生物多样性 ›› 2022, Vol. 30 ›› Issue (6): 21503. DOI: 10.17520/biods.2021503
王健铭1,3, 曲梦君1, 王寅1, 冯益明2, 吴波2, 卢琦2, 何念鹏3, 李景文1,*()
收稿日期:
2021-12-07
接受日期:
2022-02-11
出版日期:
2022-06-20
发布日期:
2022-04-20
通讯作者:
李景文
作者简介:
* E-mail: lijingwenhy@bjfu.edu.cn基金资助:
Jianming Wang1,3, Mengjun Qu1, Yin Wang1, Yiming Feng2, Bo Wu2, Qi Lu2, Nianpeng He3, Jingwen Li1,*()
Received:
2021-12-07
Accepted:
2022-02-11
Online:
2022-06-20
Published:
2022-04-20
Contact:
Jingwen Li
摘要:
戈壁荒漠广泛分布于全球干旱和极旱区域, 是我国陆地生态系统的重要组成部分。由于自然环境恶劣和交通条件限制, 目前有关戈壁植物群落物种、功能和系统发育等多维度β多样性形成机制的系统研究还很缺乏, 严重制约着对戈壁植物多样性维持机制的认知。本文以青藏高原北部61个典型戈壁生境植物群落为研究对象, 通过构建系统发育树和测量8个关键功能性状, 获取戈壁生境的物种、功能和系统发育β多样性, 比较3个维度β多样性格局与零模型的差异, 同时量化环境距离和地理距离对其的相对影响, 以探讨戈壁植物多样性的形成机制。结果显示: (1)戈壁植物的物种、功能和系统发育β多样性均表现出显著的距离衰减效应; (2)戈壁植物的物种、功能和系统发育β多样性均表现为非随机的格局; (3)由于功能性状趋同进化, 植物功能和系统发育β多样性变化趋势并不一致; (4)环境差异对植物3个维度β多样性均有着比空间距离更为重要的影响, 且土壤含水量、地表砾石盖度等局域生境因素的影响比气候更为强烈。以上结果表明, 戈壁植物的β多样性可能主要由局域生境过滤作用控制, 且不同维度的β多样性分布格局并不一致。
王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文 (2022) 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素. 生物多样性, 30, 21503. DOI: 10.17520/biods.2021503.
Jianming Wang, Mengjun Qu, Yin Wang, Yiming Feng, Bo Wu, Qi Lu, Nianpeng He, Jingwen Li (2022) The drivers of plant taxonomic, functional, and phylogenetic β-diversity in the gobi desert of northern Qinghai-Tibet Plateau. Biodiversity Science, 30, 21503. DOI: 10.17520/biods.2021503.
图1 青藏高原北部戈壁荒漠区植被调查样点分布图。戈壁荒漠分布区底图数据来源于冯益明和卢琦(2017)。
Fig. 1 Distribution of survey sites in gobi deserts of northern Qinghai-Tibet Plateau. The gobi deserts map dataset was provided by Feng and Lu (2017).
功能性状 Functional trait | Blomberg’s K | P |
---|---|---|
叶片氮含量 Leaf nitrogen concentrations (LNC) | 0.10 | 0.29 |
叶片磷含量 Leaf phosphorus concentrations (LPC) | 0.10 | 0.32 |
叶面积 Leaf area (LA) | 0.43 | 0.03 |
比叶面积 Specific leaf area (SLA) | 0.08 | 0.52 |
细根氮含量 Fine root nitrogen concentrations (RNC) | 0.17 | 0.09 |
细根磷含量 Fine root phosphorus concentrations (RPC) | 0.07 | 0.66 |
根长 Root length (RL) | 0.41 | 0.02 |
比根长 Specific root length (SRL) | 0.19 | 0.10 |
表1 8个功能性状的系统发育信号
Table 1 Phylogenetic signal for eight functional traits
功能性状 Functional trait | Blomberg’s K | P |
---|---|---|
叶片氮含量 Leaf nitrogen concentrations (LNC) | 0.10 | 0.29 |
叶片磷含量 Leaf phosphorus concentrations (LPC) | 0.10 | 0.32 |
叶面积 Leaf area (LA) | 0.43 | 0.03 |
比叶面积 Specific leaf area (SLA) | 0.08 | 0.52 |
细根氮含量 Fine root nitrogen concentrations (RNC) | 0.17 | 0.09 |
细根磷含量 Fine root phosphorus concentrations (RPC) | 0.07 | 0.66 |
根长 Root length (RL) | 0.41 | 0.02 |
比根长 Specific root length (SRL) | 0.19 | 0.10 |
图2 青藏高原北部戈壁植物群落物种、功能(平均最近邻体性状距离)和系统发育(平均最近邻体系统发育距离) β多样性观测值(a-c)及其标准效应(d-e)随地理距离的变化趋势
Fig. 2 Variation in plant taxonomic, functional (mean nearest neighbor trait distance), and phylogenetic (mean nearest neighbor phylogenetic distance) β-diversity observed values (a-c) and their standardized effect sizes (d-e) along geographic distance in the gobi deserts of northern Qinghai-Tibet Plateau
环境差异 Environmental difference | 物种β多样性 Taxonomic β-diversity | 功能β多样性 Functional β-diversity | 系统发育β多样性 Phylogenetic β-diversity | |||
---|---|---|---|---|---|---|
观测值 OV | 标准效应 SES | 观测值 OV | 标准效应 SES | 观测值 OV | 标准效应 SES | |
太阳辐射强度 Solar radiation | 0.140** | 0.167** | 0.102 | 0.104 | 0.021 | -0.0002 |
年均温 Annual mean temperature | 0.144** | 0.117** | 0.146* | 0.105 | -0.004 | -0.091 |
温度季节性 Temperature seasonality | 0.112* | 0.065 | 0.117 | 0.039 | 0.091 | 0.026 |
年降水量 Annual precipitation | 0.012 | 0.02 | -0.056 | -0.118 | -0.081 | -0.116 |
降水季节性 Precipitation seasonality | 0.055 | 0.105 | -0.071 | -0.098 | -0.02 | 0.003 |
地表砾石盖度 Gravel coverage | 0.268*** | 0.204*** | 0.372*** | 0.226*** | 0.35*** | 0.191*** |
土壤含水量 Soil moisture content | 0.295*** | 0.270*** | 0.431*** | 0.335*** | 0.27*** | 0.116 |
土壤氮含量 Soil total nitrogen content | 0.017 | 0.089 | -0.021 | 0.031 | 0.014 | 0.071 |
土壤有机碳含量 Soil organic carbon content | 0.104 | 0.123* | 0.199** | 0.175** | 0.013 | -0.056 |
土壤pH值 Soil pH | 0.323*** | 0.328*** | 0.353*** | 0.216** | 0.325*** | 0.183* |
表2 青藏高原北部戈壁植物群落物种、功能(平均最近邻体性状距离)和系统发育(平均最近邻体系统发育距离) β多样性观测值及其标准效应与不同环境因素差异间的相关性
Table 2 Mantel tests for the relationships of plant taxonomic, functional (mean nearest neighbor trait distance), and phylogenetic (mean nearest neighbor phylogenetic distance) β-diversity observed values (OV) and their standard effect size (SES) of with different environmental factors in the gobi deserts of northern Qinghai-Tibet Plateau
环境差异 Environmental difference | 物种β多样性 Taxonomic β-diversity | 功能β多样性 Functional β-diversity | 系统发育β多样性 Phylogenetic β-diversity | |||
---|---|---|---|---|---|---|
观测值 OV | 标准效应 SES | 观测值 OV | 标准效应 SES | 观测值 OV | 标准效应 SES | |
太阳辐射强度 Solar radiation | 0.140** | 0.167** | 0.102 | 0.104 | 0.021 | -0.0002 |
年均温 Annual mean temperature | 0.144** | 0.117** | 0.146* | 0.105 | -0.004 | -0.091 |
温度季节性 Temperature seasonality | 0.112* | 0.065 | 0.117 | 0.039 | 0.091 | 0.026 |
年降水量 Annual precipitation | 0.012 | 0.02 | -0.056 | -0.118 | -0.081 | -0.116 |
降水季节性 Precipitation seasonality | 0.055 | 0.105 | -0.071 | -0.098 | -0.02 | 0.003 |
地表砾石盖度 Gravel coverage | 0.268*** | 0.204*** | 0.372*** | 0.226*** | 0.35*** | 0.191*** |
土壤含水量 Soil moisture content | 0.295*** | 0.270*** | 0.431*** | 0.335*** | 0.27*** | 0.116 |
土壤氮含量 Soil total nitrogen content | 0.017 | 0.089 | -0.021 | 0.031 | 0.014 | 0.071 |
土壤有机碳含量 Soil organic carbon content | 0.104 | 0.123* | 0.199** | 0.175** | 0.013 | -0.056 |
土壤pH值 Soil pH | 0.323*** | 0.328*** | 0.353*** | 0.216** | 0.325*** | 0.183* |
图3 青藏高原北部戈壁植物群落物种、功能(平均最近邻体性状距离)和系统发育(平均最近邻体系统发育距离) β多样性(a-c)及其标准效应(d-e)与地表砾石盖度差异的关系
Fig. 3 The relationships of plant taxonomic, functional (mean nearest neighbor trait distance), and phylogenetic (mean nearest neighbor phylogenetic distance) β-diversity observed value (a-c) and their standardized effect size (d-e) with gravel coverage divergence in the gobi deserts of northern Qinghai-Tibet Plateau
图4 青藏高原北部戈壁植物群落物种(a)、功能和系统发育β多样性(b-c)标准效应与零值的比较。(b)平均最近邻体性状距离和平均最近邻体系统发育距离; (c)平均成对性状距离和平均成对系统发育距离。*** P < 0.001。
Fig. 4 Comparison of the standardized effect size for plant taxonomic (a), functional, and phylogenetic β-diversity (b-c) with zero value across the gobi deserts of northern Qinghai-Tibet Plateau. (b) Mean nearest neighbor trait distance and mean nearest neighbor phylogenetic distance; (c) Mean pairwise trait distance and mean pairwise phylogenetic distance. *** P < 0.001.
图5 单个功能性状β多样性标准效应与零值的比较。(a)平均最近邻体性状距离; (b)平均成对性状距离。NS, P > 0.05; ***, P < 0.001。
Fig. 5 Comparison of the standardized effect size for single functional trait β-diversity with zero value across the gobi deserts of northern Qinghai-Tibet Plateau. (a) Mean nearest neighbor trait distance; (b) Mean pairwise trait distance. LNC, Leaf nitrogen concentrations; LPC, Leaf phosphorus concentrations; SLA, Specific leaf area; LA, Leaf area; RNC, Fine root nitrogen concentrations; RPC, Fine root phosphorus concentrations; SRL, Specific root length; RL, Root length. NS, P > 0.05; ***, P < 0.001.
图6 青藏高原北部戈壁区环境差异与地理距离对植物群落物种、功能(平均最近邻体性状距离)和系统发育(平均最近邻体系统发育距离) β多样性观测值(a)及其标准效应(b)的解释
Fig. 6 The relative contribution of environmental and geographic distance in driving the vraiation in plant taxonomic, functional (mean nearest neighbor trait distance), and phylogenetic (mean nearest neighbor phylogenetic distance) β-diversity observed values (a) and their standardized effect sizes (b) across the gobi deserts of northern Qinghai-Tibet Plateau
[1] |
Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecology Letters, 14, 19-28.
DOI PMID |
[2] |
Arnan X, Cerdá X, Retana J (2015) Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants. PeerJ, 3, e1241.
DOI URL |
[3] |
Bartlett MK, Zhang Y, Yang J, Kreidler N, Sun SW, Lin L, Hu YH, Cao KF, Sack L (2016) Drought tolerance as a driver of tropical forest assembly: Resolving spatial signatures for multiple processes. Ecology, 97, 503-514.
PMID |
[4] |
Baselga A, Orme CDL (2012) betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808-812.
DOI URL |
[5] |
Bernard-Verdier M, Flores O, Navas ML, Garnier E (2013) Partitioning phylogenetic and functional diversity into alpha and beta components along an environmental gradient in a Mediterranean rangeland. Journal of Vegetation Science, 24, 877-889.
DOI URL |
[6] |
Blomberg SP, Garland Jr T, Ives AR (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.
PMID |
[7] |
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715.
DOI PMID |
[8] | Chase JM, Leibold MA (2003) Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago. |
[9] |
Chen SB, Ouyang ZY, Xu WH, Xiao Y (2010) A review of beta diversity studies. Biodiversity Science, 18, 323-335. (in Chinese with English abstract)
DOI |
[陈圣宾, 欧阳志云, 徐卫华, 肖燚 (2010) Beta多样性研究进展. 生物多样性, 18, 323-335.]
DOI |
|
[10] | Chen Y, Yuan ZL, Li PK, Cao RF, Jia HR, Ye YZ (2016) Effects of environment and space on species turnover of woody plants across multiple forest dynamic plots in East Asia. Frontiers in Plant Science, 7, e0126594. |
[11] |
Chi XL, Tang ZY, Fang JY (2014) Patterns of phylogenetic beta diversity in China’s grasslands in relation to geographical and environmental distance. Basic and Applied Ecology, 15, 416-425.
DOI URL |
[12] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MGA(2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian journal of Botany, 51, 335-380.
DOI URL |
[13] |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009) Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548. (in Chinese with English abstract)
DOI URL |
[方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009) 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
DOI |
|
[14] | Fang S, Yuan ZQ, Lin F, Ye J, Hao ZQ, Wang XG (2014) Functional and phylogenetic structures of woody plants in broad-leaved Korean pine mixed forest in Changbai Mountains, Jilin, China. Chinese Science Bulletin, 59, 2342-2348. (in Chinese with English abstract) |
[房帅, 原作强, 蔺菲, 叶吉, 郝占庆, 王绪高 (2014) 长白山阔叶红松林木本植物系统发育与功能性状结构. 科学通报, 59, 2342-2348.] | |
[15] | Feng YM, Lu Q (2017) The map of desert distribution in China. China Cartographic Publishing House, Beijing. (in Chinese with English abstract) |
[冯益明, 卢琦 (2017) 中国戈壁分布图. 中国地图出版社, 北京.] | |
[16] |
Fernandez-Going BM, Harrison SP, Anacker BL, Safford HD (2013) Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology, 94, 2007-2018.
PMID |
[17] |
Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227.
DOI URL |
[18] | Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences, USA, 101, 7651-7656. |
[19] | Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22, 1-19. |
[20] | Gotelli N, Graves G (1996) Neutral Models in Ecology. Smithsonian Institution Press, Washington. |
[21] |
Grubb PJ (1977) The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biological Reviews, 52, 107-145
DOI URL |
[22] |
Hao MH, Ganeshaiah KN, Zhang CY, Zhao XH, von Gadow K (2019) Discriminating among forest communities based on taxonomic, phylogenetic and trait distances. Forest Ecology and Management, 440, 40-47.
DOI URL |
[23] |
Hubbell SP (2006) Neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387-1398.
DOI URL |
[24] |
Jiang ZG (2018) Exploring the distribution patterns and conservation Approaches of biodiversity on the Qinghai- Tibetan Plateau. Biodiversity Science, 26, 107-110. (in Chinese)
DOI URL |
[蒋志刚 (2018) 探索青藏高原生物多样性分布格局与保育途径. 生物多样性, 26, 107-110.]
DOI |
|
[25] |
Jin Y, Qian H (2019) V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353-1359.
DOI |
[26] |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
DOI URL |
[27] |
Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592-599.
DOI URL |
[28] |
Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674.
PMID |
[29] | Li XR, Tan HJ, He MZ, Wang XP, Li XJ (2009) The response of shrub species richness and abundance patterns to environmental change in Alxa Plateau: The premise of shrubs diversity conservation in extremely arid gobi regions. Science China: Earth Sciences, 39, 504-515. (in Chinese) |
[李新荣, 谭会娟, 何明珠, 王新平, 李小军 (2009) 阿拉善高原灌木种的丰富度和多度格局对环境因子变化的响应: 极端干旱戈壁地区灌木多样性保育的前提. 中国科学: 地球科学, 39, 504-515.] | |
[30] |
Liu QF, Liu Y, Sun XL, Zhang XF, Kang S, Ding Y (2015) The explanation of climatic hypotheses to community species diversity patterns in Inner Mongolia grasslands. Biodiversity Science, 23, 463-470. (in Chinese with English abstract)
DOI URL |
[刘庆福, 刘洋, 孙小丽, 张雪峰, 康萨如拉, 丁勇 (2015) 气候假说对内蒙古草原群落物种多样性格局的解释. 生物多样性, 23, 463-470.]
DOI |
|
[31] |
Liu XJ, Ma KP (2015) Plant functional traits—Concepts, Applications and future directions. Scientia Sinica Vitae, 45, 325-339. (in Chinese with English abstract)
DOI URL |
[刘晓娟, 马克平 (2015) 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[32] |
Liu YN, Tang ZY, Fang JY (2015) Contribution of environmental filtering and dispersal limitation to species turnover of temperate deciduous broad-leaved forests in China. Applied Vegetation Science, 18, 34-42.
DOI URL |
[33] | Long T, Wang JM, Li JW, Feng YM, Wu B, Lu Q (2017) Plant diversity and its environmental explaination in gobi district of northern Qinghai-Tibet Plateau, northwestern China. Journal of Beijing Forestry University, 39(12), 17-24. (in Chinese with English abstract) |
[龙婷, 王健铭, 李景文, 冯益民, 吴波, 卢琦 (2017) 青藏高原北部戈壁区植物多样性及其环境解释. 北京林业大学学报, 39(12), 17-24.] | |
[34] |
Long WX, Schamp BS, Zang RG, Ding Y, Huang YF, Xiang YZ (2015) Community assembly in a tropical cloud forest related to specific leaf area and maximum species height. Journal of Vegetation Science, 26, 513-523.
DOI URL |
[35] |
Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995-1003.
DOI URL |
[36] |
Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R (2013) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151-157.
DOI URL |
[37] |
Page NV, Shanker K (2018) Environment and dispersal influence changes in species composition at different scales in woody plants of the Western Ghats, India. Journal of Vegetation Science, 29, 74-83.
DOI URL |
[38] |
Pérez-Harguindeguy N, Diaz S, Gamier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Comwell WK, Craine JM, Gurvich DE (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[39] |
Petchey OL, Gaston KJ (2006) Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741-758.
PMID |
[40] |
Purschke O, Schmid BC, Sykes MT, Poschlod P, Michalski SG, Durka W, Kühn I, Winter M, Prentice HC (2013) Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. Journal of Ecology, 101, 857-866.
DOI URL |
[41] |
Qian H, Ricklefs RE (2012) Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Global Ecology and Biogeography, 21, 341-351.
DOI URL |
[42] |
Qin H, Zhang YB, Dong G, Zhang F (2019) Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China. Chinese Journal of Plant Ecology, 43, 762-773. (in Chinese with English abstract)
DOI URL |
[秦浩, 张殷波, 董刚, 张峰 (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43, 762-773.]
DOI |
|
[43] |
Reisner MD, Grace JB, Pyke DA, Doescher PS (2013) Conditions favouring Bromus tectorum dominance of endangered sagebrush steppe ecosystems. Journal of Applied Ecology, 50, 1039-1049.
DOI URL |
[44] |
Revell LJ (2012) phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223.
DOI URL |
[45] |
Ruiz-Sinoga JD, Diaz AR (2010) Soil degradation factors along a Mediterranean pluviometric gradient in Southern Spain. Geomorphology, 118, 359-368
DOI URL |
[46] |
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675.
PMID |
[47] |
Steinitz O, Heller J, Tsoar A, Rotem D, Kadmon R (2006) Environment, dispersal and patterns of species similarity. Journal of Biogeography, 33, 1044-1054.
DOI URL |
[48] |
Stevens MHH, Carson WP (2002) Resource quantity, not resource heterogeneity, maintains plant diversity. Ecology Letters, 5, 420-426.
DOI URL |
[49] |
Swenson NG, Erickson DL, Mi XC, Bourg NA, Forero-Montaña J, Ge XJ, Howe R, Lake JK, Liu XJ, Ma KP, Pei NC, Thompson J, Uriarte M, Wolf A, Wright SJ, Ye WH, Zhang JL, Zimmerman JK, Kress WJ (2012) Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 93, S112-S125.
DOI URL |
[50] |
Swenson NG, Iida Y, Howe R, Wolf A, Umaña MN, Petprakob K, Turner BL, Ma KP (2017) Tree co-occurrence and transcriptomic response to drought. Nature Communications, 8, 1996.
DOI PMID |
[51] |
Tang ZY, Fang JY, Chi XL, Yang YH, Ma WH, Mohhamot A, Guo ZD, Liu YN, Gaston KJ (2012) Geography, environment, and spatial turnover of species in China’s grasslands. Ecography, 35, 1103-1109.
DOI URL |
[52] | Tongway DJ, Ludwig JA (2005) Heterogeneity in arid and semiarid lands. In: Ecosystem Function in Heterogeneous Landscapes (eds Lovett GM, Turner MG, Jones CG, Weathers KC), pp. 189-205. Springer, New York. |
[53] |
Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244.
PMID |
[54] |
Ulrich W, Soliveres S, Maestre FT, Gotelli NJ, Quero JL, Delgado-Baquerizo M, Bowker MA, Eldridge DJ, Ochoa V, Gozalo B, Valencia E, Berdugo M, Escolar C, García-Gómez M, Escudero A, Prina A, Alfonso G, Arredondo T, Bran D, Cabrera O, Cea AP, Chaieb M, Contreras J, Derak M, Espinosa CI, Florentino A, Gaitán J, Muro VG, Ghiloufi W, Gómez-González S, Gutiérrez JR, Hernández RM, Huber-Sannwald E, Jankju M, Mau RL, Hughes FM, Miriti M, Monerris J, Muchane M, Naseri K, Pucheta E, Ramírez-Collantes DA, Raveh E, Romão RL, Torres-Díaz C, Val J, Veiga JP, Wang DL, Yuan X, Zaady E (2014) Climate and soil attributes determine plant species turnover in global drylands. Journal of Biogeography, 41, 2307-2319.
DOI URL |
[55] |
Unger PW (1971) Soil profile gravel layers. II. Effect on growth and water use by a hybrid forage sorghum. Soil Science Society of America Journal, 35, 980-983.
DOI URL |
[56] |
Wang JM, Chen C, Li JW, Feng YM, Lu Q (2019) Different ecological processes determined the alpha and beta components of taxonomic, functional, and phylogenetic diversity for plant communities in dryland regions of Northwest China. PeerJ, 6, e6220.
DOI URL |
[57] |
Wang JM, Wang Y, Li MX, He NP, Li JW (2021) Divergent roles of environmental and spatial factors in shaping plant β-diversity of different growth forms in drylands. Global Ecology and Conservation, 26, e01487.
DOI URL |
[58] | Wang JW, Hou MM, Huang LY, Zhang J, Zhou HC, Cheng YX (2016) Phylogenetic and functional beta diversity in a broad-leaved Korean pine mixed forest in Changbai Mountains, northeastern China. Journal of Beijing Forestry University, 38(10), 21-27. (in Chinese with English abstract) |
[王均伟, 侯嫚嫚, 黄利亚, 张君, 周海城, 程艳霞 (2016) 长白山阔叶红松林系统发育和功能性状beta多样性. 北京林业大学学报, 38(10), 21-27.] | |
[59] |
Wang ZH, Fang JY, Tang ZY, Lin X (2012) Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants. Ecography, 35, 1124-1133.
DOI URL |
[60] |
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505
DOI URL |
[61] |
Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
DOI URL |
[62] | Wu YH, Shi HL (2018) The seed plant flora of the Qaidam Basin and its contiguous mountainous region in Qinghai Province. Acta Botanica Boreali-Occidentalia Sinica, 38, 1542-1552. (in Chinese with English abstract) |
[吴玉虎, 史惠兰 (2018) 柴达木盆地及其毗邻山地植物区系研究. 西北植物学报, 38, 1542-1552.] | |
[63] | Xia YG, Ning Y, Li JW, Li JQ, Feng YM, Wu B, Lu Q (2013) Plant species diversity and floral characters in the black gobi desert of China. Acta Botanica Boreali-Occidentalia Sinica, 33, 1906-1915. (in Chinese with English abstract) |
[夏延国, 宁宇, 李景文, 李俊清, 冯益民, 吴波, 卢琦 (2013) 中国黑戈壁地区植物区系及其物种多样性研究. 西北植物学报, 33, 1906-1915.] | |
[64] | Xiao YM, Yang LC, Nie XQ, Li CB, Xiong F, Zhao XH, Zhou GY (2018) Phylogenetic structure of desert shrub community in Qaidam Basin. Acta Botanica Boreali-Occidentalia Sinica, 38, 750-760. (in Chinese with English abstract) |
[肖元明, 杨路存, 聂秀青, 李长斌, 熊丰, 赵晓辉, 周国英 (2018) 柴达木盆地荒漠灌丛群落谱系结构研究. 西北植物学报, 38, 750-760.] | |
[65] |
Yang J, Cao M, Swenson NG (2018) Why functional traits do not predict tree demographic rates. Trends in Ecology & Evolution, 33, 326-336.
DOI URL |
[66] |
Yao TD (2019) Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Science Bulletin, 64, 417-417.
DOI URL |
[67] |
Zhang PP, Shao MA, Zhang XC (2017) Spatial pattern of plant species diversity and the influencing factors in a gobi desert within the Heihe River basin, Northwest China. Journal of Arid Land, 9, 379-393.
DOI URL |
[68] | Zhong YM, Wang JM, Zhang TH, Li JW, Feng YM, Lu Q (2017) Composition of seed plant species and floristic features in the gobi area of the northern Qinghai-Tibet Plateau of China. Plant Science Journal, 35, 525-533. (in Chinese with English abstract) |
[钟悦鸣, 王健铭, 张天汉, 李景文, 冯益明, 卢琦 (2017) 中国青藏高原北部戈壁区种子植物物种组成及其区系特征. 植物科学学报, 35, 525-533.] | |
[69] | Zhong ZB, Zhou GY, Yang LC, Liu HC, Song WZ (2014) The biomass allocation patterns of desert shrub vegetation in the Qaidam Basin, Qinghai, China. Journal of Desert Research, 34, 1042-1048. (in Chinese with English abstract) |
[钟泽兵, 周国英, 杨路存, 刘何春, 宋文珠 (2014) 柴达木盆地几种荒漠灌丛植被的生物量分配格局. 中国沙漠, 34, 1042-1048.] | |
[70] |
Zhou CY, Wang B, Deng Y, Wu JJ, Cao M, Lin LX (2020) Canopy structure is an important factor driving local-scale woody plant functional beta diversity. Biodiversity Science, 28, 1546-1557. (in Chinese with English abstract)
DOI URL |
[周昌艳, 王彬, 邓云, 乌俊杰, 曹敏, 林露湘 (2020) 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力. 生物多样性, 28, 1546-1557.]
DOI |
[1] | 钱宏, 张健, 赵静超. 世界上已知维管植物有多少种? 基于多个全球植物数据库的整合[J]. 生物多样性, 2022, 30(7): 22254-. |
[2] | 王婷, 舒江平, 顾钰峰, 李艳清, 杨拓, 徐洲锋, 向建英, 张宪春, 严岳鸿. 中国石松类和蕨类植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22381-. |
[3] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[4] | 李正飞, 蒋小明, 王军, 孟星亮, 张君倩, 谢志才. 雅鲁藏布江中下游底栖动物物种多样性及其影响因素[J]. 生物多样性, 2022, 30(6): 21431-. |
[5] | 付飞, 魏慧玉, 常育腾, 王备新, 陈凯. 澜沧江中游水生昆虫生活史和生态学性状多样性的海拔格局: 气候和土地利用的影响[J]. 生物多样性, 2022, 30(5): 21332-. |
[6] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[7] | 张敏, 田春坡, 车先丽, 赵岩岩, 陈什旺, 周霞, 邹发生. 广东省鸟类新记录及其与自然和社会经济因素的关联性[J]. 生物多样性, 2022, 30(5): 21396-. |
[8] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[9] | 袁桃花, 李美君, 任柳伊, 黄榕鑫, 陈益, 白新祥. 中国野生凤仙花属物种多样性和地理分布数据集[J]. 生物多样性, 2022, 30(5): 22019-. |
[10] | 赵仁生, 许诗嘉, 宋鹏飞, 周翔, 张亚洲, 袁燕. 青藏高原药用植物分布格局及保护优先区[J]. 生物多样性, 2022, 30(4): 21385-. |
[11] | 沈国平, 韩睿, 缪增强, 邢江娃, 李永臻, 王嵘, 朱德锐. 青藏高原4类典型水化学特征湖泊的细菌多样性差异及影响因素[J]. 生物多样性, 2022, 30(4): 21420-. |
[12] | 董建宇, 孙昕, 詹启鹏, 张宇洋, 张秀梅. 莱州湾东岸潮下带大型底栖动物群落beta多样性格局及其驱动因素[J]. 生物多样性, 2022, 30(3): 21388-. |
[13] | 李海萍, 徐竹青, 龙志航. 大兴安岭地区重点保护和珍稀动物保护空缺分析[J]. 生物多样性, 2022, 30(2): 21294-. |
[14] | 陈胜仙, 张喜亭, 佘丹琦, 张衷华, 周志强, 王慧梅, 王文杰. 森林植物多样性、树种重要值与土壤理化性质对球囊霉素相关土壤蛋白的影响[J]. 生物多样性, 2022, 30(2): 21115-. |
[15] | 乔江, 贾国清, 周华明, 龚林, 蒋勇, 肖能文, 高晓奇, 温安祥, 王杰. 四川贡嘎山国家级自然保护区鸟兽多样性[J]. 生物多样性, 2022, 30(2): 20395-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn