生物多样性 ›› 2024, Vol. 32 ›› Issue (8): 23473. DOI: 10.17520/biods.2023473 cstr: 32101.14.biods.2023473
段菲1(), 刘鸣章2(
), 卜红亮2(
), 俞乐3(
), 李晟2,*(
)(
)
收稿日期:
2023-12-16
接受日期:
2024-05-14
出版日期:
2024-08-20
发布日期:
2024-06-21
通讯作者:
*E-mail: shengli@pku.edu.cn
基金资助:
Fei Duan1(), Mingzhang Liu2(
), Hongliang Bu2(
), Le Yu3(
), Sheng Li2,*(
)(
)
Received:
2023-12-16
Accepted:
2024-05-14
Online:
2024-08-20
Published:
2024-06-21
Contact:
*E-mail: shengli@pku.edu.cn
Supported by:
摘要:
京津冀地区是中国经济发展的核心地区之一, 快速发展的城市化进程对生物多样性的作用与影响广受关注。鸟类是城市及市郊环境中分布最为广泛的野生动物类群之一, 对环境变化敏感, 是城市生物多样性的重要指示类群。本研究以京津冀地区鸟类为研究对象, 以“城市-乡村-郊野”分类体系图层为基础, 探究京津冀地区不同景观分区中鸟类多样性及其功能特征的差异。研究收集汇总来源于中国观鸟记录中心、GBIF数据库、ebird数据库等2000-2019年的鸟类实地观测数据58,620条, 筛选获得繁殖季(6-8月)和越冬季(12月至翌年2月)共计17,978条鸟类观测有效记录, 使用非度量多维尺度分析(non-metric multidimensional scaling, NMDS)、主成分分析(principal component analysis, PCA)、多元核密度估计(multivariate kernel density estimation)等方法, 分析不同分区内鸟类群落的物种组成与功能特征差异。研究结果显示, 京津冀地区2000-2019年共记录到鸟类482种, 分属于23目77科。经数据筛选后, 用于分析的总物种数为280种。其中, 乡村地区记录到的鸟类物种数最多(258种), 分属于20目64科, 占本研究京津冀地区记录鸟种总数的92.1%; 其次为城市(251种)和郊野地区(228种)。有70.7% (198种)的鸟种在3个分区中均有记录。就单个位点上鸟类局地群落的物种丰富度来看, 乡村和郊野地区均显著高于城市, 而乡村和郊野之间差异不显著。从物种组成来看, 城市、乡村和郊野3类分区的鸟类物种间存在较大重叠。不同分区下的鸟类功能特征分析结果显示: (1)城市和乡村局地群落内的鸟类体重均值显著高于郊野, 而城市和乡村之间无显著差异; (2)各分区之间鸟类的窝卵数没有明显区别; (3)城市中的鸟类多为广布种, 而郊野中的鸟类多为狭域种; (4)城市、乡村和郊野中鸟类物种整体上具有相似的食性特征。本研究揭示了生态良好、生境丰富的城市及周边环境能成为鸟类多样性的适宜载体, 城市化进程中伴随着鸟类对人类城乡景观的适应。对此, 我们建议持续探索高密度人口及高强度土地利用下的有效保护方式, 维持京津冀地区城市绿地公园、水域及湿地、乡村耕地等多类型野生动物栖息地的资源可用性。
段菲, 刘鸣章, 卜红亮, 俞乐, 李晟 (2024) 城市化对鸟类群落组成及功能特征的影响——以京津冀地区为例. 生物多样性, 32, 23473. DOI: 10.17520/biods.2023473.
Fei Duan, Mingzhang Liu, Hongliang Bu, Le Yu, Sheng Li (2024) Effects of urbanization on bird community composition and functional traits: A case study of the Beijing-Tianjin-Hebei region. Biodiversity Science, 32, 23473. DOI: 10.17520/biods.2023473.
分区 Zones | 有效记录条目数 No. of valid records | 位点数 No. of sites | 目 Order | 科 Family | 种 Species | 受威胁物种数 No. of threatened species | 重采样99次 Resampling 99 times | |
---|---|---|---|---|---|---|---|---|
中位数 Median | 四分位距 Interquartile range | |||||||
城市 Urban | 7,427 | 1,422 | 20 | 63 | 251 | 13 | 215 | 9 |
乡村 Rural | 6,309 | 776 | 20 | 64 | 258 | 14 | 247 | 4 |
郊野 Wild | 4,242 | 491 | 19 | 56 | 228 | 9 | - | - |
合计 Total | 17,978 | 2,689 | 20 | 64 | 280 | 16 | - | - |
表1 京津冀地区2000-2019年3个景观分区繁殖季和越冬季的有效鸟类物种记录
Table 1 Valid bird species records during the breeding and wintering seasons in the three landscape zones of Beijing-Tianjin-Hebei region between 2000 and 2019
分区 Zones | 有效记录条目数 No. of valid records | 位点数 No. of sites | 目 Order | 科 Family | 种 Species | 受威胁物种数 No. of threatened species | 重采样99次 Resampling 99 times | |
---|---|---|---|---|---|---|---|---|
中位数 Median | 四分位距 Interquartile range | |||||||
城市 Urban | 7,427 | 1,422 | 20 | 63 | 251 | 13 | 215 | 9 |
乡村 Rural | 6,309 | 776 | 20 | 64 | 258 | 14 | 247 | 4 |
郊野 Wild | 4,242 | 491 | 19 | 56 | 228 | 9 | - | - |
合计 Total | 17,978 | 2,689 | 20 | 64 | 280 | 16 | - | - |
图2 京津冀地区2000-2019年观测位点繁殖季和越冬季记录鸟类物种数情况。(a) 3类景观分区中物种累积曲线; (b)单个位点记录到的物种数。ns: P > 0.05; *** P < 0.001。
Fig. 2 Bird species recorded at observation sites during the breeding and wintering seasons in the Beijing-Tianjin-Hebei region between 2000 and 2019. (a) Species accumulation curves in the three landscape zones; (b) Number of species recorded at each site. ns, P > 0.05; ***P < 0.001.
图3 京津冀地区3类景观分区的鸟类物种组成情况。(a)不同分区鸟种数韦恩图, 数字表示物种数; (b)不同地区非度量多维尺度分析(NMDS)排序图。
Fig. 3 Bird species composition in the three landscape zones of Beijing-Tianjin-Hebei region. (a) Venn diagram of bird species in different regions. Number indicates the number of species; (b) Non-metric multidimensional scaling (NMDS) for different zones.
图4 京津冀地区2000-2019年3类景观分区中繁殖季和越冬季物种记录位点数占比排名前10鸟种
Fig. 4 The top ten bird species by the proportion of sites recorded during the breeding and wintering seasons in the three landscape zones of Beijing-Tianjin-Hebei region
图5 京津冀地区3类景观分区间鸟类局地群落的性状分布情况。箭头表示用于分析的3个连续功能性状向量的方向和权重。颜色梯度表示物种出现的相对概率。用等值线表示出现概率为0.90分位数。
Fig. 5 Distribution of traits at each local community in the three landscape zones of Beijing-Tianjin-Hebei region. Solid arrows indicate directions and weighs of vectors representing the three continuous traits analyzed. The color gradient represents the relative probability of sites occurrence. Quantiles of 0.90 in the occurrence probability are represented by contour lines.
图6 京津冀地区3类景观分区间鸟类局地群落的性状比较。ns: P > 0.05; ** P < 0.01; *** P < 0.001。
Fig. 6 Comparison of traits of bird local communities among the three landscape zones of Beijing-Tianjin-Hebei region. ns, P > 0.05; **P < 0.01; ***P < 0.001.
[1] | Blair R (2004) The effects of urban sprawl on birds at multiple levels of biological organization. Ecology and Society, 9(5), 2. |
[2] | Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecological Applications, 6, 506-519. |
[3] |
Bonier F, Martin PR, Wingfield JC (2007) Urban birds have broader environmental tolerance. Biology Letters, 3, 670-673.
DOI PMID |
[4] |
Bryce SA, Hughes RM, Kaufmann PR (2002) Development of a bird integrity index: Using bird assemblages as indicators of riparian condition. Environmental Management, 30, 294-310.
DOI PMID |
[5] |
Callaghan CT, Major RE, Wilshire JH, Martin JM, Kingsford RT, Cornwell WK (2019) Generalists are the most urban-tolerant of birds: A phylogenetically controlled analysis of ecological and life history traits using a novel continuous measure of bird responses to urbanization. Oikos, 128, 845-858.
DOI |
[6] | Chen HB (2022) VennDiagram: Generate high-resolution venn and euler plots. R package version 1.7.3. https://www.R-project.org. (accessed on 2022-09-08) |
[7] | Chen ZQ, Fu JP, Zhao XR, Ding CQ (2010) The construction of birds in Yuanmingyuan Relic Park, Beijing. Chinese Journal of Zoology, 45(4), 21-30. (in Chinese with English abstract) |
[陈志强, 付建平, 赵欣如, 丁长青 (2010) 北京圆明园遗址公园鸟类组成. 动物学杂志, 45(4), 21-30.] | |
[8] | Conole LE, Kirkpatrick JB (2011) Functional and spatial differentiation of urban bird assemblages at the landscape scale. Landscape and Urban Planning, 100, 11-23. |
[9] |
Cooke RSC, Eigenbrod F, Bates AE (2019) Projected losses of global mammal and bird ecological strategies. Nature Communications, 10, 2279.
DOI PMID |
[10] | Cooper DS, Shultz AJ, Şekercioğlu ÇH, Osborn FM, Blumstein DT (2022) Community science data suggest the most common raptors (Accipitridae) in urban centres are smaller, habitat-generalist species. Ibis, 164, 771-784. |
[11] | Croci S, Butet A, Clergeau P (2008) Does urbanization filter birds on the basis of their biological traits? The Condor, 110, 223-240. |
[12] |
Dale S, Lifjeld JT, Rowe M (2015) Commonness and ecology, but not bigger brains, predict urban living in birds. BMC Ecology, 15, 12.
DOI PMID |
[13] |
Deng J, Li Y, Hou YL (2023) Urban biodiversity conservation: Experience from the comparative perspective of China and Europe. Biodiversity Science, 31, 23070. (in Chinese with English abstract)
DOI |
[邓晶, 李艺, 侯一蕾 (2023) 城市生物多样性保护: 基于中欧对比视角下的经验借鉴. 生物多样性, 31, 23070.]
DOI |
|
[14] | Deng Y, Jiang WG, Wang WJ, Lü JX, Chen K (2018) Urban expansion led to the degradation of habitat quality in the Beijing-Tianjin-Hebei Area. Acta Ecologica Sinica, 38, 4516-4525. (in Chinese with English abstract) |
[邓越, 蒋卫国, 王文杰, 吕金霞, 陈坤 (2018) 城市扩张导致京津冀区域生境质量下降. 生态学报, 38, 4516-4525.] | |
[15] | Duong T (2017) ks: Kernel Smoothing. R package version 1.10.7. https://www.R-project.org. (accessed on 2022-06-08). |
[16] | Evans BS, Reitsma R, Hurlbert AH, Marra PP (2018) Environmental filtering of avian communities along a rural-to-urban gradient in Greater Washington, D.C., USA. Ecosphere, 9, e02402. |
[17] | Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio, 69, 57-68. |
[18] | Fernández-Juricic E, Jokimäki J (2001) A habitat island approach to conserving birds in urban landscapes: Case studies from southern and northern Europe. Biodiversity & Conservation, 10, 2023-2043. |
[19] |
Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 12, 22-33.
DOI PMID |
[20] | Gong HL, Cao MC, Cui P, Yong F, Shao MQ, Jiang JH (2019) Bird diversity of Qianjiangyuan National Forest Park and the surrounding area, Kaihua County, Zhejiang Province, China. Journal of Ecology and Rural Environment, 35, 469-475. (in Chinese with English abstract) |
[龚浩林, 曹铭昌, 崔鹏, 雍凡, 邵明勤, 蒋剑虹 (2019) 浙江省开化县钱江源国家公园及周边区域的鸟类多样性. 生态与农村环境学报, 35, 469-475.] | |
[21] | Gregory R, Noble D, Field R, Marchant J, Raven M, Gibbons D (2003) Using birds as indicators of biodiversity. Ornis Hungarica, 12, 11-24. |
[22] | Haskell DG, Knupp AM, Schneider MC (2001) Nest predator abundance and urbanization. In: Avian Ecology and Conservation in an Urbanizing World (ed. Marzluff JM), pp. 243-258. Springer, Boston. |
[23] | Huang Y, Gu YY, Yang WR, Wen C (2021) How to best preserve the irreplaceable habitats of threatened birds in Beijing? Biodiversity Science, 29, 340-350. (in Chinese with English abstract) |
[黄越, 顾燚芸, 阳文锐, 闻丞 (2021) 如何在北京充分实现受胁鸟类栖息地保护? 生物多样性, 29, 340-350.] | |
[24] | Humphrey J, Haslem A, Bennett A (2023) Avoid, adapt or exploit: Re-visiting bird responses to urbanization using a novel landscape approach. Global Ecology and Conservation, 48, e02735. |
[25] | Jasmani Z, Ravn HP, van den Bosch CCK (2017) The influence of small urban parks characteristics on bird diversity: A case study of Petaling Jaya, Malaysia. Urban Ecosystems, 20, 227-243. |
[26] | Jiang PH, Cheng L, Li MC, Zhao RF, Huang QH (2014) Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas: A case study of the middle reaches of the Heihe River, China. Ecological Indicators, 46, 240-252. |
[27] | Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the city: Can anyone become an “urban exploiter”? Journal of Biogeography, 34, 638-651. |
[28] |
Larsen TH, Williams NM, Kremen C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecology Letters, 8, 538-547.
DOI PMID |
[29] | Leveau LM (2019) Urbanization induces bird color homogenization. Landscape and Urban Planning, 192, 103645. |
[30] | Li L, Hu RC, Huang JK, Bürgi M, Zhu ZY, Zhong J, Lü Z (2020) A farmland biodiversity strategy is needed for China. Nature Ecology & Evolution, 4, 772-774. |
[31] | Li XY, Yu L, Chen X (2023) New insights into urbanization based on global mapping and analysis of human settlements in the rural-urban continuum. Land, 12, 1607. |
[32] | Liu MH, Chen YM, Zou CX, Ding JH, Lü TT, Zhang Y (2021) Comprehensive evaluation method and empirical study of biodiversity maintenance function at regional scale. Journal of Ecology and Rural Environment, 37, 287-294. (in Chinese with English abstract) |
[刘铭华, 陈艳梅, 邹长新, 丁疆辉, 吕田田, 张扬 (2021) 区域尺度生物多样性维护功能综合评估方法与实证研究. 生态与农村环境学报, 37, 287-294.] | |
[33] | Liu Y, Li Q, Zhang MQ (2015) Dynamic change in bird community in the Temple of Heaven in Beijing. Ecological Science, 34(4), 64-70. (in Chinese with English abstract) |
[刘洋, 李强, 张明庆 (2015) 北京天坛公园鸟类群落的动态变化研究. 生态科学, 34(4), 64-70.] | |
[34] | Lizée MH, Mauffrey JF, Tatoni T, Deschamps-Cottin M (2011) Monitoring urban environments on the basis of biological traits. Ecological Indicators, 11, 353-361. |
[35] | Locke H, Ellis EC, Venter O, Schuster R, Ma KP, Shen XL, Woodley S, Kingston N, Bhola N, Strassburg BBN, Paulsch A, Williams B, Watson JEM (2019) Three global conditions for biodiversity conservation and sustainable use: An implementation framework. National Science Review, 6, 1080-1082. |
[36] | Luck GW, Carter A, Smallbone L (2013) Changes in bird functional diversity across multiple land uses: Interpretations of functional redundancy depend on functional group identity. PLoS ONE, 8, e63671. |
[37] | Marzluff JM, Ewing K (2001) Restoration of fragmented landscapes for the conservation of birds: A general framework and specific recommendations for urbanizing landscapes. Restoration Ecology, 9, 280-292 |
[38] |
Mayor SJ, Cahill JF Jr, He F, Sólymos P, Boutin S (2012) Regional boreal biodiversity peaks at intermediate human disturbance. Nature Communications, 3, 1142.
DOI PMID |
[39] | McKinney ML (2002) Urbanization, biodiversity, and conservation. BioScience, 52, 883-890. |
[40] | McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biological Conservation, 127, 247-260. |
[41] | McKinney ML (2008) Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems, 11, 161-176. |
[42] |
Møller AP, Jokimäki J, Skorka P, Tryjanowski P (2014) Loss of migration and urbanization in birds: A case study of the blackbird (Turdus merula). Oecologia, 175, 1019-1027.
DOI PMID |
[43] | National Forestry and Grassland Administration(2022) National Action Plan for the Protection of Bird Migratory Pathways (2021-2035) (in Chinese) |
[国家林业和草原局 (2022) 全国鸟类迁徙通道保护行动方案 (2021-2035年)] | |
[44] | Neate-Clegg MHC, Tonelli BA, Youngflesh C, Wu JX, Montgomery GA, Şekercioğlu ÇH, Tingley MW (2023) Traits shaping urban tolerance in birds differ around the world. Current Biology, 33, 1677-1688. |
[45] | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara B, Simpson G, Solymos P, Stevens H, Wagner H (2013) Vegan: Community Ecology Package. R package version 2.0.10. https://www.R-project.org. (accessed on 2022-09-08) |
[46] | Palacio FX, Ibañez LM, Maragliano RE, Montalti D (2018) Urbanization as a driver of taxonomic, functional, and phylogenetic diversity losses in bird communities. Canadian Journal of Zoology, 96, 1114-1121. |
[47] | Palomino D, Carrascal LM (2006) Urban influence on birds at a regional scale: A case study with the avifauna of northern Madrid Province. Landscape and Urban Planning, 77, 276-290. |
[48] |
Partecke J, Hegyi G, Fitze PS, Gasparini J, Schwabl H (2020) Maternal effects and urbanization: Variation of yolk androgens and immunoglobulin in city and forest blackbirds. Ecology and Evolution, 10, 2213-2224.
DOI PMID |
[49] | Patankar S, Jambhekar R, Suryawanshi KR, Nagendra H (2021) Which traits influence bird survival in the city? A review. Land, 10, 92. |
[50] | Pohlert T (2023) Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. R package version 1.9.10. |
[51] | R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria..https://www.R-project.org. (accessed on 2020-08-08) |
[52] | Šálek M, Svobodová J, Zasadil P (2010) Edge effect of low-traffic forest roads on bird communities in secondary production forests in central Europe. Landscape Ecology, 25, 1113-1124. |
[53] | Savard JPL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landscape and Urban Planning, 48, 131-142. |
[54] | Şekercioğlu ÇH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proceedings of the National Academy of Sciences, USA, 101, 18042-18047. |
[55] | Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, USA, 109, 16083-16088. |
[56] | Shochat E, Warren PS, Faeth SH (2006) Future directions in urban ecology. Trends in Ecology & Evolution, 21, 661-662. |
[57] | Slabbekoorn H, Yeh P, Hunt K (2007) Sound transmission and song divergence: A comparison of urban and forest acoustics. The Condor, 109, 67-78. |
[58] |
Sol D, Trisos C, Múrria C, Jeliazkov A, González-Lagos C, Pigot AL, Ricotta C, Swan CM, Tobias JA, Pavoine S (2020) The worldwide impact of urbanisation on avian functional diversity. Ecology Letters, 23, 962-972.
DOI PMID |
[59] |
Spotswood EN, Beller EE, Grossinger R, Grenier JL, Heller NE, Aronson MFJ (2021) The biological deserts fallacy: Cities in their landscapes contribute more than we think to regional biodiversity. BioScience, 71, 148-160.
DOI PMID |
[60] | Thompson R, Tamayo M, Sigurðsson S (2022) Urban bird diversity: Does abundance and richness vary unexpectedly with green space attributes? Journal of Urban Ecology, 8, 1-13. |
[61] |
Tian LJ, Yang XB, Li DH, Li L, Chen L, Liang CQ, Zhang PC, Li CD (2022) Species diversity and nestedness of bird assemblages in the forest fragments of Haikou and Sanya cities. Biodiversity Science, 30, 21424. (in Chinese with English abstract)
DOI |
[田璐嘉, 杨小波, 李东海, 李龙, 陈琳, 梁彩群, 张培春, 李晨笛 (2022) 海口和三亚两城市破碎化林地中鸟类群落多样性与嵌套分布格局. 生物多样性, 30, 21424.]
DOI |
|
[62] | U. S. Geological Survey, Canadian Wildlife Service (2020) Strategic Plan for the North American Breeding Bird Survey. https://doi.org/10.3133/cir1466. (accessed on 2021-08-08) |
[63] | Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370-384. |
[64] | Vuorisalo T, Andersson H, Hugg T, Lahtinen R, Laaksonen H, Lehikoinen E (2003) Urban development from an avian perspective: Causes of hooded crow (Corvus corone cornix) urbanisation in two Finnish cities. Landscape and Urban Planning, 62, 69-87. |
[65] | Wang XD, Li XH, Ren XT, Jackson MV, Fuller RA, Melville DS, Amano T, Ma ZJ (2022) Effects of anthropogenic landscapes on population maintenance of waterbirds. Conservation Biology, 36, e13808. |
[66] | Wang XQ, Wang ZF, Guo H (2006) The study of the urban heat island in Beijing City. Climatic and Environmental Research, 11, 627-636. (in Chinese with English abstract) |
[王喜全, 王自发, 郭虎 (2006) 北京“城市热岛”效应现状及特征. 气候与环境研究, 11, 627-636.] | |
[67] |
Wang Y, Zhang ZW, Zheng GM, Li JQ, Xu JL, Ma ZJ, Biancucci A (2012) Ornithological research: Past twenty years and future perspectives in China. Biodiversity Science, 20, 119-137. (in Chinese with English abstract)
DOI |
[王勇, 张正旺, 郑光美, 李建强, 徐基良, 马志军, Biancucci A (2012) 鸟类学研究: 过去二十年的回顾和对中国未来发展的建议. 生物多样性, 20, 119-137.]
DOI |
|
[68] | Wang YP, Song YF, Zhong YX, Chen CW, Zhao YH, Zeng D, Wu YR, Ding P (2021) A dataset on the life-history and ecological traits of Chinese birds. Biodiversity Science, 29, 1149-1153. (in Chinese with English abstract) |
[王彦平, 宋云枫, 钟雨茜, 陈传武, 赵郁豪, 曾頔, 吴亦如, 丁平 (2021) 中国鸟类的生活史和生态学特征数据集. 生物多样性, 29, 1149-1153.]
DOI |
|
[69] | Wania A, Kühn I, Klotz S (2006) Plant richness patterns in agricultural and urban landscapes in Central Germany—Spatial gradients of species richness. Landscape and Urban Planning, 75, 97-110. |
[70] | Wenny D, Devault T, Johnson MD, Kelly D, Şekercioğlu Ç, Tomback D, Whelan C (2011) The need to quantify ecosystem services provided by birds. The Auk, 128, 1-14. |
[71] | Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology, 95, 2027. |
[72] | Xie SL, Cao L, Lu F, Ouyang ZY (2016) Adaptation of birds to urbanization. Acta Ecologica Sinica, 36, 6696-6707. (in Chinese with English abstract) |
[谢世林, 曹垒, 逯非, 欧阳志云 (2016) 鸟类对城市化的适应. 生态学报, 36, 6696-6707.] | |
[73] | Xing SH, Zhou X, Liu YQ, Yuan X (2021) Priority areas identification for species diversity protection in Beijing-Tianjin-Hebei Region. Acta Ecologica Sinica, 41, 3144-3152. (in Chinese with English abstract) |
[邢韶华, 周鑫, 刘云强, 袁秀 (2021) 京津冀地区物种多样性保护优先区识别研究. 生态学报, 41, 3144-3152.] | |
[74] |
Xu YJ, Si YL, Takekawa J, Liu Q, Prins HHT, Yin SL, Prosser DJ, Gong P, de Boer WF (2020) A network approach to prioritize conservation efforts for migratory birds. Conservation Biology, 34, 416-426.
DOI PMID |
[75] | Yang MX, Callaghan CT, Wu JY (2023) How do birds with different traits respond to urbanization? A phylogenetically controlled analysis based on citizen science data and a diverse urbanization measurement. Landscape and Urban Planning, 237, 104801. |
[76] | Yin JD, Dong JW, Kuang WH, Cui YP, Jiang D (2020) Pattern and gradient effects of ecological space changes in China since 1990s. Acta Ecologica Sinica, 40, 5904-5914. (in Chinese with English abstract) |
[殷嘉迪, 董金玮, 匡文慧, 崔耀平, 江东 (2020) 20世纪90年代以来中国生态空间演化的时空格局和梯度效应. 生态学报, 40, 5904-5914.] | |
[77] | Zhang PQ, Zhang ZM, Bai JD, Liu YJ, Zhou CX, Meng YP, Zhong ZY, Yang Z (2020) Bird diversity in Nan-Haizi Milu Park of Beijing, China. Acta Ecologica Sinica, 40, 1740-1749. (in Chinese with English abstract) |
[张鹏骞, 张志明, 白加德, 刘艳菊, 周彩贤, 孟玉萍, 钟震宇, 杨峥 (2020) 北京南海子麋鹿苑鸟类多样性研究. 生态学报, 40, 1740-1749.] | |
[78] | Zhang YY, Zheng GM (2021) China’s Red List of Biodiversity∙Vertebrates (Volume Ⅱ): Birds. Science Press, Beijing. (in Chinese and in English) |
[张雁云, 郑光美 (2021) 中国生物多样性红色名录∙脊椎动物(第二卷): 鸟类. 科学出版社, 北京.] | |
[79] | Zhang ZK, Huang GL (2018) Urban ornithological research in China: A review. Acta Ecologica Sinica, 38, 3357-3367. (in Chinese with English abstract) |
[张征恺, 黄甘霖 (2018) 中国城市鸟类学研究进展. 生态学报, 38, 3357-3367.] | |
[80] | Zhao YL, Wang C, Bai ZT, Hao ZZ (2021) Changes of bird community under urbanization and its relationship with urban vegetation. Acta Ecologica Sinica, 41, 479-489. (in Chinese with English abstract) |
[赵伊琳, 王成, 白梓彤, 郝泽周 (2021) 城市化鸟类群落变化及其与城市植被的关系. 生态学报, 41, 479-489.] | |
[81] | Zhao ZJ (2001) A Handbook of the Birds of China. Jilin Science and Technology Publishing House, Changchun. (in Chinese) |
[赵正阶 (2001) 中国鸟类志. 吉林科学技术出版社, 长春.] | |
[82] | Zheng GM (2017) A Checklist on the Classification and Distribution of the Birds of China, 3rd edn. Science Press, Beijing. (in Chinese) |
[郑光美 (2017) 中国鸟类分类与分布名录(第三版). 科学出版社, 北京.] | |
[83] |
Zhong YJ, Luo YL, Zhu YN, Deng JW, Tu JH, Yu JH, He JK (2024) Geographic variations in eco-evolutionary factors governing urban birds: The case of university campuses in China. Journal of Animal Ecology, 93, 208-220.
DOI PMID |
[1] | 李雪原, 孙智闲, 王凤震, 席蕊, 方雨田, 郝浚源, 盛冬, 孙书雅, 赵亚辉. 城市发展对鱼类功能多样性的影响: 以超大城市北京为例[J]. 生物多样性, 2024, 32(8): 24150-. |
[2] | 高翔, 潘淑芳, 孙争争, 李霁筱, 高天雨, 董路, 王宁. 广东珠海凤凰山和淇澳岛小灵猫的分布与活动节律[J]. 生物多样性, 2024, 32(8): 24045-. |
[3] | 李佳琪, 冯一迪, 王蕾, 潘盆艳, 刘潇如, 李雪阳, 王怡涵, 王放. 上海城市环境中貉的食性分析及家域范围内的栖息地选择[J]. 生物多样性, 2024, 32(8): 24131-. |
[4] | 金泉泉, 向颖, 王华, 习新强. 南京仙林大学城三种绿地类型中果蝇多样性及其被寄生率[J]. 生物多样性, 2024, 32(8): 24156-. |
[5] | 白皓天, 余上, 潘新园, 凌嘉乐, 吴娟, 谢恺琪, 刘阳, 陈学业. AI辅助识别的鸟类被动声学监测在城市湿地公园中的应用[J]. 生物多样性, 2024, 32(8): 24188-. |
[6] | 王秦韵, 张玉泉, 刘浩, 李明, 刘菲, 赵宁, 陈鹏, 齐敦武, 阙品甲. 成都大熊猫繁育研究基地鸟类多样性[J]. 生物多样性, 2024, 32(8): 24066-. |
[7] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[8] | 耿江天, 王菲, 赵华斌. 城市化对中国蝙蝠影响的研究进展[J]. 生物多样性, 2024, 32(8): 24109-. |
[9] | 卢佳玉, 石小亿, 多立安, 王天明, 李治霖. 基于红外相机技术的天津城市地栖哺乳动物昼夜活动节律评价[J]. 生物多样性, 2024, 32(8): 23369-. |
[10] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[11] | 董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰. 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性[J]. 生物多样性, 2023, 31(8): 22692-. |
[12] | 殷鲁秦, 王成, 韩文静. 基于取食行为探究北京居民区鸟类的食源特征及多样性[J]. 生物多样性, 2023, 31(5): 22473-. |
[13] | 申小虎, 朱翔宇, 史洪飞, 王传之. 基于机器学习鸟声识别算法研究进展[J]. 生物多样性, 2023, 31(11): 23272-. |
[14] | 边琦, 王成, 程贺, 韩丹, 赵伊琳, 殷鲁秦. 声学指数在城市森林鸟类多样性评估中的应用[J]. 生物多样性, 2023, 31(1): 22080-. |
[15] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn