生物多样性 ›› 2024, Vol. 32 ›› Issue (8): 24131. DOI: 10.17520/biods.2024131 cstr: 32101.14.biods.2024131
李佳琪1,#(), 冯一迪2,#(
), 王蕾1, 潘盆艳1, 刘潇如3(
), 李雪阳2,4(
), 王怡涵1,*(
)(
), 王放1,*(
)(
)
收稿日期:
2024-04-05
接受日期:
2024-07-29
出版日期:
2024-08-20
发布日期:
2024-08-30
通讯作者:
*E-mail: 21210700093@m.fudan.edu.cn;wfang@fudan.edu.cn
作者简介:
#共同第一作者
基金资助:
Jiaqi Li1,#(), Yidi Feng2,#(
), Lei Wang1, Penyan Pan1, Xiaoru Liu3(
), Xueyang Li2,4(
), Yihan Wang1,*(
)(
), Fang Wang1,*(
)(
)
Received:
2024-04-05
Accepted:
2024-07-29
Online:
2024-08-20
Published:
2024-08-30
Contact:
*E-mail: 21210700093@m.fudan.edu.cn;wfang@fudan.edu.cn
About author:
#Co-first authors
Supported by:
摘要:
在城市生态系统中, 部分具有高行为可塑性的物种能够通过快速的行为改变逐渐适应并在人类活动强度高的环境中定殖。研究食肉目物种在取食行为、栖息地选择等方面的行为变化, 有利于理解城市动物对不同环境的利用和适应差异。本研究自2021年5月至2023年12月开展, 以上海地区的貉(Nyctereutes procyonoides)作为研究对象, 在城市化程度指数较高的居民住宅区和城市化程度指数较低的森林公园两类区域取样, 通过基于粪便样本内容物的形态学鉴定比较了食物组成差异, 基于颈圈式兽类追踪器收集的活动数据并构建资源选择函数, 评估了家域内的栖息地选择差异。基于568份粪便样品的分析结果发现, 与森林公园相比, 居民住宅区中分布的貉对人源食物(P < 0.001)和哺乳类(P < 0.01)的摄入显著提高。基于32只貉个体的持续30天以上的追踪获得了36,881个卫星定位位点, 发现森林公园中分布的貉回避建筑(β = -0.222), 而居民住宅区中分布的貉对建筑存在正向选择(β = 0.021)。研究初步揭示了貉在上海城市环境中的食源和栖息地需求, 发现不同景观类型对貉的食物组成和栖息地选择等有重要影响, 反映了貉响应城市环境的行为可塑性, 可以为探究城市野生动物的适应机制、提升保护与管理水平提供参考。
李佳琪, 冯一迪, 王蕾, 潘盆艳, 刘潇如, 李雪阳, 王怡涵, 王放 (2024) 上海城市环境中貉的食性分析及家域范围内的栖息地选择. 生物多样性, 32, 24131. DOI: 10.17520/biods.2024131.
Jiaqi Li, Yidi Feng, Lei Wang, Penyan Pan, Xiaoru Liu, Xueyang Li, Yihan Wang, Fang Wang (2024) Diet and habitat selection of raccoon dogs (Nyctereutes procyonoides) in Shanghai, a rapidly urbanizing megacity in eastern China. Biodiversity Science, 32, 24131. DOI: 10.17520/biods.2024131.
图1 上海市貉追踪与貉粪便采集样点分布图(a)和研究样点土地利用类型主成分分析图(b)。图中数字代表样点编号, 1-10: 居民住宅区样点编号(1: 谷水湾; 2: 御上海; 3: 圣安德鲁斯; 4: 华庭雅居; 5: 大华西郊别墅; 6: 新青浦佳园; 7: 同润山河小城; 8: 米兰诺贵都; 9: 九城湖滨; 10: 佘山高尔夫别墅); 11-12: 森林公园样点编号(11: 辰山植物园; 12: 天马山森林公园)。
Fig. 1 Distribution of Nyctereutes procyonoides tracking and fecal sample collection site in Shanghai (a) and principal component analysis of land use types of study sites (b). Numbers represent the number of the sites and 1-10 represent residential building sites (1, Gushuiwan; 2, Yushanghai; 3, St. Andrews Manor; 4, Huating; 5, Dahua; 6, Xinqingpu; 7, Tongrun; 8, Milan; 9, Jiucheng; 10, Sheshan); 11-12 represent forest park sites (11, Chenshan; 12, Tianma).
图2 上海居民住宅区和森林公园的貉粪便样品各组分出现频率图及逻辑斯蒂回归检验结果
Fig. 2 Frequency and logistic regression results of occurrence of each component of raccoon dog fecal samples in residential buildings and forest parks in Shanghai
图3 上海居民住宅区不同季节貉粪便样品各组分出现频率及多重比较结果。图中仅标注了具有显著性的组别。* P < 0.05; *** P < 0.001。
Fig. 3 The frequency and multiple comparisons of each component in fecal samples of raccoon dogs in different seasons in residential areas of Shanghai. Group pairs that had significant difference are marked. * P < 0.05; *** P < 0.001.
模型构建 Model formula | 与最佳模型的差值 ΔAIC | AIC 权重 AIC weight |
---|---|---|
居民住宅区 Residential areas | ||
used ~ dis_w + dis_r + forestland + imprevious + (1 | ID) | 0 | 0.56 |
used ~ dis_w + dis_r + forestland + building + imprevious + (1 | ID) | 0.487 | 0.44 |
used ~ dis_w + dis_r + imprevious + (1 | ID) | 10.572 | 0 |
used ~ dis_w + dis_r + building + imprevious + (1 | ID) | 11.302 | 0 |
used ~ dis_w + dis_r + forestland + building + (1 | ID) | 25.132 | 0 |
森林公园 Forest parks | ||
used ~ dis_w + dis_r + farmland + forestland + grassland + building + imprevious + bareland + (1 | ID) | 0 | 1.00 |
used ~ dis_w + dis_r + farmland + forestland + grassland + building + bareland + (1 | ID) | 3.447 | 0 |
used ~ dis_w + dis_r + forestland + grassland + bareland + (1 | ID) | 3.462 | 0 |
used ~ dis_w + dis_r + forestland + grassland + imprevious + bareland + (1 | ID) | 3.930 | 0 |
used ~ dis_r + farmland + forestland + grassland + building + bareland + (1 | ID) | 9.975 | 0 |
表1 上海居民住宅区和森林公园貉种群的资源选择函数广义线性混合模型汇总表
Table 1 Summary of generalized linear mixed models of resource selection functions for raccoon dogs in residential areas and forest parks in Shanghai
模型构建 Model formula | 与最佳模型的差值 ΔAIC | AIC 权重 AIC weight |
---|---|---|
居民住宅区 Residential areas | ||
used ~ dis_w + dis_r + forestland + imprevious + (1 | ID) | 0 | 0.56 |
used ~ dis_w + dis_r + forestland + building + imprevious + (1 | ID) | 0.487 | 0.44 |
used ~ dis_w + dis_r + imprevious + (1 | ID) | 10.572 | 0 |
used ~ dis_w + dis_r + building + imprevious + (1 | ID) | 11.302 | 0 |
used ~ dis_w + dis_r + forestland + building + (1 | ID) | 25.132 | 0 |
森林公园 Forest parks | ||
used ~ dis_w + dis_r + farmland + forestland + grassland + building + imprevious + bareland + (1 | ID) | 0 | 1.00 |
used ~ dis_w + dis_r + farmland + forestland + grassland + building + bareland + (1 | ID) | 3.447 | 0 |
used ~ dis_w + dis_r + forestland + grassland + bareland + (1 | ID) | 3.462 | 0 |
used ~ dis_w + dis_r + forestland + grassland + imprevious + bareland + (1 | ID) | 3.930 | 0 |
used ~ dis_r + farmland + forestland + grassland + building + bareland + (1 | ID) | 9.975 | 0 |
预测变量 Predictor variable | 居民住宅区 Residential areas | 森林公园 Forest parks | ||
---|---|---|---|---|
β系数 β coefficient | 标准误 Standard error | β系数 β coefficient | 标准误 Standard error | |
截距 Intercept | -15.304*** | 1.907 | -1.282 | 0.056 |
道路接近程度 Proximity to road | -0.138*** | 0.015 | -0.117*** | 0.012 |
水源接近程度 Proximity to water | -0.163*** | 0.014 | -0.047*** | 0.013 |
林地 Forestland | 0.095*** | 0.023 | 0.397*** | 0.042 |
草地 Grassland | 0.401*** | 0.042 | ||
建筑 Building | 0.021 | 0.031 | -0.185*** | 0.050 |
不透水面 Impervious | -0.203*** | 0.034 | -0.137* | 0.059 |
耕地 Farmland | -0.103* | 0.042 | ||
裸地 Bareland | 1.796*** | 0.164 |
表2 上海居民住宅区与森林公园的貉资源选择函数的广义线性混合模型
Table 2 Generalized linear mixed model of raccoon dog resource selection function in Shanghai residential areas and forest parks
预测变量 Predictor variable | 居民住宅区 Residential areas | 森林公园 Forest parks | ||
---|---|---|---|---|
β系数 β coefficient | 标准误 Standard error | β系数 β coefficient | 标准误 Standard error | |
截距 Intercept | -15.304*** | 1.907 | -1.282 | 0.056 |
道路接近程度 Proximity to road | -0.138*** | 0.015 | -0.117*** | 0.012 |
水源接近程度 Proximity to water | -0.163*** | 0.014 | -0.047*** | 0.013 |
林地 Forestland | 0.095*** | 0.023 | 0.397*** | 0.042 |
草地 Grassland | 0.401*** | 0.042 | ||
建筑 Building | 0.021 | 0.031 | -0.185*** | 0.050 |
不透水面 Impervious | -0.203*** | 0.034 | -0.137* | 0.059 |
耕地 Farmland | -0.103* | 0.042 | ||
裸地 Bareland | 1.796*** | 0.164 |
[1] | Adams CE (2009) Urban Wildlife Management, 2nd edn. CRC Press, Boca Raton. |
[2] | Adjei IA, Karim R (2016) An application of bootstrapping in logistic regression model. Open Access Library Journal, 3, 1-9. |
[3] | Anwar MB, Nadeem MS, Kayani AR, Mazhar Q (2011) Is mammalian hair fiber analysis by optical fiber diameter analyzer helpful to identify prey from scats of carnivores? Pakistan Journal of Zoology, 43, 1218-1220. |
[4] | Bateman PW, Fleming PA (2012) Big city life: Carnivores in urban environments. Journal of Zoology, 287, 1-23. |
[5] | Blair RB, Launer AE (1997) Butterfly diversity and human land use: Species assemblages along an urban gradient. Biology Conservation, 80, 113-125. |
[6] | Bozdogan H (1987) Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345-370. |
[7] | Bozek CK, Prange S, Gehrt SD (2007) The influence of anthropogenic resources on multi-scale habitat selection by raccoons. Urban Ecosystems, 10, 413-425. |
[8] |
Buonaccorsi JP, Romeo G, Thoresen M (2018) Model-based bootstrapping when correcting for measurement error with application to logistic regression. Biometrics, 74, 135-144.
DOI PMID |
[9] | Calabrese JM, Fleming CH, Gurarie E (2016) ctmm: An R package for analyzing animal relocation data as a continuous- time stochastic process. Methods in Ecology and Evolution, 7, 1124-1132. |
[10] | Campbell SJ, Ashley W, Gil-Fernandez M, Newsome TM, Di Giallonardo F, Ortiz-Baez AS, Mahar JE, Towerton AL, Gillings M, Holmes EC, Carthey AJR, Geoghegan JL (2020) Red fox viromes in urban and rural landscapes. Virus Evolution, 6, veaa065. |
[11] | Cui YY, Xie ZG, Xu X, Chu KL, Jiang WZ, Pei EL, Yuan X, Xu HF (2013) Activity laws and feeding behavior of introduced badgers. Journal of Anhui Agricultural Science, 41, 3407-3409. (in Chinese with English abstract) |
[崔勇勇, 谢志刚, 徐循, 褚可龙, 蒋文忠, 裴恩乐, 袁晓, 徐宏发 (2013) 引入狗獾活动规律和取食行为的研究. 安徽农业科学, 41, 3407-3409.] | |
[12] | Diao YX, Zhao QQ, Weng Y, Huang ZX, Wu YQ, Gu BJ, Zhao Q, Wang F (2022) Predicting current and future species distribution of the raccoon dog (Nyctereutes procyonoides) in Shanghai, China. Landscape and Urban Planning, 228, 104581. |
[13] | Dong TW, Huang ML, Wei X, Ma S, Yue Q, Liu WL, Zheng JX, Wang G, Ma R, Ding YZ, Bo SQ, Wang ZH (2023) Potential spatial distribution pattern and landscape connectivity of Pelophylax plancyi in Shanghai, China. Biodiversity Science, 31, 22692. (in Chinese with English abstract) |
[董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰 (2023) 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性. 生物多样性, 31, 22692.]
DOI |
|
[14] |
Dorning J, Harris S (2019) Individual and seasonal variation in contact rate, connectivity and centrality in red fox (Vulpes vulpes) social groups. Scientific Reports, 9, 20095.
DOI PMID |
[15] | Drygala F, Werner U, Zoller H (2013) Diet composition of the invasive raccoon dog (Nyctereutes procyonoides) and the native red fox (Vulpes vulpes) in northeast Germany. Hystrix, 24, 190-194. |
[16] | Fischer JD, Cleeton SH, Lyons TP, Miller JR (2012) Urbanization and the predation paradox: The role of trophic dynamics in structuring vertebrate communities. BioScience, 62, 809-818. |
[17] | Guo XQ, Yu XY, Li ZR, Li ZC, Lü TT, Cao HX, Song HY, Zhao CF (2021) Isolation, identification and VP2 gene sequence analysis of raccoon dog parvovirus RDPV-JL3. Special Wild Economic Animal and Plant Research, 43(5), 13-18. (in Chinese with English abstract) |
[郭晓芹, 于小亚, 李滋睿, 李卓宸, 吕甜甜, 曹海旭, 宋海岩, 赵传芳 (2021) 貉细小病毒RDPV-JL3株的分离鉴定及VP2基因序列分析. 特产研究, 43(5), 13-18.] | |
[18] | Herr J (2008) Ecology and Behaviour of Urban Stone Martens (Martes foina) in Luxembourg. PhD dissertation, University of Sussex, Brighton. |
[19] | Hubert P, Julliard R, Biagianti S, Poulle ML (2011) Ecological factors driving the higher hedgehog (Erinaceus europeaus) density in an urban area compared to the adjacent rural area. Landscape and Urban Planning, 103, 34-43. |
[20] | Jia WH (2022) Key points of breeding and management techniques for raccoon dogs during breeding period. Special Economic Animals and Plants, 25(12), 52-59. (in Chinese with English abstract) |
[贾文会 (2022) 貉配种期的饲养管理技术要点. 特种经济动植物, 25(12), 52-59.] | |
[21] | Kirkland GL (1998) Guidelines for the Capture, Handling, and Care of Mammals as approved by the American Society of Mammalogists. Journal of Mammalogy, 79, 1416-1431. |
[22] | Ladle A, Galpern P, Doyle-Baker P (2018) Measuring the use of green space with urban resource selection functions: An application using smartphone GPS locations. Landscape and Urban Planning, 179, 107-115. |
[23] | Manly B, McDonald L, Thomas DL, McDonald TL, Erickson WP (2002) Resource Selection by Animals: Statistical Design and Analysis for Field Studies. Kluwer Academic Publishers, Dordrecht. |
[24] | McKinney ML (2002) Urbanization, biodiversity, and conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience, 52, 883-890. |
[25] | Mukherjee F, Singh D (2020) Assessing land use-land cover change and its impact on land surface temperature using LANDSAT data: A comparison of two urban areas in India. Earth Systems and Environment, 4, 385-407. |
[26] | Murray M, Cembrowski A, Latham ADM, Lukasik VM, Pruss S, St Clair CC (2015) Greater consumption of protein-poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human-wildlife conflict. Ecography, 38, 1235-1242. |
[27] | Murray MH, Becker DJ, Hall RJ, Hernandez SM (2016) Wildlife health and supplemental feeding: A review and management recommendations. Biological Conservation, 204, 163-174. |
[28] |
Newsome SD, Garbe HM, Wilson EC, Gehrt SD (2015) Individual variation in anthropogenic resource use in an urban carnivore. Oecologia, 178, 115-128.
DOI PMID |
[29] | Newsome TM, Ballard GA, Crowther MS, Fleming PJS, Dickman CR (2014a) Dietary niche overlap of free-roaming dingoes and domestic dogs: The role of human-provided food. Journal of Mammalogy, 95, 392-403. |
[30] | Newsome TM, Ballard GA, Fleming PJS, van de Ven R, Story GL, Dickman CR (2014b) Human-resource subsidies alter the dietary preferences of a mammalian top predator. Oecologia, 175, 139-150. |
[31] | Prange S, Gehrt SD, Wiggers EP (2004) Influences of anthropogenic resources on raccoon (Procyon lotor) movements and spatial distribution. Journal of Mammalogy, 85, 483-490. |
[32] | Redpath SM, Bhatia S, Young J (2015) Tilting at wildlife: Reconsidering human-wildlife conflict. Oryx, 49, 222-225. |
[33] | Rodewald AD, Kearns LJ (2011) Shifts in dominant nest predators along a rural-to-urban landscape gradient. The Condor, 113, 899-906. |
[34] | Šálek M, Drahníková L, Tkadlec E (2015) Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient. Mammal Review, 45, 1-14. |
[35] | Salmerón Gómez R, García Pérez J, López Martín MDM, García CG (2016) Collinearity diagnostic applied in ridge estimation through the variance inflation factor. Journal of Applied Statistics, 43, 1831-1849. |
[36] | Schulte-Hostedde AI, Mazal Z, Jardine CM, Gagnon J (2018) Enhanced access to anthropogenic food waste is related to hyperglycemia in raccoons (Procyon lotor). Conservation Physiology, 6, coy026. |
[37] | Tsunoda M, Kaneko Y, Sako T, Koizumi R, Iwasaki K, Mitsuhashi I, Saito MU, Hisano M, Newman C, Macdonald DW, Buesching CD (2019) Human disturbance affects latrine-use patterns of raccoon dogs. The Journal of Wildlife Management, 83, 728-736. |
[38] | Turner J, Freeman R, Carbone C (2022) Using citizen science to understand and map habitat suitability for a synurbic mammal in an urban landscape: The hedgehog Erinaceus europaeus. Mammal Review, 52, 291-303. |
[39] | Wang YH, Zhao QQ, Diao YX, Gu BJ, Weng Y, Zhang ZJ, Chen YB, Wang F (2023) Diel activity, habitat utilization, and response to anthropogenic interference of small Indian civets (Viverricula indica) in Shanghai urban areas based on camera trapping. Biodiversity Science, 31, 22294. (in Chinese with English abstract) |
[王怡涵, 赵倩倩, 刁奕欣, 顾伯健, 翁悦, 张卓锦, 陈泳滨, 王放 (2023) 基于红外相机调查上海市区小灵猫的活动节律、栖息地利用及其对人类活动的响应. 生物多样性, 31, 22294.]
DOI |
|
[40] | Wu T, Chu KL, Jiang WZ, Gu GL, Yuan X, Xu HF (2017) Setts habitat features of reintroduced Meles meles after release. Sichuan Journal of Zoology, 36, 94-99. (in Chinese with English abstract) |
[吴彤, 褚可龙, 蒋文忠, 顾国林, 袁晓, 徐宏发 (2017) 重引入狗獾释放后定居巢的生境特征. 四川动物, 36, 94-99.] | |
[41] | Zhang W, Li B, Shu XX, Pei EL, Yuan X, Sun YJ, Wang TH, Wang ZH (2016) Responses of anuran communities to rapid urban growth in Shanghai, China. Urban Forestry & Urban Greening, 20, 365-374. |
[42] | Zhao QQ, Diao YX, Weng Y, Huang ZX, Gu BJ, Wu Y, Wang YH, Zhao Q, Wang F (2022) Predicting future distributions and dispersal pathways for precautionary management of human-raccoon dog conflicts in metropolitan landscapes. Environmental Research Letters, 17, 104036. |
[43] | Zhao QQ, Wang YH, Wu LJ, Feng YD, Li YH, Zhang ZJ, Zhao Q, Wang F (2024) A path to human-raccoon dog harmony: Identifying factors influencing the tolerance of urban residents in Shanghai towards a neglected species. People and Nature, 6, 1277-1287. |
[44] | Zhou XF, Chen H (2018) Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Science of the Total Environment, 635, 1467-1476. |
[1] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[2] | 金泉泉, 向颖, 王华, 习新强. 南京仙林大学城三种绿地类型中果蝇多样性及其被寄生率[J]. 生物多样性, 2024, 32(8): 24156-. |
[3] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[4] | 耿江天, 王菲, 赵华斌. 城市化对中国蝙蝠影响的研究进展[J]. 生物多样性, 2024, 32(8): 24109-. |
[5] | 卢佳玉, 石小亿, 多立安, 王天明, 李治霖. 基于红外相机技术的天津城市地栖哺乳动物昼夜活动节律评价[J]. 生物多样性, 2024, 32(8): 23369-. |
[6] | 段菲, 刘鸣章, 卜红亮, 俞乐, 李晟. 城市化对鸟类群落组成及功能特征的影响——以京津冀地区为例[J]. 生物多样性, 2024, 32(8): 23473-. |
[7] | 李雪原, 孙智闲, 王凤震, 席蕊, 方雨田, 郝浚源, 盛冬, 孙书雅, 赵亚辉. 城市发展对鱼类功能多样性的影响: 以超大城市北京为例[J]. 生物多样性, 2024, 32(8): 24150-. |
[8] | 高翔, 潘淑芳, 孙争争, 李霁筱, 高天雨, 董路, 王宁. 广东珠海凤凰山和淇澳岛小灵猫的分布与活动节律[J]. 生物多样性, 2024, 32(8): 24045-. |
[9] | 张明军, 王合升, 颜文博, 符运南, 王琦, 曾治高. 海南大田国家级自然保护区小灵猫的活动节律与栖息地选择[J]. 生物多样性, 2024, 32(6): 23420-. |
[10] | 董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰. 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性[J]. 生物多样性, 2023, 31(8): 22692-. |
[11] | 湛振杰, 张超, 陈敏豪, 王嘉栋, 富爱华, 范雨薇, 栾晓峰. 基于DNA宏条形码技术的大兴安岭北部欧亚水獭冬季食性分析[J]. 生物多样性, 2023, 31(6): 22586-. |
[12] | 殷鲁秦, 王成, 韩文静. 基于取食行为探究北京居民区鸟类的食源特征及多样性[J]. 生物多样性, 2023, 31(5): 22473-. |
[13] | 孙尧初, 潘远飞, 刘木, 潘晓云. 专食性-广食性天敌比例影响入侵植物喜旱莲子草生长防御策略[J]. 生物多样性, 2023, 31(4): 22632-. |
[14] | 王怡涵, 赵倩倩, 刁奕欣, 顾伯健, 翁悦, 张卓锦, 陈泳滨, 王放. 基于红外相机调查上海市区小灵猫的活动节律、栖息地利用及其对人类活动的响应[J]. 生物多样性, 2023, 31(2): 22294-. |
[15] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn