生物多样性 ›› 2018, Vol. 26 ›› Issue (7): 760-765.doi: 10.17520/biods.2018078

所属专题: 生物多样性与生态系统功能

• 综述 • 上一篇    下一篇

环境变化对中国野生蜜蜂多样性的影响

刘秀嶶, Douglas Chesters, 武春生, 周青松, 朱朝东*   

  1. 中国科学院动物研究所动物进化与系统学院重点实验室, 北京 100101
  • 收稿日期:2018-03-12 接受日期:2018-06-10 出版日期:2018-07-20
  • 通讯作者: 朱朝东 E-mail:zhucd@ioz.ac.cn
  • 作者简介:# 共同第一作者
  • 基金项目:
    国家自然科学基金(31772495)

A horizon scan of the impacts of environmental change on wild bees in China

Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu*()   

  1. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
  • Received:2018-03-12 Accepted:2018-06-10 Online:2018-07-20
  • Contact: Zhu Chaodong E-mail:zhucd@ioz.ac.cn
  • About author:# Co-first authors

蜜蜂尤其是野生蜜蜂对维持生态系统功能、保证粮食安全等方面具有重要的作用。近年来, 野生蜜蜂的栖息地由于天然林减少, 而现营造的又多为纯林, 以及大面积种植单一经济林而遭到了严重破坏和片断化。已有研究表明纯林、油茶(Camellia oleifera)和橡胶树(Hevea brasiliensis)经济林中的野生蜜蜂多样性较低。现代农业中新烟碱类杀虫剂、除草剂的大规模使用, 会对蜜蜂个体发育和行为产生不利影响。城市化进程潜在影响了蜜蜂的群落, 如郊区的蜜蜂平均物种丰富度要明显高于中心商业区; 废水、废气和粉尘对蜜蜂的觅食、生长发育等都具有不利影响; CO2等温室气体导致的气候变暖影响了传粉蜜蜂与植物之间的互利共生关系, 造成时间或功能上的不匹配。综上所述, 我国的环境变化可能已导致中国野生传粉蜜蜂多样性的下降和种群的衰退。我国虽是传粉蜜蜂种质资源大国, 但缺乏种类和分布本底以及长期而有效的监测数据, 缺乏对蜜蜂多样性和种群下降机制的研究。因此亟待开展传粉蜜蜂调查、实施长期监测项目, 为之建立研究网络。并通过积累丰富的相关数据, 开展风险预测和评估, 用于管理和缓解传粉蜜蜂下降所带来的经济及非经济影响。

关键词: 生境, 城市化, 气候变化, 环境污染, 传粉蜜蜂

Wild pollinator bees play an important role in ecosystem function and food security. In recent years, natural forests have been lost, while afforestation programs are primarily monoculture plantation, whether commercial or restorative. The net effect for bees has been fragmentation and sometime wholesale loss of habitats. For instance, diversity of wild bees in pure forest, Camellia oleifera and rubber (Hevea brasiliensis) plantation was found to be unexpectedly low. The rampant use of neonicotinoid pesticides and herbicide is known to negatively impact development and behavior of bees. Urbanization has dramatically impacted bee communities, with significant changes in species richness between suburban and central business areas. These are likely tied to the effect of effluent, exhaust gas and dust on foraging, growth and development. Climate change from greenhouse gas emissions can disrupt the mutualistic relationship between pollinating bees and plants via rapid phenological shifts. The above environmental changes occurring in China are likely cause wide declines in diversity and decreases in populations. Although China has rich natural heritage for bees, there is a lack of long term monitoring programs for species of pollinator bees and a dearth of data on distributions of bee species. As a result, the drivers of bee community composition and population decline are poorly understood. We emphasize the need to prioritize surveys of pollinating bees, continue ongoing monitoring programs and build wider research networks for the study of wild pollinator bees. These steps will ensure that sufficient data can accumulate for developing a prediction and risk assessment framework to help manage the declines in pollinating bee populations and mitigate the attendant economic and non-economic impacts.

Key words: habitat, urbanization, climate change, environmental pollution, pollinating bees

[22] Ouyang ZY, Zheng H, Xiao Y, Polasky S, Liu J, Xu W, Wang Q, Zhang L, Xiao Y, Rao E, Jiang L, Lu F, Wang X, Yang G, Gong S, Wu B, Zeng Y, Yang W, Daily GC (2016) Improvements in ecosystem services from investments in natural capital. Science, 352, 1455-1459.
[23] Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345-353.
[24] Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature, 540, 220-229.
[25] Ren G, Young SS, Wang L, Wang W, Long Y, Wu R, Li J, Zhu J, Yu DW (2015) Effectiveness of China’s National Forest Protection Program and nature reserves. Conservation Biology, 29, 1368-1377.
[26] Robbirt KM, Roberts DL, Hutchings MJ, Davy AJ (2014) Potential disruption of pollination in a sexually deceptive orchid by climatic change. Current Biology, 24, 2845-2849.
[27] Rodríguez A, Kouki J (2017) Disturbance-mediated heterogeneity drives pollinator diversity in boreal managed forest ecosystems. Ecological Applications, 27, 589-602.
[28] Sing KW, Wang WZ, Wan T, Lee PS, Li ZX, Chen X, Wang YY, Wilson JJ (2016) Diversity and human perceptions of bees (Hymenoptera: Apoidea) in Southeast Asian megacities. Genome, 59, 827-839.
[29] Tan K, Chen WW, Dong SH, Liu X, Wang Y, Nieh JC (2014) Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS ONE, 9, e102725.
[30] Tan K, Chen WW, Dong SH, Liu X, Wang Y, Nieh JC (2015) A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Scientific Reports, 5, 10989.
[31] van der Valk H, Koomen I, Nocelli RCF, Ribeiro MdeF, Freitas BM, Carvallho SM, Kasina JM, Martins DJ, Maina G, Ngaruiya, P, Gikungu MNM, Odhiambo C, Kinuthia W, Kipyab P, Blacquiere T, van der Steen J, Roessink I, Wassenberg J, Gemmill-Herren B (2013) Aspects Determining the Risk of Pesticides to Wild Bees: Risk Profiles for Focal Crops on Three Continents. Food and Agriculture Organization of the United Nations, Rome.
[32] Williams NM, Winfree R (2013) Local habitat characteristics but not landscape urbanization drive pollinator visitation and native plant pollination in forest remnants. Biological Conservation, 160, 10-18.
[33] Xia JP, Chen JY, Deng XZ (2010) Discussion on current situation and importance of pollination insects of Camellia oleifera Abel. in the future. Hubei Forestry Science and Technology, (4), 61-63. (in Chinese with English abstract)
[夏剑萍, 陈京元, 邓先珍 (2010) 油茶传粉昆虫研究现状与今后研究重点探讨. 湖北林业科技, (4), 61-63.]
[34] Xiang J, Tang Y (2005) Intensive agriculture and its environmental consequences. World SCI-TECH R&D, 27(6), 81-87. (in Chinese with English abstract)
[向晶, 唐亚 (2005) 集约化农业及其环境效应. 世界科技研究与发展, 27(6), 81-87. ]
[35] Xu HL, Yang JW, Sun JR (2009) Current status on the study of wild bee-pollinators and conservation strategies in China. Acta Phytophylacica Sinica, 36, 371-376. (in Chinese with English abstract)
[徐环李, 杨俊伟, 孙洁茹 (2009) 我国野生传粉蜂的研究现状与保护策略. 植物保护学报, 36, 371-376.]
[36] Yang LL, Wu YR (1998) Species diversity of bees in different habitats in Xishuangbanna tropical forest region. Chinese Biodiversity, 6, 197-204. (in Chinese with English abstract)
[杨龙龙, 吴燕如 (1998) 西双版纳热带森林地区不同生境蜜蜂的物种多样性研究. 生物多样性, 6, 197-204.]
[37] Yu LS, Ji T, Zhang ZY, Xie WF, Huang SS (2009) Impacts of ecological environment on bees and safety processing of bee productions. Apiculture of China, 60(10), 45-47. (in Chinese)
[1] Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecology Letters, 9, 968-980.
[2] Baldock KC, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Stone GN, Vaughan IP, Memmott J (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 282, 20142849.
[37] [于林生, 吉挺, 张中印, 谢文飞, 黄思思 (2009) 生态环境对蜜蜂与蜂产品安全生产的影响. 中国蜂业, 60(10), 45-47.]
[38] Zhang JQ, Xue DY (2013) The impacts of rubber plantation on the eco-environment in Xishuangbanna of Yunnan Province. China Population, Resources and Environment, 23, 304-307. (in Chinese with English abstract)
[3] Berry JB, Darly GC, Shih TM, Oviedo F, Durán (2007) The effects of forest fragmentation on bee communities in tropical countryside. Journal of Applied Ecology, 45, 773-783.
[4] Brown PT, Caldeira K (2017) Greater future global warming inferred from Earth’s recent energy budget. Nature, 552, 45-50.
[5] Burkle LA, Marlin JC. Knight TM (2013) Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science, 339, 1611-1615.
[6] Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences, USA, 110, 18466-18471.
[38] [张佳琦, 薛达元 (2013) 西双版纳橡胶林种植的生态环境影响研究. 中国人口·资源与环境, 23, 304-307.]
[39] Zhou HP, Yan XS, Zhang HD, Zhang LQ, Wei LP (2012) Species diversity of understorey vegetation in rubber plantation in Xishuangbanna. Chinese Journal of Tropical Crops, 33, 1444-1449. (in Chinese with English abstract)
[7] Dorchin A, Filin I, Lzhaki I, Dafni A (2013) Movement of patters of solitary bees in a threatened fragmented habitat. Apidologie, 44, 90-99.
[8] Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ (2015) Bees under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environmental Microbiology, 17, 969-983.
[39] [周会平, 岩香甩, 张海东, 张丽谦, 魏丽萍 (2012) 西双版纳橡胶林下植被多样性调查研究. 热带作物学报, 33, 1444-1449.]
[40] Zhou SF, Han CY (2011) Research progress and conservation strategies of insect pollinators of Camellia oleifera Abel. Journal of Henan Agricultural Sciences, 40(9), 8-10. (in Chinese with English abstract)
[9] Fuentes JD, Chamecki M, Roulston T, Chen BC, Pratt KR (2016) Air pollutants degrade floral scents and increase insect foraging times. Atmospheric Environment, 141, 361-374.
[10] Hanula JL, Horn S, O’Brien JJ (2015) Have changing forests conditions contributed to pollinator decline in the southeastern United States? Forest Ecology and Management, 348, 142-152.
[40] [周士峰, 韩春叶 (2011) 油茶传粉昆虫研究现状和保护策略. 河南农业科学, 40(9), 8-10.]
[41] Zhou Z, Hu SY, Tan YZ (2006) Ecological environment impact from large-scale rubber planting in Xishuangbanna. Yunnan Environmental Science, 25(Suppl.), 67-69. (in Chinese with English abstract)
[11] Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184-195.
[12] Hua FY, Wang XY, Zheng XL, Fisher B, Wang L, Zhu J, Tang Y, Yu DW, Wilcove DS (2016) Opportunities for biodiversity gains under the world’s largest reforestation programme. Nature Communications, 7, 12717.
[13] Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. Science, 349, 177-180.
[14] Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Klein AM, Kremen C, Gonigle LKM, Rader R, Ricketts TH, Williams NM, Adamson NL, Ascher JS, Báldi A, Batáry P, Benjamin F, Biesmeijer JC, Blitzer EJ, Bommarco R, Brand MR, Bretagnolle V, Button L, Cariveau DP, Chifflet R, Colville JF, Danforth BN, Elle E, Garratt MPD, Herzog F, Holzschuh A, Howlett BG, Jauker F, Jha S, Knop E, Krewenka KM, Féon VL, Mandelik Y, May EA, Park MG, Pisanty G, Reemer M, Riedinger V, Rollin O, Rundlöf M, Sardiñas HS, Scheper J, Sciligo AR, Smith HG, Steffan-Dewenter I, Thorp R, Tscharntke T, Verhulst J, Viana BF, Vaissière BE, Veldtman R, Westphal C, Potts SG (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 6, 7414.
[15] Knop E, Zoller L, Ryser R, Gerpe C, Hörler M, Fontaine C (2017) Artificial light at night as a new threat to pollination. Nature, 548, 206-209.
[16] Liu XW, Chesters D, Dai QY, Niu ZQ, Beckschäfer P, Martin K, Zhu CD (2017) Integrative profiling of bee communities from habitats of tropical southern Yunnan (China). Scientific Reports, 7, 5336.
[41] [周宗, 胡绍云, 谭应中 (2006) 西双版纳大面积橡胶种植与生态环境影响. 云南环境科学, 25(增刊), 67-69. ]
[42] Zhuo D (2017) Environmental Risk Management for China’s Intensive Agricultural Land Use. PhD dissertation, China Agricultural University, Beijing. (in Chinese with English abstract)
[17] Miller-Struttmann NE, Geib JC, Franklin JD, Kevan PG, Holdo RM, Ebert-May D, Lynn AM, Kettenbach JA, Hedrick E, Galen C (2015) Functional mismatch in a bumble bee pollination mutualism under climate change. Science, 349, 1541-1544.
[18] Moron D, Greześ IM, Skórka P, Szentgyörgyi H, Laskowski R, Potts SG, Woyciechowski M (2012) Abundance and diversity of wild bees along gradients of metal pollution. Journal of Applied Ecology, 49, 118-125.
[42] [卓东 (2017) 高集约化农业土地利用的环境风险管理体系研究. 博士学位论文, 中国农业大学, 北京.]
[43] Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB, Clark A, Dukes JS, Loladze I, Polley HW (2016) Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proceeding of the Royal Society B: Biological Sciences, 283, 20160414.
[19] Nicholls CI, Altieri MA (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agronomy for Sustainable Development, 33, 257-274.
[20] Ollerton J (2017) Pollinator diversity: Distribution, ecological, function, and conservation. Annual Review of Ecology, Evolution, and Systematics, 48, 353-376.
[21] Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos, 120, 321-326.
[1] 刘雪飞 吴林 王涵 洪柳 熊莉军. (2020) 鄂西南亚高山湿地泥炭藓的生长与分解特征. 植物生态学报, 44(预发表): 0-0.
[2] 白娥 薛冰. (2020) 土地利用与土地覆盖变化对生态系统的影响综述. 植物生态学报, 44(全球变化与生态系统专辑): 0-0.
[3] 王存璐 陈浒 肖华 张红梅 李林芝 郭城 陈静 魏强. (2020) 黔西北石漠化地区两栖动物多样性及其生境选择. 生物多样性, 28(4): 485-495.
[4] 路兴慧,臧润国,丁易,黄继红,许玥. (2020) 极小种群野生植物坡垒的生境特征及其对幼苗多度的影响. 生物多样性, 28(3): 289-295.
[5] 胡菀,张志勇,陈陆丹,彭焱松,汪旭. (2020) 末次盛冰期以来观光木的潜在地理分布变迁. 植物生态学报, 44(1): 44-55.
[6] 李顺,邹亮,宫一男,杨海涛,王天明,冯利民,葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[7] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. (2019) 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构. 生物多样性, 27(8): 911-918.
[8] 杨云卉, 白可喻, Devra Jarvis, 龙春林. (2019) 西双版纳黄瓜农家品种及其传统知识. 生物多样性, 27(7): 743-748.
[9] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27(6): 595-606.
[10] 黄玫, 王娜, 王昭生, 巩贺. (2019) 磷影响陆地生态系统碳循环过程及模型表达方法. 植物生态学报, 43(6): 471-479.
[11] 蒙文萍, 戴全厚, 冉景丞. (2019) 苔藓植物岩溶作用研究进展. 植物生态学报, 43(5): 396-407.
[12] 刘晓彤, 袁泉, 倪健. (2019) 中国植物分布模拟研究现状. 植物生态学报, 43(4): 273-283.
[13] 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. (2019) 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应. 植物生态学报, 43(4): 320-330.
[14] 张富广, 曾彪, 杨太保. (2019) 气候变化背景下近30年祁连山高寒荒漠分布时空变化. 植物生态学报, 43(4): 305-319.
[15] 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. (2019) 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响. 植物生态学报, 43(2): 107-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed