation. Co-occurring trees at low-elevation communities tended to be more closely related than expected by chance, implying that these communities were structured primarily by habitat filtering. Clustered and over-dispersed phylogenetic compositions were showed in mid-elevation communities, suggesting that these communities are structured by habitat filtering or competitive exclusion. At high-elevation sites, NRI (Net Relatedness Index) showed clustering, but NTI (Nearest Taxon Index) showed randomness or over-dispersion. We therefore interpreted our results with caution. It is possible that convergent evolution may be occurred independently in distantly related lineages under higher environmental stress at high elevations. Taken together, the results of our study provide insight into the potential role of elevational gradients in shaping community composition and phylogenetic diversity.

Key words: community phylogeny, DNA barcoding, elevational gradient, Ailao Mountains

表1

不同生态性状进化特征和不同群落构建过程下的群落期望系统发育结构(参考Webb et al., 2002; Kraft et al., 2007)"

群落构建过程
Community assembly processes
生态性状的进化特征 Evolutionary characteristic of ecological traits
系统发育保守 Phylogenetically conserved* 系统发育趋同 Phylogenetically convergent
中性构建 Neutral assembly 系统发育随机 Random dispersion 系统发育随机 Random dispersion
生境过滤作用 Habitat filtering 系统发育聚集 Cluster dispersion 系统发育发散 Over-dispersion
竞争排斥作用 Competitive exclusion 系统发育发散 Over-dispersion 系统发育随机或系统发育聚集
Random or cluster dispersion

表2

哀牢山西坡3种植被类型不同海拔梯度的样方信息"

植被类型
Vegetation types
编号
Number
样方地点
Location
海拔
Elevation (m)
纬度
Latitude
经度
Longitude
山底季风常绿阔叶林
Seasonal evergreen broad-leaved forest
Plot 1 响水河1 Xiangshuihe 1 1,393 24°27′9.5″N 100°54′55″E
Plot 2 响水河2 Xiangshuihe 2 1,430 24°27′17″N 100°53′53″E
Plot 3 道班 Daoban 1,440 24°26′13″N 100°54′09″E
Plot 4 三棵桩 Sankezhuang 1,481 24°27′39″N 100°54′21″E
Plot 5 大黑丫口1 Daheiyakou 1 2,015 24°30′12″N 100°53′01″E
Plot 6 大黑丫口2 Daheiyakou 2 2,020 24°30′21″N 100°53′01″E
Plot 7 大黑丫口3 Daheiyakou 3 2,055 24°30′13″N 100°53′12″E
中山湿性常绿阔叶林
Mountain humid evergreen broad-
leaved forest
Plot 8 生态站入口 Entrance to forest
ecosystem research station
2,395 24°31′07″N 101°0′53″E
Plot 9 6 ha样地1 Plot 1 (6 ha) 2,495 24°32′12″N 101°01′36″E
Plot 10 6 ha样地2 Plot 2 (6 ha) 2,500 24°32′18″N 101°01′32″E
Plot 11 6 ha样地3 Plot 3 (6 ha) 2,505 24°32′22″N 101°01′16″E
Plot 12 6 ha样地4 Plot 4 (6 ha) 2,510 24°32′18″N 101°01′41″E
Plot 13 6 ha样地5 Plot 5 (6 ha) 2,516 24°32′33″N 101°01′11″E
Plot 14 小新厂低部 Foot of Xiaoxinchang 2,522 24°32′57″N 101°01′37″E
山顶苔藓矮林
Mountain mossy evergreen broad-
leaved forest
Plot 15 三棵树山顶 Hilltop in Sankeshu 2,666 24°32′10″N 101°01′52″E
Plot 16 小新厂山顶 Hilltop in Xiaoxinchang 2,720 24°33′48″N 101°01′26″E

图1

利用DNA条形码与APG III系统相结合得到的哀牢山森林群落的16个样地144个物种系统发育进化树。每个节点靴带支持率数值用星号(≥ 85%, 高度支持)、菱形(空白)(70-84%, 中度支持)、菱形(黑色填充)(50-69%, 较弱支持)表示。"

图2

系统发育多样性PhyloSor指数和PD指数随海拔梯度变化的趋势"

图3

两个群落系统发育指数(NRI和NTI)随海拔梯度的变化趋势"

附图1

哀牢山亚热带不同植被类型的群落丰富度、优势度、均匀度和多样性指数"

[1] APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III.Botanical Journal of the Linnean Society, 161, 105-121.
[2] Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountain sides: contrasting elevational patterns of bacterial and plant diversity . Proceedings of the National Academy of Sciences,USA, 105, 11505-11511.
[3] Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology.Ecology Letters, 12, 693-715.
[4] CBOL Plant Working Group (2009) A DNA barcode for land plants.Proceedings of the National Academy of Sciences, USA, 106, 12794-12797.
[5] Darwin C (1859) On the Origin of Species by Means of Natural Selection. John Murray, London.
[6] Dinnage R (2009) Disturbance alters the phylogenetic composition and structure of plant communities in an old field system.PLoS ONE, 4, e7071.
[7] Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time.Trends in Ecology and Evolution, 23, 619-630.
[8] Faith DP (1992) Systematics and conservation: on predicting the feature diversity of subsets of taxa.Cladistics, 8, 361-373.
[9] Fang JY (方精云), Wang XP (王襄平), Tang ZY (唐志尧) (2009) Local and regional processes control species richness of plant communities: the species pool hypothesis.Biodiversity Science(生物多样性), 17, 605-612. (in Chinese with English abstract)
[10] Gaston KJ (2000) Global patterns in biodiversity.Nature, 405, 220-226.
[11] Ghosh-Harihar M (2014) Phylogenetic and ecomorphological structure of assemblages of breeding leaf warblers (Phylloscopidae) along Himalayan elevational gradients.Journal of Biogeography, 41, 1193-1203.
[12] Graham CH, Parra JL, Rahbekb C, McGuire JA (2009) Phylogenetic structure in tropical hummingbird communities.Proceedings of the National Academy of Sciences, USA, 106, 19673-19678.
[13] Goldberg DE, Miller TE (1990) Effects of different resource additions on species diversity in an annual plant community.Ecology, 71, 213-225.
[14] Gonzalez MA, Roger A, Courtois EA, Jabot F, Norden N, Paine CET, Baraloto C, Thébaud C, Chave J (2010) Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest.Journal of Ecology, 98, 137-146.
[15] Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology.Trends in Ecology and Evolution, 22, 250-257.
[16] Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology.Bioinformatics, 26, 1463-1464.
[17] Kikkawa J, Williams EE (1971) Altitude distribution of land birds in New Guinea.Search, 2, 64-65.
[18] Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities.The American Naturalist, 170, 271-283
[19] Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama.Proceedings of the National Academy of Sciences, USA, 106, 18621-18626.
[20] Kress WJ, Erickson DL, Swenson NG, Thompson J, Uriarte M, Zimmerman JK (2010) Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.PLoS ONE, 5, e15409.
[21] Kooyman R, Rossetto M, Cornwell W, Westoby M (2011) Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests.Global Ecology and Biogeography, 20, 707-716.
[22] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0.Bioinformatics, 23, 2947-2948.
[23] Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees.Science, 324, 1561-1564.
[24] Loya Y (1972) Community structure and species diversity of hermatypic corals at Eilat, Red Sea.Marine Biology, 13, 100-123.
[25] Ma KP (马克平) (1994) The measurement of community diversity. In: Principles and Methodologies of Biodiversity Studies (生物多样性研究的原理与方法) (eds Qian YQ (钱迎倩), Ma KP (马克平)), pp. 141-165. China Science and Technology Press, Beijing. (in Chinese)
[26] Machac A, Janda M, Dunn RR, Sanders N (2011) Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity.Ecography, 34, 364-371.
[27] McCain CM (2005) Elevational gradients in diversity of small mammals.Ecology, 86, 366-372.
[28] Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), pp.1-8, New Orleans, LA.
[29] Mo XX, Shi LL, Zhang YJ, Zhu H, Slik JWF (2013) Change in phylogenetic community structure during succession of traditionally managed tropical rainforest in Southwest China.PLoS ONE, 8, e71464.
[30] Monk CD, Child GI, Nicholson SA (1969) Species diversity of a stratified oak-hickory community.Ecology, 50, 468-470.
[31] Niu HY (牛红玉), Wang ZF (王峥峰), Lian JY (练琚愉), Ye WH (叶万辉), Shen H (沈浩) (2011) New progress in community assembly: community phylogenetic structure combining evolution and ecology.Biodiversity Science(生物多样性), 19, 275-283. (in Chinese with English abstract)
[32] Niu KC (牛克昌), Liu YN (刘怿宁), Shen ZH (沈泽昊), He FL (何芳良), Fang JY (方精云) (2009) Community assembly: the relative importance of neutral theory and niche theory.Biodiversity Science(生物多样性), 17, 579-593. (in Chinese with English abstract)
[33] Niu Y (牛跃), Liu Y (刘洋), Zhang YP (张一平), Gao JB (高进波) (2008) Vertical distribution patterns of plant species diversity in Ailao Mountains.Journal of West China Forestry Science(西部林业科学), 37, 27-34. (in Chinese with English abstract)
[34] Oomen MA, Shanker K (2005) Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants.Ecology, 86, 3039-3047.
[35] Pei NC, Lian JY, Erickson DL, Swenson NG, Kress WJ, Ye WH, Ge XJ (2011) Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci.PLoS ONE, 6, e21273.
[36] Pei NC (裴男才), Zhang JL (张金龙), Mi XC (米湘成), Ge XJ (葛学军) (2011) Plant DNA barcodes promote the development of phylogenetic community ecology.Biodiversity Science(生物多样性), 19, 284-294. (in Chinese with English abstract)
[37] Pei NC (裴男才) (2012) Building a subtropical forest community phylogeny based on plant DNA barcodes from Dinghushan plot.Plant Diversity and Resources(植物分类与资源学报), 34, 263-270. (in Chinese with English abstract)
[38] Pielou EC (1969) Introduction to Mathematical Ecology. Wiley-Interscience, New York.
[39] Rahbek C (1997) The relationship among area, elevation, and regional species richness in Neotropical birds.The American Naturalist, 149, 875-902.
[40] R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2013. URL.
[41] Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock.Bioinformatics, 19, 301-302.
[42] Shannon CE, Weaver W (1949) A Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
[43] Shi JP (施济普), Zhao CJ (赵崇奖), Zhu H (朱华) (2005) Characteristics and species composition of main vegetation types on west slope of the Ailao Mountains in Yunnan.Chinese Journal of Applied and Environmental Biology(应用与环境生物学报), 11, 1-7. (in Chinese with English abstract)
[44] Simpson EH (1949) Measurement of diversity.Nature, 163, 688.
[45] Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities.Ecography, 30, 3-12.
[46] Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics, 22, 2688-2690.
[47] Stevens RD (2006) Historical processes enhance patterns of diversity along latitudinal gradients.Proceedings of the National Academy of Sciences, USA, 273, 2283-2289.
[48] Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics.Ecology, 87, 2418-2424.
[49] Terborgh J (1977) Bird species diversity on an Andean elevation gradient.Ecology, 58, 1007-1019.
[50] Tunnicliffe V (1981) High species diversity and abundance of the epibenthic community in an oxygen-deficient basin.Nature, 294, 354-356.
[51] You GY, Zhang YP, Liu YH, Schaefer D, Gong HD, Gao JB, Lu ZY, Song QH, Zhao JB, Wu CS, Yu L, Xie YN (2013) Investigation of temperature and aridity at different elevations of Mt. Ailao, SW China.International Journal of Biometeorology, 57, 487-492.
[52] Vamosi SM, Heard SB, Vamosi JC, Webb CO (2009) Emerging patterns in the comparative analysis of phylogenetic community structure.Molecular Ecology, 18, 572-592.
[53] Walter H (1979) Vegetation of the Earth. Springer, New York.
[54] Wang GH (王国宏) (2002) Species diversity of plant communities along an altitudinal gradient in the middle section of northern slopes of Qilian Mountains, Zhangye, Gansu.Biodiversity Science(生物多样性), 10, 7-14. (in Chinese with English abstract)
[55] Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees.The American Naturalist, 156, 145-155.
[56] Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology.Annual Review of Ecology and Systematics, 33, 475-505.
[57] Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics.Molecular Ecology Notes, 5, 181-183.
[58] Wiens JJ, Parra-Olea G, Garcia-Paris MM, Wake DB (2007) Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders.Proceedings of the Royal Society B, 274, 919-928.
[59] Wu ZY (吴征镒), Qu ZX (曲仲湘), Jiang HQ (姜汉侨) (1983) Research of Forest Ecosystem on Ailao Mountains, Yunnan (云南哀牢山森林生态系统研究). Yunnan Science and Technology Press, Kunming. (in Chinese)
[1] 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533.
[2] 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. 基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析[J]. 生物多样性, 2019, 27(5): 543-556.
[3] 胡建霖,刘志芳,慈秀芹,李捷. DNA条形码在热带龙脑香科树种鉴定中的应用[J]. 植物学报, 2019, 54(3): 350-359.
[4] 陶夏秋, 崔绍朋, 蒋志刚, 初红军, 李娜, 杨道德, 李春旺. 新疆阿勒泰地区爬行动物区系及多样性海拔分布格局[J]. 生物多样性, 2018, 26(6): 578-589.
[5] 舒江平, 罗俊杰, 韦宏金, 严岳鸿. 基于模式产地的分子证据澄清南平鳞毛蕨的分类学地位[J]. 植物学报, 2018, 53(6): 793-800.
[6] 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429.
[7] 侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷. 基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护[J]. 生物多样性, 2018, 26(3): 217-228.
[8] 刘青青, 董志军. 基于线粒体COI基因分析钩手水母的群体遗传结构[J]. 生物多样性, 2018, 26(11): 1204-1211.
[9] 周天阳, NARAYAN Prasad Gaire, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42(11): 1082-1093.
[10] 宋慧芳, 刘海双, 杨义明, 范书田, 李昌禹, 艾军. 山葡萄种质资源DNA条形码通用序列的筛选[J]. 植物学报, 2017, 52(6): 723-732.
[11] 郝金凤, 张晓红, 王昱淞, 刘金林, 智永超, 李新江. 白洋淀湿地蝗虫多样性调查及DNA条形码应用研究[J]. 生物多样性, 2017, 25(4): 409-417.
[12] 慈秀芹, 李捷. 系统发育多样性在植物区系研究与 生物多样性保护中的应用[J]. 生物多样性, 2017, 25(2): 175-181.
[13] 杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228-1238.
[14] 马明哲, 申国珍, 熊高明, 赵常明, 徐文婷, 周友兵, 谢宗强. 神农架自然遗产地植被垂直带谱的特点和代表性[J]. 植物生态学报, 2017, 41(11): 1127-1139.
[15] 郭屹立, 李冬兴, 王斌, 白坤栋, 向悟生, 李先琨. 北热带喀斯特季节性雨林土壤和6个常见树种
凋落物的C、N、P化学计量学特征
[J]. 生物多样性, 2017, 25(10): 1085-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed