生物多样性 ›› 2023, Vol. 31 ›› Issue (2): 22083. DOI: 10.17520/biods.2022083
收稿日期:
2022-02-21
接受日期:
2022-10-24
出版日期:
2023-02-20
发布日期:
2023-02-12
通讯作者:
*刘国祥, E-mail: liugx@ihb.ac.cn
基金资助:
Huiyin Song1,3, Zhengyu Hu2, Guoxiang Liu2,*()
Received:
2022-02-21
Accepted:
2022-10-24
Online:
2023-02-20
Published:
2023-02-12
Contact:
*Guoxiang Liu, E-mail: liugx@ihb.ac.cn
摘要:
小球藻科物种生境范围广, 分布于全球各种淡水、海水及陆生环境中, 是多种生态系统的重要组成部分, 且以其重要的科学和应用价值成为研究热点。由于个体微小及较强的形态可塑性, 小球藻科物种能供分辨的形态特征有限, 其经典分类学研究和物种鉴定存在诸多困难。随着基于DNA序列的研究方法在分类学研究中的应用, 小球藻科历经多次修订, 物种组成发生了很大变化, 目前, 小球藻科包含约48个属258个种。该科分类仍存在许多悬而未决的问题, 如有些属、种的分类地位存疑、分类单元的多系起源问题、一些新支系有待进行物种归类。本文系统总结了小球藻科分类学研究历史和现状, 并对其中存在的问题及存疑类群进行阐述, 探讨了基因组学数据测序情况及其在分类学上的应用前景, 以期为小球藻科的系统分类研究和开发利用提供基础参考资料。
宋会银, 胡征宇, 刘国祥 (2023) 绿藻门小球藻科的分类学研究进展. 生物多样性, 31, 22083. DOI: 10.17520/biods.2022083.
Huiyin Song, Zhengyu Hu, Guoxiang Liu (2023) Assessing advances in taxonomic research on Chlorellaceae (Chlorophyta). Biodiversity Science, 31, 22083. DOI: 10.17520/biods.2022083.
图1 小球藻科成员形态特征模式图。图A、B、D、E、Q引自Krienitz等(2015); 图I引自毕列爵和胡征宇(2004); 图M引自胡鸿钧等(1980); 图J、K、L、P引自刘国祥和胡征宇(2012); 图C、F、G、H、N、O为作者绘制。
Fig. 1 Diagram of morphological characteristics of Chlorellaceaen members. A, B, D, E and Q were from Krienitz et al (2015); I and L were from Bi & Hu (2004); M was from Hu et al (1980); J, K, L and P were from Liu & Hu (2012); C, F, G, H, N and O were drawn by the authors.
Box 1 小球藻科分类修订的重要事件(从DNA测序技术用于分类学研究开始统计) | |
---|---|
1989年 | 普通小球藻的18S rDNA序列首次被测序(Huss & Sogin, |
1990年 | 首次基于18S rDNA序列揭示小球藻属的分类学位置(Huss & Sogin, |
1997年 | 发现小球藻属是多系起源的(Hanagata & Chihara, |
1999年 | Huss等( |
2000年 | 双月藻属由栅藻科移入小球藻科(Hegewald & Hanagata, |
2001年 | 拟新月藻属由月牙藻科(Selenastraceae)移入小球藻科(Ustinova et al, |
2002年 | 集星藻属由栅藻科(Scenedesmaceae)移入了小球藻科(Wolf et al, |
2004年 | Krienitz等( |
2005年 | (1)建立Meyerella (Fawley et al, |
2007年 | 建立Marinichlorella (Aslam et al, |
2010年 | (1)建立黑氏球藻属(Pr?schold et al, |
2011年 | 建立绿微藻属(Somogyi et al, |
2012? 2015年 | (1)建立紧聚球藻属、卡兰津藻属、马拉球藻属和马塞藻属(Krienitz et al, |
2018年 | (1)建立Brandtia (Hoshina et al, |
2019年 | (1) Darienko等( |
2020年 | (1)建立Endolithella (Martins et al, |
2021年 | 胶网藻形态型的隐性多样性及分类准则的有效性被再次探讨: Krivina等( |
2022年 | 建立新种Laetitia sardoa (Malavasi et al, |
Box 1 小球藻科分类修订的重要事件(从DNA测序技术用于分类学研究开始统计) | |
---|---|
1989年 | 普通小球藻的18S rDNA序列首次被测序(Huss & Sogin, |
1990年 | 首次基于18S rDNA序列揭示小球藻属的分类学位置(Huss & Sogin, |
1997年 | 发现小球藻属是多系起源的(Hanagata & Chihara, |
1999年 | Huss等( |
2000年 | 双月藻属由栅藻科移入小球藻科(Hegewald & Hanagata, |
2001年 | 拟新月藻属由月牙藻科(Selenastraceae)移入小球藻科(Ustinova et al, |
2002年 | 集星藻属由栅藻科(Scenedesmaceae)移入了小球藻科(Wolf et al, |
2004年 | Krienitz等( |
2005年 | (1)建立Meyerella (Fawley et al, |
2007年 | 建立Marinichlorella (Aslam et al, |
2010年 | (1)建立黑氏球藻属(Pr?schold et al, |
2011年 | 建立绿微藻属(Somogyi et al, |
2012? 2015年 | (1)建立紧聚球藻属、卡兰津藻属、马拉球藻属和马塞藻属(Krienitz et al, |
2018年 | (1)建立Brandtia (Hoshina et al, |
2019年 | (1) Darienko等( |
2020年 | (1)建立Endolithella (Martins et al, |
2021年 | 胶网藻形态型的隐性多样性及分类准则的有效性被再次探讨: Krivina等( |
2022年 | 建立新种Laetitia sardoa (Malavasi et al, |
属名 Genera | 建立时间 Year | 生境 Habitat | 已测序的分子标记 Sequenced molecular markers | 物种数 No. of species* | |||
---|---|---|---|---|---|---|---|
小球藻属 Chlorella | 1890 | 浮游(淡水、海水)、亚气生或共生 Panktonic (freshwater, seawater), subaerial or symbiotic | 18S rDNA, 28S rDNA, rbcL, ITS | 53 | |||
胶网藻属 Dictyosphaerium | 1849 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 18 | |||
微芒藻属 Micractinium | 1858 | 浮游(淡水)、亚气生或共生 Planktonic (freshwater), subaerial or symbiotic | 18S rDNA, ITS | 25 | |||
集星藻属 Actinastrum | 1882 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS, 16S rDNA, atpB, rbcL | 16 | |||
原壳藻属 Prototheca | 1894 | 寄生或自由生活 Parasitic or free living | 18S rDNA, 28S rDNA D1-D2 region | 22 | |||
拟新月藻属 Closteriopsis | 1899 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, 16S rDNA, ITS | 5 | |||
对囊藻属 Didymogenes | 1905 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS, 28S rDNA | 8 | |||
旋孢藻属 Helicosporidium | 1921 | 寄生 Parasitic | 18S rDNA, ITS | 1 | |||
微绿球藻属 Nannochloris | 1921 | 浮游(淡水)、亚气生 Planktonic (freshwater), subaerial | 18S rDNA, ITS | 2 | |||
Muriella | 1932 | 地面或土壤 Ground or the surface of soil | 18S rDNA, ITS | 4 | |||
冠星藻属 Coronastrum | 1938 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 4 | |||
双月藻属 Dicloster | 1976 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
属名 Genera | 建立时间 Year | 生境 Habitat | 已测序的分子标记 Sequenced molecular markers | 物种数 No. of species* | |||
Marvania | 1976 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 2 | |||
Nanochlorum | 1982 | 浮游(海水) Planktonic (seawater) | 18S rDNA, ITS | 1 | |||
异养小球藻属 Auxenochlorella | 1987 | 共生或自由生活 Subaerial or free living | 18S rDNA, 28S rDNA, rbcL, ITS | 3 | |||
类小球藻属 Parachlorella | 2004 | 浮游(淡水)、亚气生或共生环境 Planktonic (freshwater), subaerial, or symbiotic | 18S rDNA, ITS | 3 | |||
Picochlorum | 2004 | 浮游(海水或咸水) Planktonic (seawater or salt water) | 18S rDNA | 5 | |||
迈耶球藻属 Meyerella | 2005 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, rbcL, ITS | 1 | |||
海球藻属 Marinichlorella | 2007 | 浮游(海水) Planktonic (seawater) | 18S rDNA, 28S rDNA | 1 | |||
黑氏球藻属 Hegewaldia | 2010 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
海尼球藻属 Heynigia | 2010 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 2 | |||
亨氏球藻属 Hindakia | 2010 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 2 | |||
绿微藻属 Chloroparva | 2011 | 浮游(碱性的苏打水) Planktonic (turbid shallow soda pan) | 18S rDNA | 1 | |||
霉球藻属 Mucidosphaerium | 2011 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 4 | |||
紧聚球藻属Compactochlorella | 2012 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 2 | |||
卡兰津藻属 Kalenjinia | 2012 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
马拉球藻属 Marasphaerium | 2012 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
马塞藻属 Masaia | 2012 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
假绿藻属 Pseudochloris | 2013 | 海水或咸水 Marine or brackish environment | 18S rDNA | 1 | |||
浮小球藻属 Planktochlorella | 2014 | 浮游(淡水)、亚气生或共生环境 Planktonic (freshwater), subaerial, symbiotic | 18S rDNA, ITS | 1 | |||
Pumiliosphaera | 2015 | 强嗜酸(pH 2-3), 火山流或附近的土壤 Acidic volcano stream and soil nearby, pH 2?3 | 18S rDNA, ITS | 1 | |||
Carolibrandtia | 2018 | 与纤毛虫内共生 Endosymbiosis with ciliates | 18S rDNA, ITS | 1 | |||
冠球藻属 Coronacoccus | 2018 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
Endolithella | 2019 | 石内生 Endolithic | 18S rDNA, ITS | 1 | |||
Laetitia | 2022 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, rbcL | 1 | |||
分类位置待进一步确认的属 Genera whose taxonomic position should be further confirmed | |||||||
粗刺藻属 Acanthosphaera | 1899 | 浮游(淡水) Planktonic (freshwater) | NA | 2 | |||
胶丝藻属 Gloeotila | 1843 | 附着或自由漂浮, 水生或陆生 Epiphytic or free-floating, aquatic or terrestrial | 18S rDNA, ITS, rbcL | 17 | |||
Catena | 1900 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 2 | |||
角球藻属 Keratococcus | 1915 | 浮游(淡水)、陆生 Planktonic (freshwater) and terrestrial | NA | 9 | |||
双细胞藻属 Dicellula | 1926 | 浮游(淡水) Planktonic (freshwater) | NA | 1 | |||
褐胞藻属 Siderocelis | 1934 | 浮游(淡水) Planktonic (freshwater) | NA | 10 | |||
拟多芒藻属 Golenkiniopsis | 1953 | 浮游(淡水) Planktonic (freshwater) | NA | 6 | |||
Palmellochaete | 1953 | 浮游(淡水) Planktonic (freshwater) | NA | 1 | |||
Podohedra | 1958 | 浮游(淡水)或附生 Planktonic (freshwater) or epiphytic | NA | 6 | |||
Fissuricella | 1977 | NA | NA | 1 | |||
Apodococcus | 1984 | 浮游(淡水)或土壤生 Planktonic (freshwater) or the surface of soil | NA | 2 | |||
Cylindrocelis | 1988 | NA | NA | 1 | |||
Pseudosiderocelopsis | 1999 | 土壤生 The surface of soil | NA | 1 |
表1 小球藻科目前包含的属名录(*物种数参考Algaebase)
Table 1 List of known genera of the Chlorellaceae (* The species numbers refer to Algaebase)
属名 Genera | 建立时间 Year | 生境 Habitat | 已测序的分子标记 Sequenced molecular markers | 物种数 No. of species* | |||
---|---|---|---|---|---|---|---|
小球藻属 Chlorella | 1890 | 浮游(淡水、海水)、亚气生或共生 Panktonic (freshwater, seawater), subaerial or symbiotic | 18S rDNA, 28S rDNA, rbcL, ITS | 53 | |||
胶网藻属 Dictyosphaerium | 1849 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 18 | |||
微芒藻属 Micractinium | 1858 | 浮游(淡水)、亚气生或共生 Planktonic (freshwater), subaerial or symbiotic | 18S rDNA, ITS | 25 | |||
集星藻属 Actinastrum | 1882 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS, 16S rDNA, atpB, rbcL | 16 | |||
原壳藻属 Prototheca | 1894 | 寄生或自由生活 Parasitic or free living | 18S rDNA, 28S rDNA D1-D2 region | 22 | |||
拟新月藻属 Closteriopsis | 1899 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, 16S rDNA, ITS | 5 | |||
对囊藻属 Didymogenes | 1905 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS, 28S rDNA | 8 | |||
旋孢藻属 Helicosporidium | 1921 | 寄生 Parasitic | 18S rDNA, ITS | 1 | |||
微绿球藻属 Nannochloris | 1921 | 浮游(淡水)、亚气生 Planktonic (freshwater), subaerial | 18S rDNA, ITS | 2 | |||
Muriella | 1932 | 地面或土壤 Ground or the surface of soil | 18S rDNA, ITS | 4 | |||
冠星藻属 Coronastrum | 1938 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 4 | |||
双月藻属 Dicloster | 1976 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
属名 Genera | 建立时间 Year | 生境 Habitat | 已测序的分子标记 Sequenced molecular markers | 物种数 No. of species* | |||
Marvania | 1976 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 2 | |||
Nanochlorum | 1982 | 浮游(海水) Planktonic (seawater) | 18S rDNA, ITS | 1 | |||
异养小球藻属 Auxenochlorella | 1987 | 共生或自由生活 Subaerial or free living | 18S rDNA, 28S rDNA, rbcL, ITS | 3 | |||
类小球藻属 Parachlorella | 2004 | 浮游(淡水)、亚气生或共生环境 Planktonic (freshwater), subaerial, or symbiotic | 18S rDNA, ITS | 3 | |||
Picochlorum | 2004 | 浮游(海水或咸水) Planktonic (seawater or salt water) | 18S rDNA | 5 | |||
迈耶球藻属 Meyerella | 2005 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, rbcL, ITS | 1 | |||
海球藻属 Marinichlorella | 2007 | 浮游(海水) Planktonic (seawater) | 18S rDNA, 28S rDNA | 1 | |||
黑氏球藻属 Hegewaldia | 2010 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
海尼球藻属 Heynigia | 2010 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 2 | |||
亨氏球藻属 Hindakia | 2010 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 2 | |||
绿微藻属 Chloroparva | 2011 | 浮游(碱性的苏打水) Planktonic (turbid shallow soda pan) | 18S rDNA | 1 | |||
霉球藻属 Mucidosphaerium | 2011 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 4 | |||
紧聚球藻属Compactochlorella | 2012 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 2 | |||
卡兰津藻属 Kalenjinia | 2012 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
马拉球藻属 Marasphaerium | 2012 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
马塞藻属 Masaia | 2012 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
假绿藻属 Pseudochloris | 2013 | 海水或咸水 Marine or brackish environment | 18S rDNA | 1 | |||
浮小球藻属 Planktochlorella | 2014 | 浮游(淡水)、亚气生或共生环境 Planktonic (freshwater), subaerial, symbiotic | 18S rDNA, ITS | 1 | |||
Pumiliosphaera | 2015 | 强嗜酸(pH 2-3), 火山流或附近的土壤 Acidic volcano stream and soil nearby, pH 2?3 | 18S rDNA, ITS | 1 | |||
Carolibrandtia | 2018 | 与纤毛虫内共生 Endosymbiosis with ciliates | 18S rDNA, ITS | 1 | |||
冠球藻属 Coronacoccus | 2018 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 1 | |||
Endolithella | 2019 | 石内生 Endolithic | 18S rDNA, ITS | 1 | |||
Laetitia | 2022 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, rbcL | 1 | |||
分类位置待进一步确认的属 Genera whose taxonomic position should be further confirmed | |||||||
粗刺藻属 Acanthosphaera | 1899 | 浮游(淡水) Planktonic (freshwater) | NA | 2 | |||
胶丝藻属 Gloeotila | 1843 | 附着或自由漂浮, 水生或陆生 Epiphytic or free-floating, aquatic or terrestrial | 18S rDNA, ITS, rbcL | 17 | |||
Catena | 1900 | 浮游(淡水) Planktonic (freshwater) | 18S rDNA, ITS | 2 | |||
角球藻属 Keratococcus | 1915 | 浮游(淡水)、陆生 Planktonic (freshwater) and terrestrial | NA | 9 | |||
双细胞藻属 Dicellula | 1926 | 浮游(淡水) Planktonic (freshwater) | NA | 1 | |||
褐胞藻属 Siderocelis | 1934 | 浮游(淡水) Planktonic (freshwater) | NA | 10 | |||
拟多芒藻属 Golenkiniopsis | 1953 | 浮游(淡水) Planktonic (freshwater) | NA | 6 | |||
Palmellochaete | 1953 | 浮游(淡水) Planktonic (freshwater) | NA | 1 | |||
Podohedra | 1958 | 浮游(淡水)或附生 Planktonic (freshwater) or epiphytic | NA | 6 | |||
Fissuricella | 1977 | NA | NA | 1 | |||
Apodococcus | 1984 | 浮游(淡水)或土壤生 Planktonic (freshwater) or the surface of soil | NA | 2 | |||
Cylindrocelis | 1988 | NA | NA | 1 | |||
Pseudosiderocelopsis | 1999 | 土壤生 The surface of soil | NA | 1 |
图2 基于小球藻科18S rDNA序列的系统发育分析(MEGA7, NJ方法, bootstrap test为1,000次), 图中拉丁学名如若有对应的中文名, 则见表1和附录1。数据矩阵包含115条序列, 去除模糊比对及两端序列, 矩阵共计1,679个位点。分支长度代表进化距离; 支持值小于50的未被标注。
Fig. 2 Phylogenetic analysis of Chlorellaceae based on 18S rDNA was inferred using the neighbor-joining method in MEGA7, with 1,000 replicates of bootstrap test. If there was a corresponding Chinese name in the Latin name, see Table 1 and Appendix 1. The tree was drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The analysis involved 115 nucleotide sequences. All ambiguous positions were removed for each sequence pair. There was a total of 1,679 positions in the final dataset.
图3 基于18S rDNA联合ITS序列构建的小球藻分支的最大似然进化树, 星号标注真正的株系。图中拉丁学名如若有对应的中文名, 则见表1和附录1。共包含155条序列, 数据矩阵长度为2,253 bp。采用IQ-TREE web server (Trifinopoulos et al, 2016)对每个分区进行最优模型的评估, 并构建系统发育树。分支上的数值代表SH-aLRT support (%)、aBayes support (%)和ultrafast bootstrap support (%)。
Fig. 3 Phylogenetic tree of the Chlorella clade based on 18S rDNA + ITS sequences using maximum likelihood (ML) methods. The asterisk refers to the authentic strains. If there was a corresponding Chinese name in the Latin name, see Table 1 and Appendix 1. The analysis involved 155 nucleotide sequences. There was a total of 2,253 positions in the final dataset. The best substitution model of each partition was estimated using default parameters of IQ-TREE web server (Trifinopoulos et al, 2016). Phylogenetic tree was reconstructed on the IQ-TREE web server. Values at the branches represent SH-aLRT support (%), aBayes support, ultrafast bootstrap support (%), respectively.
图4 基于18S rDNA联合ITS序列构建的类小球藻分支的最大似然进化树, 图中拉丁学名如若有对应的中文名, 则见表1和附录1。用到了97条序列, 数据矩阵长度为2,217 bp。针对每个分区采用IQ-TREE (Trifinopoulos et al, 2016)进行最优模型的评估, 系统发育树采用IQ-TREE软件构建。分支上的数值代表SH-aLRT support (%)、aBayes support和ultrafast bootstrap support (%)。
Fig. 4 Phylogenetic tree of Parachlorella clade based on 18S rDNA + ITS sequences using maximum likelihood (ML) methods. If there was a corresponding Chinese name in the Latin name, see Table 1 and Appendix 1. The analysis involved 97 nucleotide sequences. There was a total of 2,217 positions in the final dataset. The best substitution model of each partition was estimated using default parameters of IQ-TREE (Trifinopoulos et al, 2016). Phylogenetic tree was reconstructed on the IQ-TREE. Values at the branches represent SH-aLRT support (%), aBayes support,.ultrafast bootstrap support (%), respectively.
序号 No. | 物种名 Species | 株系 Strain/isolate | GenBank编号 GenBank accession | 长度 Length (bp) | 形式 Form | AT含量 AT% | 是否有IR区 IR region |
---|---|---|---|---|---|---|---|
1 | 原壳异养小球藻 Auxenochlorella protothecoides | UTEX 2341 | KY613608.1 | 84,577 | Circular | 69.2 | No |
2 | 原壳异养小球藻 A. protothecoides | UTEX 25 | CM011001.1 | 84,576 | Circular | 69.2 | No |
3 | 原壳异养小球藻 A. protothecoides | NA | KC843975.1 | 84,580 | Circular | 69.2 | No |
4 | 原壳异养小球藻 A. protothecoides | NA | NC_023775.1 | 84,576 | Linear | 69.2 | No |
5 | 蛋白核异养小球藻 A. pyrenoidosa | FACHB-5 | MN128434.1 | 107,442 | Circular | 65.5 | No |
6 | 旋动小球藻 Chlorella heliozoae | NA | NC_036805.1 | 124,353 | Circular | 64.7 | No |
7 | 索罗金小球藻 C. sorokiniana | BD08 | CM017271.1 | 109,940 | Circular | 66 | No |
8 | 索罗金小球藻 C. sorokiniana | 1230 | KJ742376.1 | 109,803 | Circular | 66 | No |
9 | 索罗金小球藻 C. sorokiniana | 1602 | CM009642.1 | 122,497 | Circular | 66.5 | Yes |
10 | 索罗金小球藻 C. sorokiniana | NA | NC_023835.1 | 109,811 | Circular | 66 | No |
11 | 小球藻 Chlorella sp. | Dachan | CM017270.1 | 113,449 | Circular | 65.9 | No |
12 | 小球藻 Chlorella sp. | ArM0029B | KF554427.1 | 119,989 | Circular | 66.1 | No |
13 | 小球藻 Chlorella sp. | ATCC 30562 | KY629617.1 | 124,881 | Circular | 66.1 | No |
14 | 多变小球藻 C. variabilis | NC64A | KJ718922.1 | 124,793 | Circular | 66.1 | No |
15 | 多变小球藻 C. variabilis | crs4cvariabilis2014 | KP271969.1 | 124,793 | Circular | 66.1 | No |
16 | 多变小球藻 C. variabilis | NA | NC_015359.1 | 124,579 | Circular | 66 | No |
17 | 多变小球藻 C. variabilis | DT025 | MZ647689.1 | 118,106 | Circular | 66.1 | No |
18 | 普通小球藻 C. vulgaris | NJ-7 | MK948100.1 | 154,201 | Circular | 68.3 | No |
19 | 普通小球藻 C. vulgaris | UTEX259 | MK948102.1 | 176,851 | Circular | 67.9 | Yes |
20 | 普通小球藻 C. vulgaris | C-27 | NC_001865.1 | 150,613 | Circular | 68.4 | No |
21 | 普通小球藻 C. vulgaris | NA | MT577052.1 | 165,412 | Circular | 68.2 | No |
22 | 普通小球藻 C.vulgaris | ITBBA3-12 | MT920676.1 | 168,369 | Circular | 67 | No |
23 | 尖双月藻 Dicloster acuatus | SAG 41.98 | NC_025546.1 | 169,201 | Circular | 70 | Yes |
24 | 旋孢藻属 Helicosporidium sp. | NA | NC_008100.1 | 37,454 | Circular | 73.1 | No |
25 | Marvania geminata | SAG 12.88 | NC_025549.1 | 108,470 | Circular | 61.8 | Yes |
26 | Micractinium conductrix | SAG 241.80 | CM009644.1 | 149,364 | Circular | 65.1 | Yes |
27 | M. conductrix | NA | NC_036806.1 | 129,436 | Circular | 65.3 | No |
28 | M. pusillum | CCAP 232/1 | MN649872.1 | 115,638 | Circular | 64.8 | No |
29 | M. singularis | NA | MN894287.1 | 139,597 | Circular | 66 | No |
30 | 微芒藻 Micractinium sp. | LBA 32 | MH983006.1 | 109,688 | Circular | 65.3 | No |
31 | 凯氏类小球藻 Parachlorella kessleri | NA | MN013385.1 | 109,642 | Linear | 70.5 | Yes |
32 | 凯氏类小球藻 P. kessleri | SAG 211-11g | NC_012978.1 | 123,994 | Circular | 70 | Yes |
33 | Prototheca cutis | NA | NC_037480.1 | 51,673 | Circular | 70.3 | No |
34 | 大型无绿藻 Prototheca stagnorum | NA | NC_037479.1 | 48,188 | Circular | 74.3 | No |
35 | 小型无绿藻 P. wickerhamii | SAG 263-11 | KJ001761.1 | 55,636 | Circular | 68.9 | No |
36 | 小型无绿藻 P. wickerhamii | DBVPG | NC_054192.1 | 47,997 | Circular | 71.8 | No |
37 | 小型无绿藻 P. wickerhamii | NA | AJ245645.1 | 22,085 | Linear | 66.6 | No |
38 | 中型无绿藻 P. zopfii | SAG 2063 | NC_037450.1 | 28,698 | Circular | 73 | No |
39 | 中型无绿藻 P. zopfii | SAG 2021 | NC_045059.1 | 28,638 | Circular | 73.2 | No |
40 | Pseudochloris wilhelmii | SAG 1.80 | NC_025547.1 | 109,775 | Circular | 63.3 | Yes |
41 | Geminella minor | SAG 22.88 | NC_025544.1 | 129,187 | Circular | 72.2 | Yes |
表2 小球藻科已知质体基因组
Table 2 The known plastid genomes of Chlorellaceae
序号 No. | 物种名 Species | 株系 Strain/isolate | GenBank编号 GenBank accession | 长度 Length (bp) | 形式 Form | AT含量 AT% | 是否有IR区 IR region |
---|---|---|---|---|---|---|---|
1 | 原壳异养小球藻 Auxenochlorella protothecoides | UTEX 2341 | KY613608.1 | 84,577 | Circular | 69.2 | No |
2 | 原壳异养小球藻 A. protothecoides | UTEX 25 | CM011001.1 | 84,576 | Circular | 69.2 | No |
3 | 原壳异养小球藻 A. protothecoides | NA | KC843975.1 | 84,580 | Circular | 69.2 | No |
4 | 原壳异养小球藻 A. protothecoides | NA | NC_023775.1 | 84,576 | Linear | 69.2 | No |
5 | 蛋白核异养小球藻 A. pyrenoidosa | FACHB-5 | MN128434.1 | 107,442 | Circular | 65.5 | No |
6 | 旋动小球藻 Chlorella heliozoae | NA | NC_036805.1 | 124,353 | Circular | 64.7 | No |
7 | 索罗金小球藻 C. sorokiniana | BD08 | CM017271.1 | 109,940 | Circular | 66 | No |
8 | 索罗金小球藻 C. sorokiniana | 1230 | KJ742376.1 | 109,803 | Circular | 66 | No |
9 | 索罗金小球藻 C. sorokiniana | 1602 | CM009642.1 | 122,497 | Circular | 66.5 | Yes |
10 | 索罗金小球藻 C. sorokiniana | NA | NC_023835.1 | 109,811 | Circular | 66 | No |
11 | 小球藻 Chlorella sp. | Dachan | CM017270.1 | 113,449 | Circular | 65.9 | No |
12 | 小球藻 Chlorella sp. | ArM0029B | KF554427.1 | 119,989 | Circular | 66.1 | No |
13 | 小球藻 Chlorella sp. | ATCC 30562 | KY629617.1 | 124,881 | Circular | 66.1 | No |
14 | 多变小球藻 C. variabilis | NC64A | KJ718922.1 | 124,793 | Circular | 66.1 | No |
15 | 多变小球藻 C. variabilis | crs4cvariabilis2014 | KP271969.1 | 124,793 | Circular | 66.1 | No |
16 | 多变小球藻 C. variabilis | NA | NC_015359.1 | 124,579 | Circular | 66 | No |
17 | 多变小球藻 C. variabilis | DT025 | MZ647689.1 | 118,106 | Circular | 66.1 | No |
18 | 普通小球藻 C. vulgaris | NJ-7 | MK948100.1 | 154,201 | Circular | 68.3 | No |
19 | 普通小球藻 C. vulgaris | UTEX259 | MK948102.1 | 176,851 | Circular | 67.9 | Yes |
20 | 普通小球藻 C. vulgaris | C-27 | NC_001865.1 | 150,613 | Circular | 68.4 | No |
21 | 普通小球藻 C. vulgaris | NA | MT577052.1 | 165,412 | Circular | 68.2 | No |
22 | 普通小球藻 C.vulgaris | ITBBA3-12 | MT920676.1 | 168,369 | Circular | 67 | No |
23 | 尖双月藻 Dicloster acuatus | SAG 41.98 | NC_025546.1 | 169,201 | Circular | 70 | Yes |
24 | 旋孢藻属 Helicosporidium sp. | NA | NC_008100.1 | 37,454 | Circular | 73.1 | No |
25 | Marvania geminata | SAG 12.88 | NC_025549.1 | 108,470 | Circular | 61.8 | Yes |
26 | Micractinium conductrix | SAG 241.80 | CM009644.1 | 149,364 | Circular | 65.1 | Yes |
27 | M. conductrix | NA | NC_036806.1 | 129,436 | Circular | 65.3 | No |
28 | M. pusillum | CCAP 232/1 | MN649872.1 | 115,638 | Circular | 64.8 | No |
29 | M. singularis | NA | MN894287.1 | 139,597 | Circular | 66 | No |
30 | 微芒藻 Micractinium sp. | LBA 32 | MH983006.1 | 109,688 | Circular | 65.3 | No |
31 | 凯氏类小球藻 Parachlorella kessleri | NA | MN013385.1 | 109,642 | Linear | 70.5 | Yes |
32 | 凯氏类小球藻 P. kessleri | SAG 211-11g | NC_012978.1 | 123,994 | Circular | 70 | Yes |
33 | Prototheca cutis | NA | NC_037480.1 | 51,673 | Circular | 70.3 | No |
34 | 大型无绿藻 Prototheca stagnorum | NA | NC_037479.1 | 48,188 | Circular | 74.3 | No |
35 | 小型无绿藻 P. wickerhamii | SAG 263-11 | KJ001761.1 | 55,636 | Circular | 68.9 | No |
36 | 小型无绿藻 P. wickerhamii | DBVPG | NC_054192.1 | 47,997 | Circular | 71.8 | No |
37 | 小型无绿藻 P. wickerhamii | NA | AJ245645.1 | 22,085 | Linear | 66.6 | No |
38 | 中型无绿藻 P. zopfii | SAG 2063 | NC_037450.1 | 28,698 | Circular | 73 | No |
39 | 中型无绿藻 P. zopfii | SAG 2021 | NC_045059.1 | 28,638 | Circular | 73.2 | No |
40 | Pseudochloris wilhelmii | SAG 1.80 | NC_025547.1 | 109,775 | Circular | 63.3 | Yes |
41 | Geminella minor | SAG 22.88 | NC_025544.1 | 129,187 | Circular | 72.2 | Yes |
图5 基于72个质体蛋白质序列构建的小球藻科系统发育树, 图中拉丁学名如若有对应的中文名, 则见表1和附录1。利用PhyloSuite软件v1.2.2 (Zhang et al, 2020)提取基因氨基酸序列、序列经比对和修剪、对多基因序列进行串联、选择最优模型, 得到最终序列矩阵包含16,872个氨基酸, 系统发育树采用IQ-TREE软件构建。分支上的数值代表SH-aLRT support (%)、aBayes support和ultrafast bootstrap support (%)。
Fig. 5 Phylogenetic tree of Chlorellaceaen species based on the sequences of 72 plastid proteins. If there was a corresponding Chinese name in the Latin name, see Table 1 and Appendix 1. The amino acid sequences of each of 72 proteins were individually aligned, trimmed, concatenated and model selected using PhyloSuite v1.2.2 (Zhang et al, 2020). There was a total of 16,872 positions in the final dataset. Phylogenetic tree was reconstructed on the IQ-TREE (Trifinopoulos et al, 2016). Values at the branches represent SH-aLRT support (%), aBayes support, ultrafast bootstrap support (%), respectively.
序号 No. | 物种名 Species | 株系 Strain/isolate | GenBank序列号 GenBank accession | 长度 Length (bp) | 形式 Form | A + T含量 A+T content (%) |
---|---|---|---|---|---|---|
1 | 原壳异养小球藻 Auxenochlorella protothecoides | UTEX 2341 | KY681419.1 | 57,063 | Circular | 71.1 |
2 | 原壳异养小球藻 A. protothecoides | UTEX 25 | CM011000.1 | 57,340 | Circular | 71.3 |
3 | 原壳异养小球藻 A. protothecoides | NA | NC_026009.1 | 57,274 | Circular | 71.3 |
4 | 普通小球藻 Chlorella vulgaris | UTEX259 | MK948103.1 | 98,062 | Circular | 70 |
5 | 普通小球藻 C. vulgaris | NJ-7 | NC_045362.1 | 87,477 | Circular | 70 |
6 | 旋动小球藻 C. heliozoae | NA | KY629615.1 | 62,477 | Circular | 68.3 |
7 | 索罗金小球藻 C. sorokiniana | 1602 | CM009641.1 | 72,121 | Circular | 69.5 |
8 | 索罗金小球藻 C. sorokiniana | 1230 | NC_024626.1 | 52,528 | Circular | 70.9 |
9 | 索罗金小球藻 C. sorokiniana | NA | KM241869.1 | 52,528 | Circular | 70.9 |
10 | 多变小球藻 C. variabilis | cvariabilis2014 | KP271968.1 | 78,500 | Circular | 71.9 |
11 | 多变小球藻 C. variabilis | NC64A | NC_025413.1 | 78,500 | Circular | 71.9 |
12 | 小球藻 Chlorella sp. | ATCC 30562 | KY629618.1 | 79,601 | Circular | 71.9 |
13 | 小球藻 Chlorella sp. | ArM0029B | KF554428.1 | 65,049 | Circular | 71.5 |
14 | Micractinium conductrix | SAG 241.80 | CM009643.1 | 95,661 | Circular | 70.3 |
15 | M. conductrix | NA | KY629619.1 | 74,708 | Circular | 70.6 |
16 | 微芒藻 M. pusillum | CCAP 232/1 | MN649871.1 | 70,061 | Circular | 68.7 |
17 | M. simplicissimum | KSF0127 | MW125581.1 | 67,973 | Linear | 71.2 |
18 | M. singularis | MM0003 | MN894286.1 | 75,931 | Circular | 72.4 |
19 | M. variabile | KSF0031 | MT332838.1 | 65,047 | Circular | 71.5 |
20 | 微芒藻 Micractinium sp. | NA | MH718999.1 | 77,435 | Circular | 65.2 |
21 | 凯氏类小球藻 Parachlorella kessleri | TY-01 | MW533534.1 | 64,744 | Linear | 73.1 |
22 | 大型无绿藻 Prototheca stagnorum | NA | MG833838.1 | 80,023 | Linear | 72.6 |
23 | Prototheca wickerhamii | DBVPG | MN794237.1 | 53,822 | Circular | 74.2 |
24 | 小型无绿藻 P. wickerhamii | HMC1 | CM009948.1 | 52,179 | Circular | 74.2 |
25 | 小型无绿藻 P. wickerhamii | NA | NC_001613.1 | 55,328 | Circular | 74.2 |
26 | 中型无绿藻 P. zopfii | SAG 2063 | NC_037449.1 | 38,164 | Circular | 71.3 |
27 | 中型无绿藻 P. zopfii | SAG 2021 | NC_045058.1 | 39,222 | Circular | 71.3 |
28 | 旋孢藻属 Helicosporidium sp. | AT-2000 | NC_017841.1 | 49,343 | Circular | 74.5 |
表3 小球藻科已知线粒体基因组
Table 3 The known mitochondrial genomes of Chlorellaceae
序号 No. | 物种名 Species | 株系 Strain/isolate | GenBank序列号 GenBank accession | 长度 Length (bp) | 形式 Form | A + T含量 A+T content (%) |
---|---|---|---|---|---|---|
1 | 原壳异养小球藻 Auxenochlorella protothecoides | UTEX 2341 | KY681419.1 | 57,063 | Circular | 71.1 |
2 | 原壳异养小球藻 A. protothecoides | UTEX 25 | CM011000.1 | 57,340 | Circular | 71.3 |
3 | 原壳异养小球藻 A. protothecoides | NA | NC_026009.1 | 57,274 | Circular | 71.3 |
4 | 普通小球藻 Chlorella vulgaris | UTEX259 | MK948103.1 | 98,062 | Circular | 70 |
5 | 普通小球藻 C. vulgaris | NJ-7 | NC_045362.1 | 87,477 | Circular | 70 |
6 | 旋动小球藻 C. heliozoae | NA | KY629615.1 | 62,477 | Circular | 68.3 |
7 | 索罗金小球藻 C. sorokiniana | 1602 | CM009641.1 | 72,121 | Circular | 69.5 |
8 | 索罗金小球藻 C. sorokiniana | 1230 | NC_024626.1 | 52,528 | Circular | 70.9 |
9 | 索罗金小球藻 C. sorokiniana | NA | KM241869.1 | 52,528 | Circular | 70.9 |
10 | 多变小球藻 C. variabilis | cvariabilis2014 | KP271968.1 | 78,500 | Circular | 71.9 |
11 | 多变小球藻 C. variabilis | NC64A | NC_025413.1 | 78,500 | Circular | 71.9 |
12 | 小球藻 Chlorella sp. | ATCC 30562 | KY629618.1 | 79,601 | Circular | 71.9 |
13 | 小球藻 Chlorella sp. | ArM0029B | KF554428.1 | 65,049 | Circular | 71.5 |
14 | Micractinium conductrix | SAG 241.80 | CM009643.1 | 95,661 | Circular | 70.3 |
15 | M. conductrix | NA | KY629619.1 | 74,708 | Circular | 70.6 |
16 | 微芒藻 M. pusillum | CCAP 232/1 | MN649871.1 | 70,061 | Circular | 68.7 |
17 | M. simplicissimum | KSF0127 | MW125581.1 | 67,973 | Linear | 71.2 |
18 | M. singularis | MM0003 | MN894286.1 | 75,931 | Circular | 72.4 |
19 | M. variabile | KSF0031 | MT332838.1 | 65,047 | Circular | 71.5 |
20 | 微芒藻 Micractinium sp. | NA | MH718999.1 | 77,435 | Circular | 65.2 |
21 | 凯氏类小球藻 Parachlorella kessleri | TY-01 | MW533534.1 | 64,744 | Linear | 73.1 |
22 | 大型无绿藻 Prototheca stagnorum | NA | MG833838.1 | 80,023 | Linear | 72.6 |
23 | Prototheca wickerhamii | DBVPG | MN794237.1 | 53,822 | Circular | 74.2 |
24 | 小型无绿藻 P. wickerhamii | HMC1 | CM009948.1 | 52,179 | Circular | 74.2 |
25 | 小型无绿藻 P. wickerhamii | NA | NC_001613.1 | 55,328 | Circular | 74.2 |
26 | 中型无绿藻 P. zopfii | SAG 2063 | NC_037449.1 | 38,164 | Circular | 71.3 |
27 | 中型无绿藻 P. zopfii | SAG 2021 | NC_045058.1 | 39,222 | Circular | 71.3 |
28 | 旋孢藻属 Helicosporidium sp. | AT-2000 | NC_017841.1 | 49,343 | Circular | 74.5 |
图6 基于线粒体基因组32个蛋白质序列构建的系统发育树, 序列矩阵包含7,665个氨基酸, 图中拉丁学名如若有对应的中文名, 则见表1和附录1。利用PhyloSuite v1.2.2软件(Zhang et al, 2020)提取基因氨基酸序列、序列经比对和修剪、对多基因序列进行串联、选择最优模型, 系统发育树采用IQ-TREE软件构建。分支上的数值代表SH-aLRT support (%)、aBayes support和ultrafast bootstrap support (%)。
Fig. 6 Phylogenetic tree of Chlorellaceaen species based on the sequences of 32 mitochondrial proteins. The amino acid sequences of each of 32 proteins were individually aligned, trimmed, concatenated and model selected using PhyloSuite v1.2.2 (Zhang et al, 2020). There was a total of 7,665 positions in the final dataset. Phylogenetic tree was reconstructed on the IQ-TREE (Trifinopoulos et al, 2016). Values at the branches represent SH-aLRT support (%), aBayes support, ultrafast bootstrap support (%), respectively.
序号 No. | 物种名 Species | 株系 Strain/ isolate | 组装序列号 Assembly accession | 基因组大小 Genome size (Mb) | 测序技术 Sequencing technology | 组装水平 Assembly level (N50, Mb) | 基因数 No. of genes | 组装时间Assembly year |
---|---|---|---|---|---|---|---|---|
1 | 多变小球藻 Chlorella variabilis | NC64A | GCF_000147415.1 | 46.16 | Sanger WGS | Scaffold (1.5Mb) | 9,791 | 2010 |
2 | 普通小球藻 C. vulgaris | 211/11P | SIDB00000000 | 40.00 | PacBio + BioNano + Illumina | Near-chromosome (2.8Mb) | 10,724 | 2019 |
3 | 普通小球藻 C. vulgaris | NJ-7 | GCA_009720205.1 | 39.08 | Roche 454 + Illumina | Scaffold (0.94Mb) | 9,412 | 2019 |
4 | 普通小球藻 C. vulgaris | UTEX259 | GCA_009720215.1 | 39.13 | Roche 454 + Illumina | Scaffold (0.50Mb) | 9,439 | 2019 |
5 | 普通小球藻 C. vulgaris | UTEX 395 | GCA_001021125.1 | 37.34 | Illumina | Scaffold (0.03Mb) | 6,056 | 2015 |
6 | 普通小球藻 C. vulgaris | UMT-M1 | GCA_008119945.1 | 48.87 | Illumina | Scaffold (0.06Mb) | NA | 2019 |
7 | 索罗金小球藻 C. sorokiniana | 1230 | GCA_003130725.1 | 58.53 | PacBio + Illumina | Chromosome (3.82 Mb) | 12,871 | 2018 |
8 | 索罗金小球藻 C. sorokiniana | UTEX 1602 | GCA_002245835.2 | 59.57 | PacBio + Illumina | Scaffold (unknown), Contig (2.59 Mb) | 9,587 | 2018 |
9 | 索罗金小球藻 C. sorokiniana | 1412 | GCA_003116155.1 | 57.88 | PacBio + Illumina | Chromosome (2.20 Mb) | 12,611 | 2018 |
10 | 索罗金小球藻 C. sorokiniana | 1228 | GCA_002939045.1 | 61.39 | PacBio + OpGen optical mapping | Chromosome (2.41 Mb) | 12,166 | 2018 |
11 | 索罗金小球藻 C. sorokiniana | cultivar07/BD08 | GCA_006782965.1 | 58.69 | Illumina | Scaffold (3.63 Mb) | 10,240 | 2019 |
12 | 索罗金小球藻 C. sorokiniana | cultivar13/BD09 | GCA_006782985.1 | 53.78 | Illumina | Scaffold (3.58 Mb) | 9,668 | 2019 |
13 | 小球藻一种 Chlorella sp.1 | ArM0029B | GCA_002896455.3 | 92.96 | Illumina | Scaffold (0.81 Mb) | NA | 2018 |
14 | 小球藻一种 Chlorella sp. 2 | BAC 9706 | GCA_013372505.1 | 32.96 | Illumina | Scaffold (0.52 Mb) | NA | 2020 |
15 | 小球藻一种 Chlorella sp. 3 | A99 | GCA_003063905.1 | 40.93 | Illumina | Scaffold (1.73 Mb) | NA | 2018 |
16 | 小球藻一种 Chlorella sp. 4 | KRBP | GCA_004335735.1 | 126.28 | Illumina | Contig (0.01 Mb) | NA | 2019 |
17 | 小球藻一种 Chlorella sp. 5 | CH2018 | GCA_009928355.1 | 56.83 | Illumina | Contig (0.02 Mb) | NA | 2020 |
18 | 小球藻一种 Chlorella sp. 6 | Dachan cultivar01 | GCA_006782975.1 | 60.21 | Illumina | Scaffold (2.58 Mb) | 9,821 | 2019 |
19 | Micractinium conductrix | SAG 241.80 | GCA_002245815.2 | 61.02 | PacBio + Illumina | Scaffold (1.21 Mb) | 9,349 | 2018 |
20 | 凯氏类小球藻 Parachlorella kessleri | iCABeR21 | GCA_015712045.1 | 64.92 | Oxford Nanopore + Illumina | Scaffold (0.46Mb) | 8,371+ 874 | 2020 |
21 | 凯氏类小球藻 P. kessleri | NIES-2152 | GCA_001598975.1 | 59.19 | Roche 454 | Scaffold (0.54 Mb) | 13,057 | 2015 |
22 | 原壳异养小球藻 A. protothecoides | UTEX 25 | GCA_003709365.1 | 21.22 | PacBio + Illumina + Roche 454 | Scaffold (0.64 Mb) | NA | 2018 |
23 | 原壳异养小球藻 A. protothecoides | 710 | GCF_000733215.1 | 22.92 | Illumina+Roche 454 | Scaffold (0.29 Mb) | 7,039 | 2014 |
24 | 原壳异养小球藻 A. protothecoides | UTEX 2341 | GCA_002154875.1 | 32.73 | Illumina | Scaffold (0.02 Mb) | NA | 2017 |
25 | 蛋白核异养小球藻 A. pyrenoidosa | FACHB-9 | GCA_001430745.1 | 56.99 | Roche 454 | Scaffold (1.39 Mb) | 10,284 | 2015 |
26 | 旋孢藻属 Helicosporidium sp. | ATCC 50920 | GCA_000690575.1 | 12.37 | Illumina | Contig (0.003 Mb) | 6,035 | 2014 |
27 | 小型无绿藻 Prototheca wickerhamii | ATCC 16529 | GCA_016906385.1 | 16.70 | PacBio+Illumina | Scaffold (1.58 Mb) | 6,081 | 2021 |
28 | 大型无绿藻 P. stagnorum | JCM 9641 | GCA_002794665.1 | 16.90 | Illumina | Scaffold (1.11Mb) | 7,041 | 2017 |
29 | Prototheca cutis | JCM 15793 | GCA_002897115.2 | 20.03 | Illumina | Scaffold (1.41 Mb) | 6,884 | 2018 |
30 | 小型无绿藻 P. wickerhamii | HMC1 | GCA_003255715.1 | 27.59 | Illumina | Scaffold (0.03 Mb) | NA | 2018 |
31 | Prototheca bovis | SAG 2021 | GCA_003612995.1 | 24.74 | Illumina + Roche 454 | Scaffold (unknown), Contig (0.01Mb) | 6,381 | 2018 |
32 | Prototheca ciferrii | SAG 2063 | GCA_003613005.1 | 26.45 | Illumina + Roche 454 | Scaffold (0.01 Mb) | 6,884 | 2018 |
33 | Prototheca cutis | 20-25310 | GCA_016906445.1 | 19.39 | Illumina | Contig (0.01 Mb) | NA | 2021 |
34 | Nannochloris desiccata | UTEX 2526 | GCA_019044685.1 | 21.65 | PacBio | Contig (1.64 Mb) | NA | 2021 |
35 | N. desiccata | UTEX 2437 | GCA_019202925.1 | 20.74 | PacBio | Contig (1.30 Mb) | NA | 2021 |
36 | Nannochloris sp. | RS | GCA_004335565.1 | 13.56 | Illumina | Scaffold (1.18 Mb) | NA | 2019 |
37 | Nannochloris sp. | X1 | GCA_004335555.1 | 13.74 | Illumina | Scaffold (0.05 Mb) | NA | 2019 |
表4 小球藻科已知核基因组信息
Table 4 The known nuclear genome information of Chlorellaceae
序号 No. | 物种名 Species | 株系 Strain/ isolate | 组装序列号 Assembly accession | 基因组大小 Genome size (Mb) | 测序技术 Sequencing technology | 组装水平 Assembly level (N50, Mb) | 基因数 No. of genes | 组装时间Assembly year |
---|---|---|---|---|---|---|---|---|
1 | 多变小球藻 Chlorella variabilis | NC64A | GCF_000147415.1 | 46.16 | Sanger WGS | Scaffold (1.5Mb) | 9,791 | 2010 |
2 | 普通小球藻 C. vulgaris | 211/11P | SIDB00000000 | 40.00 | PacBio + BioNano + Illumina | Near-chromosome (2.8Mb) | 10,724 | 2019 |
3 | 普通小球藻 C. vulgaris | NJ-7 | GCA_009720205.1 | 39.08 | Roche 454 + Illumina | Scaffold (0.94Mb) | 9,412 | 2019 |
4 | 普通小球藻 C. vulgaris | UTEX259 | GCA_009720215.1 | 39.13 | Roche 454 + Illumina | Scaffold (0.50Mb) | 9,439 | 2019 |
5 | 普通小球藻 C. vulgaris | UTEX 395 | GCA_001021125.1 | 37.34 | Illumina | Scaffold (0.03Mb) | 6,056 | 2015 |
6 | 普通小球藻 C. vulgaris | UMT-M1 | GCA_008119945.1 | 48.87 | Illumina | Scaffold (0.06Mb) | NA | 2019 |
7 | 索罗金小球藻 C. sorokiniana | 1230 | GCA_003130725.1 | 58.53 | PacBio + Illumina | Chromosome (3.82 Mb) | 12,871 | 2018 |
8 | 索罗金小球藻 C. sorokiniana | UTEX 1602 | GCA_002245835.2 | 59.57 | PacBio + Illumina | Scaffold (unknown), Contig (2.59 Mb) | 9,587 | 2018 |
9 | 索罗金小球藻 C. sorokiniana | 1412 | GCA_003116155.1 | 57.88 | PacBio + Illumina | Chromosome (2.20 Mb) | 12,611 | 2018 |
10 | 索罗金小球藻 C. sorokiniana | 1228 | GCA_002939045.1 | 61.39 | PacBio + OpGen optical mapping | Chromosome (2.41 Mb) | 12,166 | 2018 |
11 | 索罗金小球藻 C. sorokiniana | cultivar07/BD08 | GCA_006782965.1 | 58.69 | Illumina | Scaffold (3.63 Mb) | 10,240 | 2019 |
12 | 索罗金小球藻 C. sorokiniana | cultivar13/BD09 | GCA_006782985.1 | 53.78 | Illumina | Scaffold (3.58 Mb) | 9,668 | 2019 |
13 | 小球藻一种 Chlorella sp.1 | ArM0029B | GCA_002896455.3 | 92.96 | Illumina | Scaffold (0.81 Mb) | NA | 2018 |
14 | 小球藻一种 Chlorella sp. 2 | BAC 9706 | GCA_013372505.1 | 32.96 | Illumina | Scaffold (0.52 Mb) | NA | 2020 |
15 | 小球藻一种 Chlorella sp. 3 | A99 | GCA_003063905.1 | 40.93 | Illumina | Scaffold (1.73 Mb) | NA | 2018 |
16 | 小球藻一种 Chlorella sp. 4 | KRBP | GCA_004335735.1 | 126.28 | Illumina | Contig (0.01 Mb) | NA | 2019 |
17 | 小球藻一种 Chlorella sp. 5 | CH2018 | GCA_009928355.1 | 56.83 | Illumina | Contig (0.02 Mb) | NA | 2020 |
18 | 小球藻一种 Chlorella sp. 6 | Dachan cultivar01 | GCA_006782975.1 | 60.21 | Illumina | Scaffold (2.58 Mb) | 9,821 | 2019 |
19 | Micractinium conductrix | SAG 241.80 | GCA_002245815.2 | 61.02 | PacBio + Illumina | Scaffold (1.21 Mb) | 9,349 | 2018 |
20 | 凯氏类小球藻 Parachlorella kessleri | iCABeR21 | GCA_015712045.1 | 64.92 | Oxford Nanopore + Illumina | Scaffold (0.46Mb) | 8,371+ 874 | 2020 |
21 | 凯氏类小球藻 P. kessleri | NIES-2152 | GCA_001598975.1 | 59.19 | Roche 454 | Scaffold (0.54 Mb) | 13,057 | 2015 |
22 | 原壳异养小球藻 A. protothecoides | UTEX 25 | GCA_003709365.1 | 21.22 | PacBio + Illumina + Roche 454 | Scaffold (0.64 Mb) | NA | 2018 |
23 | 原壳异养小球藻 A. protothecoides | 710 | GCF_000733215.1 | 22.92 | Illumina+Roche 454 | Scaffold (0.29 Mb) | 7,039 | 2014 |
24 | 原壳异养小球藻 A. protothecoides | UTEX 2341 | GCA_002154875.1 | 32.73 | Illumina | Scaffold (0.02 Mb) | NA | 2017 |
25 | 蛋白核异养小球藻 A. pyrenoidosa | FACHB-9 | GCA_001430745.1 | 56.99 | Roche 454 | Scaffold (1.39 Mb) | 10,284 | 2015 |
26 | 旋孢藻属 Helicosporidium sp. | ATCC 50920 | GCA_000690575.1 | 12.37 | Illumina | Contig (0.003 Mb) | 6,035 | 2014 |
27 | 小型无绿藻 Prototheca wickerhamii | ATCC 16529 | GCA_016906385.1 | 16.70 | PacBio+Illumina | Scaffold (1.58 Mb) | 6,081 | 2021 |
28 | 大型无绿藻 P. stagnorum | JCM 9641 | GCA_002794665.1 | 16.90 | Illumina | Scaffold (1.11Mb) | 7,041 | 2017 |
29 | Prototheca cutis | JCM 15793 | GCA_002897115.2 | 20.03 | Illumina | Scaffold (1.41 Mb) | 6,884 | 2018 |
30 | 小型无绿藻 P. wickerhamii | HMC1 | GCA_003255715.1 | 27.59 | Illumina | Scaffold (0.03 Mb) | NA | 2018 |
31 | Prototheca bovis | SAG 2021 | GCA_003612995.1 | 24.74 | Illumina + Roche 454 | Scaffold (unknown), Contig (0.01Mb) | 6,381 | 2018 |
32 | Prototheca ciferrii | SAG 2063 | GCA_003613005.1 | 26.45 | Illumina + Roche 454 | Scaffold (0.01 Mb) | 6,884 | 2018 |
33 | Prototheca cutis | 20-25310 | GCA_016906445.1 | 19.39 | Illumina | Contig (0.01 Mb) | NA | 2021 |
34 | Nannochloris desiccata | UTEX 2526 | GCA_019044685.1 | 21.65 | PacBio | Contig (1.64 Mb) | NA | 2021 |
35 | N. desiccata | UTEX 2437 | GCA_019202925.1 | 20.74 | PacBio | Contig (1.30 Mb) | NA | 2021 |
36 | Nannochloris sp. | RS | GCA_004335565.1 | 13.56 | Illumina | Scaffold (1.18 Mb) | NA | 2019 |
37 | Nannochloris sp. | X1 | GCA_004335555.1 | 13.74 | Illumina | Scaffold (0.05 Mb) | NA | 2019 |
[1] |
Ahmad MT, Shariff M, Md Yusoff F, Goh YM, Banerjee S (2020) Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12, 328-346.
DOI URL |
[2] |
Aslam Z, Shin W, Kim MK, Im WT, Lee ST (2007) Marinichlorella kaistiae gen. et sp. nov. (Trebouxiophyceae, Chlorophyta) based on polyphasic taxonomy. Journal of Phycology, 43, 576-584.
DOI URL |
[3] | Beijerinck MW (1890) Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Zeitung, 47, 757-785. |
[4] | Bi LJ, Hu ZY (2004) Flora Algarum Sinicarum Aquae Dulcis (Tomus VIII) · Chlorophyta:Chlorococcales (I). Science Press, Beijing. (in Chinese) |
[毕列爵, 胡征宇 (2004) 中国淡水藻志(第八卷) · 绿藻门: 绿球藻目(上). 科学出版社, 北京.] | |
[5] |
Bock C, Krienitz L, Pröschold T (2011a) Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea, 11, 293-312.
DOI URL |
[6] |
Bock C, Pröschold T, Krienitz L (2011b) Updating the genus Dictyosphaerium and description of Mucidosphaerium gen. nov. (Trebouxiophyceae) based on morphological and molecular data. Journal of Phycology, 47, 638-652.
DOI URL |
[7] |
Bock C, Pröschold T, Krienitz L (2010) Two new Dictyosphaerium-morphotype lineages of the Chlorellaceae (Trebouxiophyceae): Heynigia gen. nov. and Hindakia gen. nov. European Journal of Phycology, 45, 267-277.
DOI URL |
[8] |
Brar A, Kumar M, Soni T, Vivekanand V, Pareek N (2021) Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: A review. Bioresource Technology, 339, 125597.
DOI URL |
[9] | Brunnthaler J (1913) Die systematische Gliederung der Protococcales (Chlorophyceae). Verhandlungen der kaiserlich-königlichen zoologisch-botanischen Gesellschaft in Wien, 63, 76-91. |
[10] | Brunnthaler J (1915) Protococcales. In: Die Süsswasser-Flora Deutschlands, Österreichs und der Schweiz, Vol. 5 (ed. Pascher A), pp. 52-205. Gustav Fischer, Jena. |
[11] |
Chae H, Lim S, Kim HS, Choi HG, Kim JH (2019) Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica. Algae, 34, 267-275.
DOI URL |
[12] |
Champenois J, Marfaing H, Pierre R (2015) Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. Journal of Applied Phycology, 27, 1845-1851.
DOI URL |
[13] |
Darienko T, Pröschold T (2015) Genetic variability and taxonomic revision of the genus Auxenochlorella (Shihira et Krauss) Kalina et Puncocharova (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 51, 394-400.
DOI PMID |
[14] |
Darienko T, Rad-Menéndez C, Campbell C, Pröschold T (2019) Are there any true marine Chlorella species? Molecular phylogenetic assessment and ecology of marine Chlorella-like organisms, including a description of Droopiella gen. nov. Systematics and Biodiversity, 17, 811-829.
DOI PMID |
[15] |
Elshobary ME, Abo-Shady AM, Khairy HM, Essa D, Zabed HM, Qi XH, Abomohra A (2019) Influence of nutrient supplementation and starvation conditions on the biomass and lipid productivities of Micractinium reisseri grown in wastewater for biodiesel production. Journal of Environmental Management, 250, 109529.
DOI URL |
[16] |
Fawley MW, Fawley KP, Owen HA (2005) Diversity and ecology of small coccoid green algae from Lake Itasca, Minnesota, USA, including Meyerella planktonica, gen. et sp. nov. Phycologia, 44, 35-48.
DOI URL |
[17] |
Hanagata N (1998) Phylogeny of the subfamily Scotiellocystoideae (Chlorophyceae, Chlorophyta) and related taxa inferred from 18S ribosomal RNA gene sequence data. Journal of Phycology, 34, 1049-1054.
DOI URL |
[18] |
Hanagata N, Chihara M (1997) Concordance between phylogenetic data and ultrastructural features in the classification of Chlorella and related taxa. Phycologia, 36, 38-38.
DOI URL |
[19] | Hegewald E, Hanagata N (2000) Phylogenetic studies on Scenedesmaceae (Chlorophyta). Algological Studies, 100, 29-49. |
[20] |
Hoshina R, Iwataki M, Imamura N (2010) Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year. Phycological Research, 58, 188-201.
DOI URL |
[21] |
Hoshina R, Kobayashi M, Suzaki T, Kusuoka Y (2018) Brandtia ciliaticola gen. et sp. nov. (Chlorellaceae, Trebouxiophyceae) a common symbiotic green coccoid of various ciliate species. Phycological Research, 66, 76-81.
DOI URL |
[22] |
Hoshina R, Nakada T (2018) Carolibrandtia nom. nov. as a replacement name for Brandtia Hoshina (Chlorellaceae, Trebouxiophyceae). Phycological Research, 66, 82-83.
DOI URL |
[23] | Hu HJ, Li YY, Wei YX, Zhu HZ, Chen JY, Shi ZX (1980) Freshwater Algae in China. Shanghai Science and Technology Press, Shanghai. (in Chinese) |
[胡鸿钧, 李尧英, 魏印心, 朱蕙忠, 陈嘉佑, 施之新 (1980) 中国淡水藻类. 上海科学技术出版社, 上海.] | |
[24] |
Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). Journal of Phycology, 35, 587-598.
DOI URL |
[25] |
Huss VAR, Sogin ML (1989) Primary structure of the Chlorella vulgaris small subunit ribosomal RNA coding region. Nucleic Acids Research, 17, 1255.
PMID |
[26] |
Huss VAR, Sogin ML (1990) Phylogenetic position of some Chlorella species within the Chlorococcales based upon complete small-subunit ribosomal RNA sequences. Journal of Molecular Evolution, 31, 432-442.
PMID |
[27] |
Ikeda T, Takeda H (1995) Species-specific differences of pyrenoids in Chlorella (Chlorophyta). Journal of Phycology, 31, 813-818.
DOI URL |
[28] |
Jiang YQ, Pu XD, Zheng D, Zhu T, Wang S, Deng LW, Wang WG (2018) Cultivation of lipid-producing microalgae in struvite-precipitated liquid digestate for biodiesel production. Biotechnology for Biofuels, 11, 101.
DOI PMID |
[29] |
Juárez ÁB, Vélez CG, Iñiguez AR, Martínez DE, Rodríguez MC, Vigna MS, del Carmen Ríos de Molina M (2011) A Parachlorella kessleri (Trebouxiophyceae, Chlorophyta) strain from an extremely acidic geothermal pond in Argentina. Phycologia, 50, 413-421.
DOI URL |
[30] | Komárek J, Fott B (1983) Chlorophyceae (Grünalgen) Ordnung: Chlorococcales. In: Das Phytoplankton des Süsswassers (Die Binnengewässer) XVI (ed. Huber-Pestalozzi G). Schweizerbart’sche, Stuttgart. |
[31] |
Kothari R, Ahmad S, Pathak VV, Pandey A, Kumar A, Shankarayan R, Black PN, Tyagi VV (2021) Algal-based biofuel generation through flue gas and wastewater utilization: A sustainable prospective approach. Biomass Conversion and Biorefinery, 11, 1419-1442.
DOI |
[32] | Krauss RW, Shihira I (1965) Chlorella, Physiology and Taxonomy of Forty-one Isolates. University of Maryland, Maryland. |
[33] |
Krienitz L, Bock C, Kotut K, Pröschold T (2012) Genotypic diversity of Dictyosphaerium-morphospecies (Chlorellaceae, Trebouxiophyceae) in African inland waters, including the description of four new genera. Fottea, 12, 231-253.
DOI URL |
[34] |
Krienitz L, Bock C, Luo W, Pröschold T (2010) Polyphyletic origin of the Dictyosphaerium morphotype within Chlorellaceae (Trebouxiophyceae). Journal of Phycology, 46, 559-563.
DOI URL |
[35] |
Krienitz L, Hegewald EH, Hepperle D, Huss VAR, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia, 43, 529-542.
DOI URL |
[36] |
Krienitz L, Huss VAR, Bock C (2015) Chlorella: 125 years of the green survivalist. Trends in Plant Science, 20, 67-69.
DOI PMID |
[37] |
Krivina E, Temraleeva A, Sinetova M (2022) New species Micractinium kostikovii (Chlorellaceae, Trebouxiophyceae) from Russia. Phycological Research, 70, 22-34.
DOI URL |
[38] |
Krivina ES, Temraleeva AD (2020) Identification problems and cryptic diversity of Chlorella-clade microalgae (Chlorophyta). Microbiology, 89, 720-732.
DOI |
[39] |
Krivina ES, Temraleeva AD, Bukin YS (2021) Species delimitation and cryptic diversity analysis of Parachlorella- clade microalgae (Chlorophyta). Microbiology, 90, 455-469.
DOI |
[40] |
Liu BW, Hu YX, Hu ZY, Liu GX, Zhu H (2020) Taxonomic scheme of the order Chaetophorales (Chlorophyceae, Chlorophyta) based on Chloroplast genomes. BMC Genomics, 21, 442.
DOI PMID |
[41] | Liu GX, Hu ZY (2012) Flora Algarum Sinicarum Aquae Dulcis (Tomus 15) · Chlorophyta: Chlorococcales (II), Tetrasporales, Dichotomosiphonales, Cladophorales. Science Press, Beijing. (in Chinese) |
[刘国祥, 胡征宇 (2012) 中国淡水藻志 (第十五卷) · 绿藻门: 绿球藻目(下), 四胞藻目, 叉管藻目, 刚毛藻目. 科学出版社, 北京.] | |
[42] |
Luo W, Proschold T, Bock C, Krienitz L (2010) Generic concept in Chlorella-related coccoid green algae (Chlorophyta, Trebouxiophyceae). Plant Biology, 12, 545-553.
DOI PMID |
[43] |
Ma S, Han BY, Huss VAR, Hu XW, Sun XP, Zhang JM (2015) Chlorella thermophila (Trebouxiophyceae, Chlorophyta), a novel thermo-tolerant Chlorella species isolated from an occupied rooftop incubator. Hydrobiologia, 760, 81-89.
DOI URL |
[44] |
Malavasi V, Skvorová Z, Nemcová Y, Skaloud P (2022) Laetitia sardoa gen. & sp. nov., a new member of the Chlorellales (Trebouxiophyceae, Chlorophyta) isolated from Sardinia Island. Phycologia, 61, 375-383.
DOI URL |
[45] |
Martins TP, Ramos V, Hentschke GS, Castelo-Branco R, Rego A, Monteiro M, Brito Â, Tamagnini P, Cary SC, Vasconcelos V, Krienitz L, Magalhães C, Leão PN (2020) The extremophile Endolithella mcmurdoensis gen. et sp. nov. (Trebouxiophyceae, Chlorellaceae), A new Chlorella-like endolithic alga from Antarctica. Journal of Phycology, 56, 208-216.
DOI PMID |
[46] |
McManus HA, Fučíková K, Lewis PO, Lewis LA, Karol KG (2018) Organellar phylogenomics inform systematics in the green algal family Hydrodictyaceae (Chlorophyceae) and provide clues to the complex evolutionary history of plastid genomes in the green algal tree of life. American Journal of Botany, 105, 315-329.
DOI PMID |
[47] |
Neustupa J, Němcová Y, Eliáš M, Škaloud P (2009) Kalinella bambusicola gen. et sp. Nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid Chlorella-like subaerial alga from Southeast Asia. Phycological Research, 57, 159-169.
DOI URL |
[48] |
Patel AK, Choi YY, Sim SJ (2020) Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource Technology, 300, 122741.
DOI URL |
[49] |
Pröschold T, Bock C, Luo W, Krienitz L (2010) Polyphyletic distribution of bristle formation in Chlorellaceae: Micractinium, Diacanthos, Didymogenes and Hegewaldia gen. nov. (Trebouxiophyceae, Chlorophyta). Phycological Research, 58, 1-8.
DOI URL |
[50] |
Pröschold T, Darienko T, Silva PC, Reisser W, Krienitz L (2011) The systematics of Zoochlorella revisited employing an integrative approach. Environmental Microbiology, 13, 350-364.
DOI PMID |
[51] | Shave CD, Millyard L, May RC (2021) Now for something completely different: Prototheca, pathogenic algae. PLoS Pathogens, 17, e1009362. |
[52] |
Škaloud P, Němcová Y, Pytela J, Bogdanov NI, Bock C, Pickinpaugh SH (2014) Planktochlorella nurekis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid green alga carrying significant biotechnological potential. Fottea, 14, 53-62.
DOI URL |
[53] | Smith GM (1950) The Fresh-Water Algae of the United States. McGraw-Hill Book Co, Inc, New York. |
[54] |
Somogyi B, Felföldi T, Solymosi K, Flieger K, Márialigeti K, Böddi B, Vörös L (2013) One step closer to eliminating the nomenclatural problems of minute coccoid green algae: Pseudochloris wilhelmii, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 48, 427-436.
DOI URL |
[55] |
Somogyi B, Felföldi T, Solymosi K, Makk J, Homonnay ZG, Horváth G, Turcsi E, Böddi B, Márialigeti K, Vörös L (2011) Chloroparva pannonica gen. et sp. nov. (Trebouxiophyceae, Chlorophyta)—A new picoplanktonic green alga from a turbid, shallow soda pan. Phycologia, 50, 1-10.
DOI URL |
[56] |
Song HY, Zhang Q, Hu YX, Liu GX, Hu ZY (2015) Cryptic biodiversity of coccoid green algae and progress in the phylogenic studies. Biodiversity Science, 23, 383-397. (in Chinese with English abstract)
DOI |
[宋会银, 张琪, 胡愈炘, 刘国祥, 胡征宇 (2015) 球状绿藻的隐性生物多样性及其分类学进展. 生物多样性, 23, 383-397.]
DOI |
|
[57] | Song HY (2018) Taxonomic and Phylogenetic Studies of the Chlorellaceae from China. PhD dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. (in Chinese with English abstract) |
[宋会银 (2018) 中国小球藻科的分类及系统发育研究. 博士学位论文, 中国科学院水生生物研究所, 武汉.] | |
[58] |
Song HY, Liu XD, Hu YX, Wang QH, Long JJ, Liu GX, Hu ZY (2018a) Coronacoccus hengyangensis gen. et sp. nov., a new member of Chlorellaceae (Trebouxiophyceae, Chlorophyta) with radiococcacean morphology. Phycologia, 57, 363-373.
DOI URL |
[59] |
Song HY, Wang QH, Liu XD, Hu YX, Long JJ, Liu GX, Hu ZY (2018b) Phylogenic diversity and taxonomic problems of the Dictyosphaerium morphotype within the Parachlorella clade (Chlorellaceae, Trebouxiophyceae). Journal of Eukaryotic Microbiology, 65, 382-391.
DOI URL |
[60] |
Štenclová L, Fučíková K, Kaštovský J, Pažoutová M (2017) Molecular and morphological delimitation and generic classification of the family Oocystaceae (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 53, 1263-1282.
DOI PMID |
[61] |
Tartar A, Boucias DG, Adams BJ, Becnel JJ (2002) Phylogenetic analysis identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta). International Journal of Systematic and Evolutionary Microbiology, 52, 273-279.
DOI URL |
[62] |
Torres-Tiji Y, Fields FJ, Mayfield SP (2020) Microalgae as a future food source. Biotechnology Advances, 41, 107536.
DOI URL |
[63] |
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44, W232-W235.
DOI URL |
[64] |
Ueno R, Hanagata N, Urano N, Suzuki M (2005) Molecular phylogeny and phenotypic variation in the heterotrophic green algal genus Prototheca (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 41, 1268-1280.
DOI URL |
[65] |
Ustinova I, Krienitz L, Huss VAR (2001) Closteriopsis acicularis (G. M. Smith) Belcher et Swale is a fusiform alga closely related to Chlorella kessleri Fott et Nováková (Chlorophyta, Trebouxiophyceae). European Journal of Phycology, 36, 341-351.
DOI URL |
[66] |
Wang X, Ye X, Zhao L, Li D, Guo Z, Zhuang H (2017) Genome-wide RAD sequencing data provide unprecedented resolution of the phylogeny of temperate bamboos (Poaceae: Bambusoideae). Scientific Reports, 7, 11546
DOI PMID |
[67] | Wolf M, Krienitz L, Hepperle D (2002) Phylogenetic position of Actinastrum hantzschii Lagerheim 1882 (Chlorophyta, Trebouxiophyceae). Algological Studies, 104, 59-67. |
[68] |
Wu MC, Zhang H, Sun WC, Li YH, Hu Q, Zhou HT, Han DX (2019) Metabolic plasticity of the starchless mutant of Chlorella sorokiniana and mechanisms underlying its enhanced lipid production revealed by comparative metabolomics analysis. Algal Research, 42, 101587.
DOI URL |
[69] |
Yamada T, Sakaguchi K (1982) Comparative studies on Chlorella cell walls: Induction of protoplast formation. Archives of Microbiology, 132, 10-13.
DOI URL |
[70] |
Yamamoto M, Kurihara I, Kawano S (2005) Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta, 221, 766-775.
PMID |
[71] | Zhang C, Xie S, Meng FP (2010) Study on Chlorella pacifica cultivation based on municipal sewage sludge. Chinese Journal of Environmental Engineering, 4, 1186-1190. (in Chinese with English abstract) |
[张聪, 谢爽, 孟范平 (2010) 城市污水厂污泥替代营养盐培养海水小球藻的研究. 环境工程学报, 4, 1186-1190.] | |
[72] |
Zhang D, Gao FL, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348-355.
DOI PMID |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[3] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[4] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[5] | 吕燕文, 王子韵, 肖钰, 何梓晗, 吴超, 胡新生. 谱系分选理论与检测方法的研究进展[J]. 生物多样性, 2024, 32(4): 23400-. |
[6] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[7] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[8] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[9] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[10] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[11] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[12] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[13] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[14] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[15] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn