生物多样性 ›› 2019, Vol. 27 ›› Issue (11): 1228-1235.doi: 10.17520/biods.2019111

• 研究报告 • 上一篇    下一篇

祖先性状重建法揭示铁线蕨属植物孢子表面纹饰的形态多样性及其演化

赵国华1, 2, 王莹2, 商辉2, 周喜乐3, 王爱华4, 李玉峰5, 王晖1, 刘保东6, 严岳鸿2, *()   

  1. 1 深圳市中国科学院仙湖植物园, 广东深圳 518004
    2 上海辰山植物园, 中国科学院上海辰山植物科学研究中心, 上海 201602
    3 湘西土家族苗族自治州森林资源监测中心, 湖南吉首 416000
    4 南宁师范大学北部湾环境演变与资源利用教育部重点实验室, 南宁 530001
    5 湖南科技大学生命科学学院, 湖南湘潭 411201
    6 哈尔滨师范大学植物生物学黑龙江省高校重点实验室, 哈尔滨 150025
  • 收稿日期:2019-03-29 接受日期:2019-10-08 出版日期:2019-11-20
  • 通讯作者: 严岳鸿 E-mail:yan.yh@126.com
  • 基金项目:
    国家标本资源共享平台项目、科技部科技基础性工作专项(2013FY112100);生物多样性调查与评估项目(2019HJ2096001006);上海市绿化与市容管理局科学技术项目(G162416);湖南省教育厅科学研究项目(10C0720)

Ancestral state reconstruction reveals the diversity and evolution of spore ornamentation in Adiantum (Pteridaceae)

Guohua Zhao1, 2, Ying Wang2, Hui Shang2, Xile Zhou3, Aihua Wang4, Yufeng Li5, Hui Wang1, Baodong Liu6, Yuehong Yan2, *()   

  1. 1 Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004;
    2 Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602
    3 Xiangxi Tujia and Miao Autonomous Prefecture Forest Resources Monitoring Center, Jishou, Hunan 416000
    4 Key Laboratory of Beibu Gulf Environment Change and Resources Use of Ministry of Education, Nanning Normal University, Nanning 530001
    5 School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201
    6 Harbin Normal University, Key Laboratory of Plant Biology, College of Heilongjiang Province, Harbin 150025
  • Received:2019-03-29 Accepted:2019-10-08 Online:2019-11-20
  • Contact: Yan Yuehong E-mail:yan.yh@126.com

蕨类植物孢子表面的纹饰形态复杂多样, 在分类学和古生物学研究中具有重要意义, 目前探索祖先性状演化常用形态学与系统发育学结合的方法。本文选取一回羽叶铁线蕨类植物为材料, 用扫描电子显微镜观察其孢子形态, 用5个叶绿体基因序列构建系统树, 用最大似然法和最大简约法来分析孢子性状的演化。结果表明: 一回羽叶铁线蕨类的孢子纹饰有5种类型, 即光滑、粗糙、颗粒、疣状及瘤状; 这一类群的祖先孢子纹饰有很大的可能是瘤状纹饰; 疣状纹饰可能是由瘤状纹饰演化而来; 孢子纹饰由简单向复杂演化, 越进化的物种其孢子纹饰越复杂。

关键词: 蕨类, 孢子纹饰, 系统发育, 性状演化

Spore morphology is diverse and complex in ferns, thus serving as an important indicator of taxonomy. In conjunction, morphological traits and phylogeny are used to study taxonomy and recent character evolution. This study analyzes the evolution of spore ornamentation in once-pinnate maidenhair ferns (Adiantum) using scanning electron microscopy and ancestral state reconstruction. Our results show that there are five ornamental types in once-pinnate maidenhair ferns: psilate, scabrate, granulate, verrucate and tuberculate. The ancestral state of spore ornamentation in Adiantum is probably tuberculate, with verrucate ornamentation possibly deriving from tuberculate. We suggest that spore ornamentation evolved from simple to complex in Adiantum. In other words, the more evolutionary species, will with a more complex spore ornamentation.

Key words: fern, spore ornamentation, phylogenetic, character evolution

表1

铁线蕨属植物采集信息及孢子形态"

物种
Species
标本号及采集地
Vouchers and locality
赤道轴 × 极轴
Equatorial diam ×
polar diam (µm)
孢子纹饰
Spore ornamentation
图1中位置
Position in Fig. 1
A. latifolium Zxl9882. 泰国曼谷植物标本馆 Bangkok Herbarium, Bangkok, Thailand 33.5 × 27.0 粗糙 Scabrate 1A
扇叶铁线蕨
A. flabellulatum
Zxl10018. 中国广东南岭国家森林公园 Nanling National Forest Park, Guangdong, China 45.5 × 31.2 颗粒 Granulate 1B
团羽铁线蕨
A. capillus-junonis
Zxl9959. 中国广东南岭国家森林公园 Nanling National Forest Park, Guangdong, China 46.5 × 43.0 光滑 Psilate 1C
半月形铁线蕨
A. philippense
Yan12405, Yan12086. 中国云南元江; Zxl9839. 泰国彭世洛府屯萨朗峦国家公园
Yan12405, Yan12086. Yuanjiang, Yunnan, China; Zxl9839. Thung Salaeng Luang National Park, Phitsanulok, Thailand
33.4 × 25.7 粗糙 Scabrate 1D
孟连铁线蕨
A. menglianense
Yan12415, Yan12409. 中国云南元江 Yuanjiang, Yunnan, China 31.5 × 26.6 颗粒 Granulate 1E
翅柄铁线蕨
A. soboliferum
Yan11393. 中国海南昌江 Changjiang, Hainan, China 34.0 × 30.5 颗粒 Granulate 1F
A. zollingeri Zxl9812, Zxl9911, ZXL9851. 泰国碧武里府康卡沾国家公园
Kaeng Krachan National Park, Phetchaburi, Thailand
34.0 × 27.3 瘤状 Tuberculate 1G
鞭叶铁线蕨
A. caudatum
Yan12408. 中国云南元江 Yuanjiang, Yunnan, China 40.6 × 33.5 瘤状 Tuberculate 1H
白垩铁线蕨
A. gravesii
WYG393. 中国贵州贞丰 Zhenfeng, Guizhou, China 51.5 × 36.1 瘤状 Tuberculate 1I
小铁线蕨
A. mariesii
Zxl9685. 中国湖南桑植 Sangzhi, Hunan, China 36.8 × 30.1 疣状 Verrucate 1J
仙霞铁线蕨
A. juxtapositum
Yan1205071. 中国广东仁化 Renhua, Guangdong, China 60.4 × 45.7 疣状 Verrucate 1K
普通铁线蕨
A. edgewothii
Yan12412. 中国云南元江 Yuanjiang, Yunnan, China 30.0 × 25.6 瘤状 Tuberculate 1L
假鞭叶铁线蕨
A. malesianum
Yan12416, Yan12404. 中国云南元江 Yuanjiang, Yunnan, China 38.8 × 32.8 瘤状 Tuberculate 1M
梅山铁线蕨
A. × meishanianum
Yan12411. 中国云南元江 Yuanjiang, Yunnan, China - 瘤状 Tuberculate 1N
苍山铁线蕨
A. sinicum
Yan112601, Yan12414. 中国云南元江 Yuanjiang, Yunnan, China 31.7 × 29.1 瘤状 Tuberculate 1O
哀牢山铁线蕨
A. × ailaoshanense
Yan12413, Yan12410. 中国云南元江 Yuanjiang, Yunnan, China - 瘤状 Tuberculate 1P

图1

一回羽叶铁线蕨类孢子形态。 (A) A. latifolium; (B)扇叶铁线蕨; (C)团羽铁线蕨; (D)半月形铁线蕨; (E)孟连铁线蕨; (F)翅柄铁线蕨; (G) A. zollingeri; (H)鞭叶铁线蕨; (I)白垩铁线蕨; (J)小铁线蕨; (K)仙霞铁线蕨; (L)普通铁线蕨; (M)假鞭叶铁线蕨; (N)梅山铁线蕨; (O)苍山铁线蕨; (P)哀牢山铁线蕨。"

图2

铁线蕨属孢子大小。黄色代表白垩铁线蕨系, 蓝色代表鞭叶铁线蕨系, 黑色代表外类群。"

图3

5个叶绿体序列rbcL、atpB、atpA、trnL-F、rps4-trnS联合构建系统发生树, 数字代表支持率(ML/MP/BI)。*: ML和MP = 100%, BI = 1.0。"

图4

一回羽叶铁线蕨类孢子纹饰的溯祖分析"

1 Barrington DS, Paris CA, Ranker TA ( 1986) Systematic inferences from spore and stomate size in the ferns. American Fern Journal, 76, 149-159.
2 Blackmore S, Barnes SH ( 1987) Embryophyte spore walls: Origin, development, and homologies. Cladistics, 3, 185-195.
3 Campo MV, Lugardon B ( 1973) Structure grenue infratectale de l’ectexine des pollens de quelques Gymnospermes et Angiospermes. Pollen et Spores, 15, 171-189. (in French)
4 Caroline PD, Patrica LF ( 2001) Modern pollen precipitation from an elevational transect in central Jordan and its relationship to vegetation. Journal of Biogeography, 28, 1195-1210.
5 Co-David D, Langeveld D, Noordeloos ME ( 2009) Molecular phylogeny and spore evolution of Entolomataceae. Persoonia, 23, 147.
6 Devi S ( 1979) Spore types, morphological evolution and phylogeny in the Pteridaceae. Grana, 18, 41-46.
7 Hummel J, Gee CT, Südekum KH, Sander PM, Clauss M ( 2008) In vitro digestibility of fern and gymnosperm foliage: Implications for sauropod feeding ecology and diet selection. Proceedings of the Royal Society B: Biological Sciences, 275, 1015-1021.
8 Lellinger DB ( translated by Xiang JY, Wu SG ) ( 2007) A Modern English-Chinese Glossary for Taxonomic Pteridology. Yunnan Science and Technology Press, Kunming. (in Chinese)
[ 向建英, 武素功译 ( 2007) 现代英中对照蕨类植物分类学词汇. 云南科技出版社, 昆明.]
9 Liu HM, Zhang XC, Chen ZD, Qiu YL ( 2007) Inclusion of the Eastern Asia endemic genus Sorolepidium in Polystichum (Dryopteridaceae) evidence from the chloroplast rbcL gene and morphological characteristics. Chinese Science Bulletin, 52, 631-638.
10 Lu JM, Wen J, Lutz S, Wang YP, Li DZ ( 2012) Phylogenetic relationships of Chinese Adiantum based on five plastid markers. Journal of Plant Research, 125, 237-249.
11 Luo YL, Sun XJ ( 2001) Vegetation evolution in the northen South China Sea region since 40 ka BP—An attempt to reconstruct palaeovegetation based on biomization. Acta Botanica Sinica, 43, 1202-1206.
12 Mehltreter K, Mehltreter K, Walker L, Sharpe J ( 2010) Fern Ecology. Cambridge University Press, Cambridge.
13 Midgley J, Midgley G, Bond W ( 2002) Why were dinosaurs so large? A food quality hypothesis. Evolutionary Ecology Research, 4, 1093-1095.
14 Ottosson JG, Anderson JM ( 1983) Number, seasonality and feeding habits of insects attacking ferns in Britain: An ecological consideration. Journal of Animal Ecology, 52, 385-406.
15 Patricia L ( 1992) Spatial patterns of atmospheric pollen dispersal in the Colorado Rocky Mountains, USA. Review of Palaeobotany and Palynology, 74, 293-313.
16 The Chromosome Counts Database ( CCDB) ( 2014) A community resource of plant chromosome numbers. 2014) A community resource of plant chromosome numbers. .
17 Shang H, Yan YH ( 2014) Soral crypsis of insect larvea on bracken ferns. Chinese Journal of Nature, 36, 426-430. (in Chinese with English abstract)
[ 商辉, 严岳鸿 ( 2014) 昆虫幼虫对凤尾蕨属植物孢子囊群的拟态. 自然杂志, 36, 426-430.]
18 Shang H, Wang Y, Zhu XF, Zhao GH, Wang FG, Lu JM ( 2016) Likely allopatric origins of Adiantum × meishanianum (Pteridaceae) through multiple hybridizations. Journal of Systematics and Evolution, 54, 528-534.
19 Smart J, Hughes NF ( 1973) The Insect and the Plant: Progressive Palaeoecological Integration. John Wiley & Sons, New York.
20 Tanaka N, Uehara K, Murata J ( 2004) Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae. Journal of Plant Research, 117, 265-276.
21 Tao ZB, Wortley AH, Lu L, Li DZ, Wang H, Blackmore S ( 2018) Evolution of angiosperm pollen. 6. The Celastrales, Oxalidales, and Malpighiales (Com) clade and Zygophyllales. Annals of the Missouri Botanical Garden, 103, 393-442.
22 Tryon AF ( 1985) Spores of myrmecophytic ferns. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 86, 105-110.
23 Tryon AF, Lugardon B ( 1991) Spores of the Pteridophyta: Surface, Wall Structure, and Diversity Based on Electron Microscope Studies. Springer Verlag, New York.
24 Walker JW ( 1974) Evolution of exine structure in the pollen of primitive angiosperms. American Journal of Botany, 61, 891-902.
25 Walker TG ( 1985) Spore filaments in the ant-fern Lecanopteris mirabilis—An alternative viewpoint. Proceedings of the Royal Society of Edinburgh Section B: Biological Sciences, 86, 111-114.
26 Wang AH, Sun Y, Wang FG, Schneider H, Zhai JW, Liu DM, Zhou JS, Xing FW, Chen HF ( 2015 a) Identification of the relationship between Chinese Adiantum reniforme var. sinense and Canary Adiantum reniforme. BMC Plant Biology, 15, 36.
27 Wang FG, Liu HM, He CM, Yang DM, Xing FW ( 2015 b) Taxonomic and evolutionary implication of spore ornamentation in Davalliaceae. Journal of Systematics and Evolution, 53, 72-81.
28 Wang QX, Dai XL ( 2001) Spores of Polypodiales (Filicales) from China. Science Press, Beijing. (in Chinese)
[ 王全喜, 戴锡玲 ( 2001) 中国水龙骨目(真蕨目)植物孢子形态的研究. 科学出版社, 北京.]
29 Wang WM ( 2009) Progress and prospect of studies on palynology in China. Acta Palaeontologica Sinica, 48, 338-346. (in Chinese with English abstract)
[ 王伟铭 ( 2009) 中国孢粉学的研究进展与展望. 古生物学报, 48, 338-346.]
30 Wang Y, Shang H, Gu YF, Wei HJ, Zhao GH, Dai XL, Yan YH ( 2015) A new cryptic hybrid species of Adiantum L. (Pteridaceae) indentified by nuclear and chloroplast DNA sequences. Chinese Science Bulletin, 60, 922-932. (in Chinese with English abstract)
[ 王莹, 商辉, 顾钰峰, 韦宏金, 赵国华, 戴锡玲, 严岳鸿 ( 2015) 用核DNA和叶绿体DNA序列鉴别铁线蕨属Adiantum L. (凤尾蕨科)新的隐性杂交种. 科学通报, 10, 922-932.]
31 Wang Y, Shang H, Zhou XL, Zhao GH, Dai XL, Yan YH ( 2015 c) Adiantum × ailaoshanense (Pteridaceae), a new natural hybrid from Yunnan, China. Phytotaxa, 236, 266-272.
32 Wei R, Schneider H, Zhang XC ( 2013) Toward a new circumscription of the twinsorus-fern genus Diplazium (Athyriaceae): A molecular phylogeny with morphological implications and infrageneric taxonomy. Taxon, 62, 441-457.
33 Yang ZJ, Xu JM ( 2002) Advances in studies on relationship among pollen, vegetation and climate. Acta Phytoecologica Sinica, 26(Suppl.), 73-81. (in Chinese with English abstract)
[ 杨振京, 徐建明 ( 2002) 孢粉-植被-气候关系研究进展. 植物生态学报, 26(增刊), 73-81.]
34 Zhang WY, Kuo LY, Li FW, Wang CN, Chiou WL ( 2014) The hybrid origin of Adiantum meishanianum (Pteridaceae): A rare and endemic species in Taiwan. Systematic Botany, 39, 1034-1041.
[1] 曹槟, 李国杰, 赵瑞琳. 大小兴安岭地区红菇属物种多样性及其地理成分[J]. 生物多样性, 2019, 27(8): 854-866.
[2] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. 直刺变豆菜叶绿体全基因组及其特征[J]. 生物多样性, 2019, 27(4): 366-372.
[3] 董雪蕊 张红 张明罡. 基于系统发育的黄土高原地区木本植物多样性及特有性格局分析[J]. 生物多样性, 2019, 27(12): 0-0.
[4] 杜新宇, 卢金梅, 李德铢. 石松类和蕨类植物质体基因组结构演化研究进展[J]. 生物多样性, 2019, 27(11): 1172-1183.
[5] 孙晶琦, 陈泉, 李航宇, 常艳芬, 巩合德, 宋亮, 卢华正. 附生蕨类植物的克隆性研究进展[J]. 生物多样性, 2019, 27(11): 1184-1195.
[6] 詹臻, 张剑锋, 曹建国, 戴锡玲. 普通针毛蕨颈卵器和卵的发育[J]. 生物多样性, 2019, 27(11): 1236-1244.
[7] 姬红利, 詹选怀, 张丽, 彭焱松, 周赛霞, 胡菀. 幕阜山脉石松类和蕨类植物多样性及生物地理学特征[J]. 生物多样性, 2019, 27(11): 1251-1259.
[8] 张开梅, 沈羽, 周晓丽, 方炎明. 21世纪以来蕨类植物研究论文的发表情况: 基于Web of Science的数据统计[J]. 生物多样性, 2019, 27(11): 1245-1250.
[9] 汪浩, 张锐, 张娇, 沈慧, 戴锡玲, 严岳鸿. 转录组测序揭示翼盖蕨(Didymochlaena trancatula)的全基因组复制历史[J]. 生物多样性, 2019, 27(11): 1221-1227.
[10] 杜维波, 卢元. 黄土高原石松类和蕨类植物的多样性与地理分布[J]. 生物多样性, 2019, 27(11): 1260-1267.
[11] 孙德鑫, 刘向, 周淑荣. 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建[J]. 生物多样性, 2018, 26(7): 655-666.
[12] 侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷. 基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护[J]. 生物多样性, 2018, 26(3): 217-228.
[13] 陈自宏, 杨晓娜, 孙宁静, 徐玲, 郑元, 杨宇明. 中国西南高黎贡山绿僵菌物种多样性及其垂直分布特征[J]. 生物多样性, 2018, 26(12): 1308-1317.
[14] 李文英, 李夏, 解开治, 邓旺秋, 庄文颖. 葡萄座腔菌科真菌的系统学和多样性探讨[J]. 生物多样性, 2017, 25(8): 874-885.
[15] 董仕勇, 左政裕, 严岳鸿, 向建英. 中国石松类和蕨类植物的红色名录评估[J]. 生物多样性, 2017, 25(7): 765-773.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed